Machine Description Revision 0.16
March 15, 2005

4 Node definitions

The type of a node is defined by the name string associated with the NODE element
designating the start of the node in the machine description node block. Nodes can be found
by linear search matching on type or by following the PROP_ARCs of a DAG.

4.1 Node categories

Nodes in a machine description serve one or two purposes; to provide information
about a virtual machine resource they represent and, optionally to function as a construction
node within a DAG formed within the machine description. A construction node may
contain properties about certain resources, however its primary function is as a container for
the arc links (PROP_ARC properties) that connect to other descriptive nodes.

Nodes belong to one of four categories that determine what walkers must handle within
the MD. A node's category determines whether nodes of that type can be expected to found
within the MD, or whether nodes of that type are optional. The categories are defined below:

core Nodes of this type are always required to be present in the MD.

resource required If the resource described by the node is available within the virtual
machine, an associated node of this type is required to be present in the
MD in order to describe the resource.

required by X If a node of type X is present in the MD, then one (or more) nodes of this
type will be present in the MD and associated with X.

optional A node of this type need not appear as part of the MD, it is entirely
optional, and guest OS code should have a default policy to continue
functioning despite this absence.

4.2 Content versions

The “root” node (section 4.5) is unique in the entire machine description. It is; the one
node from which all other nodes can be reached, guaranteed to be the first node defined in
the node block, and is required to be present in a properly formed machine description.

The root node is primarily a construction node, with arc properties connecting to other
nodes in the description. The root node carries a string property “content-version” that
defines the version number of the content of the machine description”.

Content versioning is defined independently of the machine description transport
version. The content version identifies the rules surrounding construction of the DAG
describing the machine.

This specification is for content version “1”.

Minor changes such as the addition of new node types, properties or arc names, or the
removal of optional nodes or properties, do not require a content version number change.

Incompatible changes to the node definitions such that any possible earlier machine
description consumer will encounter problems with the newer content cause a version
change.

Page 9 of 20




A Revision 0.16 Machine Description
March 15, 2005

4.3 Summary of node definitions

The list of currently defined nodes is as follows:

Node Name Defined in section Brief description
cache 46.1 Definition of a cache in the memory system hierarchy
cpu 452 Definition node for a single CPU
cpus 451 Construction node pointing to all cpu nodes
exec_unit 46.2 Node describing an execution unit of processor
mblock 454 Definition of single block of available memory
memory 453 Construction node pointing to all available mblock nodes
platform 455 Node describing intrinsic platform properties
root 45 The primary node
tlb 46.3 Definition of a TLB in the memory system heirarchy

Each of these nodes is defined in more detail in the following sections.

4.4 Common data definitions

As defined by the machine description transport, data values for string and data
property elements (PROP_STR and PROP_DATA) are placed in the data block of the
machine description. This section defines commonly used formats of data placed in the data
block of a machine description and referred to using elements with the PROP_DATA tag.

Additional data formats may also be defined explicitly with a specific node definition.

4.4.1 String array

A string array is a commonly used data property that defines a concatenated list of nul
character terminated strings. The PROP_DATA element that refers to this structure carries
an offset (within the MD data block) to the start of the first string. The size field corresponds
to a count of all the string bytes comprising the compound string list.

In this format strings are concatenated one immediately after the next. Thus if p is a
pointer to the first string, then p+strlen(p)+1 is a pointer to the second. The overall size of
this data field is used to determine the last string in the list. Every string in the list must
terminate with the nul character. The string pointed to by p is the last string in the array if
p+strlen(p)+1 equals the address of the property data plus its length. A string array of zero
elements is not possible since the data length of a PROP_DATA element cannot be zero.
Consumers should interpret the absence of the property as indicating an array of zero
elements.

For example; the string list { “data”,”load”,”store” } would be encoded as a PROP_DATA
pointing to a 16byte block of the data section of the MD with the byte values: 0x64 0x61 0x74 0x61
0x00 0x6c 0x6f 0x61 0x64 0x00 0x73 0x74 0x6f 0x72 0x65 0x00.

Page 10 of 20




Machine Description

Revision 0.16
March 15, 2005

4.5 Generic nodes

Root node

Name

Category

Required subordinates

Optional subordinate

root

core

cpus (84.5.1)
memory (84.5.3)
platform (§4.5.5)

Description

A node of this type must always be the first node in a machine description.

Only one node in the machine description may be named “root”.

This root node must be the first node defined

description.

in the node block of the machine

All all other nodes in the forward graph can be reached starting at the root node.

Properties

Name

Tag

Required

Description

content-version

PROP_STR

yes Version string for the content of this machine description.

Currently defined version is “1”

Page 11 of 20




A Revision 0.16 Machine Description
March 15, 2005

45.1 Cpus node

Name Category Required subordinates Optional subordinate
cpus required by cpu(84.5.2)
root

Description

This construction node leads directly to all the virtual CPUs supported within this
virtual machine. The number of cpus is expected to be derived by counting the number of
subordinate cpu nodes.

Properties

None defined

Page 12 of 20




Machine Description

Revision 0.16
March 15, 2005

4.5.2 Cpunode

Name

Category

Required subordinates

Optional subordinate

cpu

resource
required

exec_unit (8)
cache (84.6.1)
tlb (84.6.3)

Properties

Name

Tag

Required

Description

clock-frequency

PROP_VAL

yes

A 64-bit unsigned integer giving the frequency of the sun4v
virtual CPU in Hertz and thereby the frequency of the
processor's %tick register

compatible

PROP_DATA*

yes

String array of cpu types this virtual cpu is compatible with.
The most specific cpu type must be placed first in the list,
finishing with the least specific.

PROP_VAL

yes

A unique 64-bit unsigned integer identifier for the virtual
CPU. This identifier is the one to use for all hypervisor CPU
services for the CPU represented by this node.

isalist

PROP_DATA*

yes

List of the instruction set architectures supported by this
virtual CPU.

mmu-#context-bits

PROP_VAL

no

A 64-bit unsigned integer giving the number of bits forming a
valid context for use in a sun4v TTE and the MMU context
registers for this virtual CPU.

sundv defines the minimum default value to be 13 if this
property is not specified in a cpu node.

mmu-#shared-contexts

PROP_VAL

no

A 64-bit unsigned integer giving the number of primary and
secondary shared context registers supported by this virtual
CPU's MMU. If not present the default value is assumed to be
0

mmu-#va-bits

PROP_VAL

no

A 64-bit unsigned integer giving the number of virtual
address bits supported by this virtual CPU. If not present a
default value of 64 is assumed.

Note: It is legal for there to be fewer VA bits than real
address bits.

mmu-compatible

PROP_DATA*

no

String array listing alternate mmu-type values that this
virtual CPU's MMU interface is also compatible with

mmu-max-#tsbs

PROP_VAL

no

A 64-bit unsigned integer giving the maximum number of
TSBs this virtual CPU can simultaneously support. If not
present the default value is assumed to be 1.

Note: sundv Solaris assumes at least 2 are available.

mmu-page-size-list

PROP_VAL

no

A 64-bit unsigned integer treated as a bit field describing the
page sizes that may be used on this virtual CPU. Page size
encodings are defined according to the sun4v Architecture

Specification. A bit N in this field, if set , indicates that sun4v
defined page size with encoding N is available for use. For

example bit 0 corresponds to the availability of 8K pages.

If not present, a default value of 0x9 is assumed, indicating
the sun4v default availability of 8K and 4M pages.

mmu-type

PROP_STR

yes

Name for the kind of MMU in use by this cpu

Currently defined names are: “sun4v”

Page 13 of 20




A Revision 0.16
March 15, 2005

Machine Description

Name Tag Required Description
nwins PROP_VAL yes A 64-bit unsigned integer giving the number of SPARCV9
register windows available on this virtual CPU
g-cpu-mondo-#bits PROP_VAL yes A 64-bit unsigned integer the maximum size (in bits) of the
cpu mondo queue head and tail registers
g-dev-mondo-#bits PROP_VAL yes A 64-bit unsigned integer giving the maximum size (in bits)
of the device mondo queue head and tail registers
g-resumable-#bits PROP_VAL yes A 64-bit unsigned integer giving the maximum size (in bits)
of the resumable error queue head and tail registers
g-nonresumable-#bits PROP_VAL yes A 64-bit unsigned integer giving the maximum size (in bits)

of the non-resumable queue head and tail registers

Note: The *compatible® will have “SUNW,sun4v” as the last element for systems of the sundv

machine class.

Note: Currently defined ISAs for constructing an ‘islist® are: "sparcv9", "sparcv8plus",

""sparcv8', "'sparcv8-fsmuld", "sparcv7", "'sparc".

Page 14 of 20




Machine Description

Revision 0.16
March 15, 2005

4.5.3 Memory node

Name Category Required subordinates Optional subordinate
memory required by mblock(84.5.4)
root

Description

This construction node leads directly to all the blocks of real address space backed by

memory within this virtual machine.

Properties

None defined

Page 15 of 20




A Revision 0.16
March 15, 2005

Machine Description

45.4 Mblock node

Name Category Required subordinates Optional subordinate
mblock resource
required

Description

This node represents a single contiguous range of a virtual machine's real address space
that is associated with real memory.

Properties
Name Tag Required Description
base PROP_VAL yes A 64-bit unsigned integer giving the base real address of the
memory block represented bythis node
size PROP_VAL yes A 64-bit unsigned integer giving the size in bytes of the
memory block represented by this node

Page 16 of 20




Machine Description

Revision 0.16
March 15, 2005

455 Platform node

Name Category Required subordinates Optional subordinate
platform core
Description
This node holds general properties describing the platform a guest operating system is
running on.
Properties
Name Tag Required Description
banner-name PROP_STR yes The banner name of the system.
hostid PROP_VAL no A 64-bit unsigned integer in which the lower 32 bits hold the
host id assigned to the virtual machine. The upper 32bits
must be zero.
mac-address PROP_VAL no A 64-bit unsigned integer in which the lower 48bits holds the
mac address assigned to the virtual machine. The upper
16bits must be zero.
name PROP_STR yes The platform binding name of the system. May not contain
white space characters.
serial# PROP_VAL no A 64-bit unsigned integer in which the lower 32 bits hold the
serial number assigned to the virtual machine. The upper
32bits must be zero.
stick-frequency PROP_VAL yes A 64-bit unsigned integer giving the frequency in Hertz of

the system (%stick) clock for the virtual machine.

Note: A platform’s banner-name is cosmetic only, typically of the form “Sun Fire T100, but the
name is part of the platform binding, typically of the form “SUNW,Sun-Fire-T100”.

Page 17 of 20




A Revision 0.16 Machine Description
March 15, 2005

4.6 Memory hierarchy nodes

The following nodes are used to convey information about the host memory system
heirarchy to a guest.

4.6.1 Cache node

Name Category Required subordinates Optional subordinate

cache optional cache (84.6.1)

Description

This node describes a cache in the memory system hierarchy.

Properties

Name Tag Required Description

associativity PROP_VAL yes A 64-bit unsigned integer giving the associativity of the cache
(number of ways in each set). A value of 0 indicates fully
associative, a value of 1 indicates direct-mapped, a value of 2
indicates 2-way and so on.

compatible-type | PROP_DATA no Holds a string array of “type” field values. In the event that a
precise type match cannot be made using the “type” property
this property may be searched for compatible types.

level PROP_VAL yes A 64-bit unsigned integer giving the notional level of this
cache in the memory hierarchy.

line-size PROP_VAL yes A 64-bit unsigned integer giving the number of bytes
comprising a single cache line. This is the size of the caches
allocation unit that is matched by a single cache tag

sub-block-size PROP_VAL no A 64-bit unsigned integer giving the number of bytes
comprising a single cache sub-block. This is the size of the
cache's coherence unit size that is matched by a single state
entry. This property may be omitted if it would have the
same value as the line-size property.

size PROP_VAL yes A 64-bit unsigned integer giving the capacity (size) in bytes
of the cache.

type PROP_DATA yes String array listing what may be held in this cache. Generic
types are “instruction” and “data”.

Page 18 of 20




Machine Description

Revision 0.16
March 15, 2005

4.6.2 Exec-unit node

Name

Category

Required subordinates Optional subordinate

exec-unit

optional

cache (84.6.1)
tlb (84.6.3)

Description

This node is describes an execution unit associated with a virtual CPU. Each execution
unit may perform multiple functions/operations, and properties are defined appropriate not
just to the whole execution unit, but also to individual function capabilities.

Properties

Name Tag Required Description
compatible-type | PROP_DATA no If defined holds a string array of “type” field values. In the
event that a precise type match cannot be made using the
“type” property this property may be searched for
compatible types.
type PROP_DATA yes String array listing functional capabilities of this execution

unit. Generic types are:

“ifetch” - instruction fetcher
“integer” - integer instruction execution
“fp” - floating point instruction execution
“vis” - vis instruction execution
“integer-load” - integer load operations
“integer-store” - integer store operations
“fp-load” - floating point load operations

“fp-store” - floating point store operations

Niagara specific types are:

“nl-crypto” - Niagara 1.0 crypto unit

Page 19 of 20




A Revision 0.16 Machine Description
March 15, 2005

4.6.3 TLB node

Name Category Required subordinates Optional subordinate

tlb optional

Description

A TLB node describes a Translation Lookaside Buffer (MMU translation cache) in the
memory system hierarchy.

Properties

Name Tag Required Description

associativity PROP_VAL yes A 64-bit unsigned integer giving the associativity of the TLB
(number of ways in each set). A value of 0 indicates fully
associative, a value of 1 indicates direct-mapped, a value of 2
indicates 2-way and so on.

compatible-type | PROP_DATA no If defined holds a string array of “type” field values. In the
event that a precise type match cannot be made using the
“type” property this property may be searched for
compatible types.

entries PROP_VAL yes A 64-bit unsigned integer giving the number of translation
entries
level PROP_VAL yes A 64-bit unsigned integer giving the notional level of this

translation buffer in the overall page translation hierarchy

page-size-list PROP_VAL yes A 64-bit unsigned integer treated as a bit field describing the
page sizes that may be used in this TLB. Page size encodings
are defined according to the sun4v Architecture Specification.
A bit N in this field, if set , indicates that sun4v defined page
size with encoding N is available for use. For example bit 0
corresponds to the availability of 8K pages.

type PROP_DATA yes String array listing functional capabilities of this execution
unit. Currently defined types are:

“instruction” - translate instruction fetches

“data” - translates data accesses

Page 20 of 20






