
Sun4v Hypervisor Core API Specification

Revision 0.21

March 23, 2005

A Revision 0.21 Hypervisor API
March 23, 2005

Table of Contents
1 Introduction...3

1.1 Related specifications..3

1.2 Additional specifications.....................................3

2 Hypervisor call conventions...5

2.1 Hyper-fast traps..5

2.2 Fast traps...5

2.3 Post hypervisor trap processing..........................5

3 Common definitions...7

3.1 Trap numbers..7

3.2 Function numbers for FAST_TRAP..................7

3.3 Function numbers for CORE_TRAPs................8

3.4 Error codes..8

3.5 Guest states...8

3.6 Initial guest environment.....................................9

3.7 Privileged registers..9

3.8 Other initial guest state......................................11

4 Machine description..12

5 API versioning..13

6 Domain services..14

6.1 API call...14

7 CPU services...16

7.1 CPU id and CPU list..16

7.2 API calls...16

8 MMU services...21

8.1 Definition for translation table entry (TTE).. ..21

8.2 Translation Storage Buffer (TSB) specification. .
21

8.3 MMU flags...22

8.4 MMU Fault status area......................................23

8.5 API calls...26

9 Cache and Memory services......................................33

9.1 API calls...33

10 Device interrupt services..35

10.1 Definitions..35

10.2 API calls...35

11 Time of day services...39

11.1 API calls...39

12 Console services..40

12.1 API calls...40

13 Core dump services..41

13.1 API calls...42

14 Trap trace services..43

14.1 Trap trace buffer control structure..................43

14.2 Trap trace buffer entry format........................43

14.3 API calls...44

Page 2 of 46

Hypervisor API Revision 0.21
March 23, 2005

1 Introduction

This document details the calling conventions of the API provided to a sun4v domain by
the underlying hypervisor, and the core functions common to all hypervisors. The intended
audience for this document is operating system and firmware engineers porting to the sun4v
architecture.

The API serves two principal purposes:

1. To enable the supervisor to request services and operations to be performed on its
behalf by the hypervisor.

2. To inform the hypervisor of information it expects from the supervisor, for example
the size and location of the interrupt delivery queues.

1.1 Related specifications

This document should be read in conjunction with the following specifications;

The Sun4v Architecture Specification describes the architectural model of the virtual
machine environment provided through a conjunction of platform hardware and hypervisor
software. It is to be read in addition to the Level-1 SPARC v9 specification. It supplants and
extends the Level-2 SPARC v9 specification in describing the programming model, register
and exception interfaces for privileged mode software.

The SunSPARC Specification describes the common hardware specification for SPARC
processors. It is of primary interest to hypervisor implementors.

The Machine Description Specification documents the transport format and content by
which the virtual machine environment implemented by a hypervisor is described to guest
software. Many of the arguments provided to hypervisor API services should be derived
from or have their constraints (e.g. maximum and minimum values) described by the
machine description.

The Sun4v Error Specification documents the behavioral semantics of sun4v virtual
machine environment, as well as the syntax of the error reports provided via the resumable
and non-resumable error queue interfaces defined by the sun4v architecture.

1.2 Additional specifications

Hypervisor API services are divided into three categories; Core, Technology and,
Platform Specific.

1.2.1 Core API services

Core API services are common to all sun4v virtual machine environments.

1.2.2 Technology API services

Technology API services are common to platforms implementing a specific technology
requiring a sun4v/hypervisor interface. An example of this category is the PCI IO API
specification, which is common to all platforms implementing a virtualized PCI root nexus
capability.

Page 3 of 46

A Revision 0.21 Hypervisor API
March 23, 2005

1.2.3 Platform Specific API services

Platform Specific API services are unique to a platform or platform family only.
Examples of such interfaces typically include API services to access performance counters,
or processor specific features such as the cryptographic acceleration in Niagara-1.

Page 4 of 46

Hypervisor API Revision 0.21
March 23, 2005

2 Hypervisor call conventions

Hypervisor API calls are made through the use of a trap (Tcc) instruction using
sw_trap_numbers 0x80 and above. The calling convention has two forms; fast-trap and hyper-
fast-trap. The principle difference between these two forms is whether the function number
is passed in a register or is encoded in the trap instruction itself. The latter is the faster form,
but has a limited number of possible functions, and is therefore reserved for performance
critical operations only.

2.1 Hyper-fast traps

This trap mechanism encodes the API function number (0x80 + a 7bit value) in the Tcc
instruction's sw_trap_number itself, and therefore provides the fastest possible method of
reaching the actual function implementation. The calling convention is as follows:

Register Input Output

%o0 argument 0 return status

%o1 argument 1 return value1

%o2 argument 2 return value2

%o3 argument 3 return value3

%o4 argument 4 return value4

All arguments and return values are 64-bits unless explicitly stated by the description of
a specific API service. Further arguments may be passed in memory, as defined on a per
function call basis.

2.2 Fast traps

Fast traps are the preferred mechanism for hypervisor API calls. All fast trap API calls
use sw_trap_number 0x80 in the Tcc instruction, with the required function number provided
as a 64bit value in register %o5. The calling convention is as follows:

Register Input Output

%o5 function number undefined

%o0 argument 0 return status

%o1 argument 1 return value 1

%o2 argument 2 return value 2

%o3 argument 3 return value 3

%o4 argument 4 return value 4

All arguments and return values are 64-bits unless explicitly stated by the description of
a specific API service. Further arguments may be passed in memory, as defined on a per
function call basis.

2.3 Post hypervisor trap processing

The following convention is used, unless explicitly described for a particular API
service:

� All API services resume executing at the next logical instruction after the service trap as
with a done instruction.

Page 5 of 46

A Revision 0.21 Hypervisor API
March 23, 2005

� All sun4v defined registers are preserved across an API service except as explicitly stated
below;

� Registers providing arguments to an API service (including the function number
%o5 for fast traps) should be considered volatile, and their values upon return
are undefined unless they are explicitly specified on a per-service basis. Registers
not used for passing arguments or returning values are preserved across the API
service.

� Upon return from the API service, the returned status is given in register %o0. A
value of zero in %o0 indicates successful execution of the API service, all other
values indicate an error status (as defined in section 3.4).

� If an invalid sw_trap_number is issued, or if an invalid function number is specified, the
hypervisor will return with EBADTRAP (as defined in section 3.4) in %o0.

� All 64 bits of the argument or return values are significant.

Page 6 of 46

Hypervisor API Revision 0.21
March 23, 2005

3 Common definitions

3.1 Trap numbers

The following are the sw_trap_numbers encoded in the Tcc instruction that enters the
hypervisor:

FAST_TRAP 0x80
MMU_MAP_ADDR 0x83
MMU_UNMAP_ADDR 0x84
TTRACE_ADDENTRY 0x85
CORE_TRAP 0xff

Unless assigned to technology or platform specific APIs all other trap numbers (0x86 to
0xfe inclusive) result in EBADTRAP being returned in %o0 as described in section 2.3.

3.2 Function numbers for FAST_TRAP

Function numbers for fast-traps are provided in %o5 as a 64-bit value. The following are
the function numbers defined for the core API set:

MACH_EXIT 0x00
MACH_DESC 0x01
MACH_SIR 0x02

CPU_START 0x10
CPU_STOP 0x11
CPU_YIELD 0x12
CPU_QCONF 0x14
CPU_QINFO 0x15
CPU_MYID 0x16
CPU_STATE 0x17
CPU_SET_RTBA 0x18
CPU_GET_RTBA 0x19

MMU_TSB_CTX0 0x20
MMU_TSB_CTXNON0 0x21
MMU_DEMAP_PAGE 0x22
MMU_DEMAP_CTX 0x23
MMU_DEMAP_ALL 0x24
MMU_MAP_PERM_ADDR 0x25
MMU_FAULT_AREA_CONF 0x26
MMU_ENABLE 0x27
MMU_UNMAP_PERM_ADDR 0x28
MMU_TSB_CTX0_INFO 0x29
MMU_TSB_CTXNON0_INFO 0x2a
MMU_FAULT_AREA_INFO 0x2b

MEM_SCRUB 0x31
MEM_SYNC 0x32

CPU_MONDO_SEND 0x42

TOD_GET 0x50
TOD_SET 0x51

CONS_GETCHAR 0x60
CONS_PUTCHAR 0x61

TTRACE_BUF_CONF 0x90
TTRACE_BUF_INFO 0x91
TTRACE_ENABLE 0x92
TTRACE_FREEZE 0x93
DUMP_BUF_UPDATE 0x94
DUMP_BUF_INFO 0x95

Page 7 of 46

A Revision 0.21 Hypervisor API
March 23, 2005

INTR_DEVINO2SYSINO 0xa0
INTR_GETENABLED 0xa1
INTR_SETENABLED 0xa2
INTR_GETSTATE 0xa3
INTR_SETSTATE 0xa4
INTR_GETTARGET 0xa5
INTR_SETTARGET 0xa6

Unless assigned to technology specific or platform specific APIs all other function
numbers used for fast-traps result in EBADTRAP being returned in %o0 as described in
section 2.3.

3.3 Function numbers for CORE_TRAPs

CORE_TRAP APIs follow the same calling conventions as FAST_TRAP API services.
The following are the function numbers defined for the core API set:

API_VER 0x00
API_PUTCHAR 0x01
API_EXIT 0x02

CORE_TRAP function numbers are defined as followed:

API_VER is defined in section 5.

API_PUTCHAR is an alias for FAST_TRAP function CONS_PUTCHAR.

API_EXIT is an alias for FAST_TRAP function MACH_EXIT.

3.4 Error codes

When a hypervisor API returns, unless explicitly described by the API service, the 64-bit
value in %o0 will be one of the following error identification values.

EOK 0 Successful return
ENOCPU 1 Invalid CPU id
ENORADDR 2 Invalid real address
ENOINTR 3 Invalid interrupt id
EBADPGSZ 4 Invalid pagesize encoding
EBADTSB 5 Invalid TSB description
EINVAL 6 Invalid argument
EBADTRAP 7 Invalid function number
EBADALIGN 8 Invalid address alignment
EWOULDBLOCK 9 Cannot complete operation without blocking
ENOACCESS 10 No access to specified resource
EIO 11 I/O Error
ECPUERROR 12 CPU is in error state
ENOTSUPPORTED 13 Function not supported
ENOMAP 14 No mapping found
ETOOMANY 15 Too many items specified / limit reached

3.5 Guest states

As defined by the Sun4v Architecture Specificiation each virtual CPU can have one of
three different states:

Stopped CPU is stopped, not executing code, an d may be started via the
cpu_start API service

Running CPU is executing

Error CPU is in error, and no longer executing code

The relationship of these CPU states and hypervisor services may be summarized with

Page 8 of 46

Hypervisor API Revision 0.21
March 23, 2005

the state diagram below:

3.6 Initial guest environment

The initial state of each sun4v virtual CPU is defined in the Sun4v Architecture
Specification. Initial register state is duplicated here together with initial register
configuration performed by the hypervisor for completeness.

3.7 Privileged registers

Register(s) Initial Value

%cwp 0

%cansave NWIN-2

%cleanwin NWIN-2

%canrestore 0

%otherwin 0

%wstate 0

%pstate all 0 except pstate.priv=1, pstate.mm=tso

%tl MAXPTL (2)

%gl MAXPGL (2)

%pil MAXPIL (0xf)

%tba current rtba

%tt POR

3.7.1 Non-Privileged Registers

Register(s) Initial Value

%g1-%g7 0

%i0[%cwp] real address of startup memory segment

%i1[%cwp] size of startup memory segment

%i2-%i7[%cwp] 0

Page 9 of 46

Stopped Running

Error

cpu_stop

cpu_start

cpu_yield

error
indication

reset
mach_exit
mach_sir

A Revision 0.21 Hypervisor API
March 23, 2005

Register(s) Initial Value

%i0-%i7[all other windows] 0

%l0-%l7[all windows] 0

%d0-%d62 Binary 0

%fsr 0

3.7.2 Ancillary State Registers

Register(s) Initial Value

asr0 (%y) 0

asr2 (%ccr) 0

asr3 (%asi) ASI_REAL

asr4 (%tick) >0, npt=0

asr5 (%pc) current pc

asr6 (%fprs) 0

asr19 (%gsr) 0

asr22 (%softint) 0

asr24 (%stick) >0, npt=0

asr25 (%stick_cmpr) 0 with interrupts disabled (bit 63=1)

3.7.3 Internal memory-mapped registers

Register(s) Initial Value

ASI_SCRATCHPAD, VA=0x00 0

ASI_SCRATCHPAD, VA=0x08 0

ASI_SCRATCHPAD, VA=0x10 0

ASI_SCRATCHPAD, VA=0x18 0

ASI_SCRATCHPAD, VA=0x20 0 if implemented

ASI_SCRATCHPAD, VA=0x28 0 if implemented

ASI_SCRATCHPAD, VA=0x30 0

ASI_SCRATCHPAD, VA=0x38 0

ASI_MMU, VA=0x08 (primary ctx) 0

ASI_MMU, VA=0x10 (secondary ctx) 0

ASI_MMU, VA=0xn08 (for valid {n} > 0) 0

ASI_MMU, VA=0xn10 (for valid {n} > 0) 0

ASI_QUEUE, VA=0x3c0 (cpu mondo
head) 0

ASI_QUEUE, VA=0x3c8 (cpu mondo tail) 0

ASI_QUEUE, VA=0x3d0 (dev mondo
head) 0

ASI_QUEUE, VA=0x3d8 (dev mondo tail) 0

ASI_QUEUE, VA=0x3e0 (res. error head) 0

ASI_QUEUE, VA=0x3e8 (res. error tail) 0

Page 10 of 46

Hypervisor API Revision 0.21
March 23, 2005

Register(s) Initial Value

ASI_QUEUE, VA=0x3f0 (nres. error head) 0

ASI_QUEUE, VA=0x3f8 (nres. error tail) 0

3.7.4 CPU-specific Registers

Platform specific performance counters will be configured such that
exceptions/interrupts are disabled.

3.8 Other initial guest state

MMU state is disabled.

MMU fault status area location is undefined.

TSB info is undefined.

All queue base addresses and sizes are undefined.

One CPU is placed into the running state, all other CPUs are in the stopped state.

Page 11 of 46

A Revision 0.21 Hypervisor API
March 23, 2005

4 Machine description

To describe the resources within a virtual machine (or logical domain), a data structure called a
machine description is made available to a guest operating system. The machine description content
and its binary format is currently described in a separate document - to be combined with this.

Page 12 of 46

Hypervisor API Revision 0.21
March 23, 2005

5 API versioning

This section describes the API versioning interface available to all privileged code.

This API interface is to be defined.

Page 13 of 46

A Revision 0.21 Hypervisor API
March 23, 2005

6 Domain services

The following services enable privileged software to request information about or to
affect the entire virtual machine domain.

6.1 API call

6.1.1 mach_exit

trap# FAST_TRAP
function# MACH_EXIT
arg0 exit_code

This service stops all CPUs in the virtual machine domain and places them into the
stopped state. The 64-bit exit_code may be passed to a service entity as the domain's exit
status.

On systems without a service entity, the domain will undergo a reset, and the boot
firmware will be reloaded.

This function will never return to the guest that invokes it.

Note: by convention a exit_code of zero denotes successful exit by the guest code. A non-zero
exit_code denotes a guest specific error indication.

6.1.1.1 Errors

This service does not return.

6.1.2 mach_desc

trap# FAST_TRAP
function# MACH_DESC
arg0 buffer
arg1 length

ret0 status
ret1 length

This service copies the most current machine description into the buffer indicated by the
real address in arg0. The buffer provided must be 16 byte aligned. Upon success or EINVAL
this service returns the actual size of the machine description is provided in the ret1 (length)
return value.

Note: A method of determining the appropriate buffer size for the machine description is to first
call this service with a buffer length of 0 bytes.

6.1.2.1 Errors

EBADALIGN Buffer is badly aligned
ENORADDR Buffer is to an illegal real address.
EINVAL Buffer length is too small for complete machine

description.

Page 14 of 46

Hypervisor API Revision 0.21
March 23, 2005

6.1.3 mach_sir

trap# FAST_TRAP
function# MACH_SIR

This service provides a software initiated reset of a virtual machine domain. All CPUs
are captured as soon as possible, all hardware devices are returned to the entry default state,
and the domain is restarted at the SIR (trap type 0x4) real trap table (rtba) entry point on one
of the CPUs. The single CPU restarted is selected as determined by platform specific policy.
Memory is preserved across this operation.

6.1.3.1 Errors

This service does not return.

Page 15 of 46

A Revision 0.21 Hypervisor API
March 23, 2005

7 CPU services

CPUs represent devices that can execute software threads. A single chip that contains
multiple cores or strands is represented as multiple CPUs with unique CPU identifiers.
CPUs are exported to OBP via the machine description (and to Solaris via the device tree).
CPUs are always in one of three states: stopped, running, or error.

7.1 CPU id and CPU list

A cpu id is a pre-assigned 16bit value that uniquely identifies a CPU within a logical
domain.

Operations that are to be be performed on multiple CPUs specify them via a CPU list. A
CPU list is an array in real memory, of which each 16-bit word is a CPU id.

CPU lists are passed through the API as two arguments: the first is the number of entries
(16-bit words) in the CPU list, and the second is the (real address) pointer to the CPU id list.

7.2 API calls

7.2.1 cpu_start

trap# FAST_TRAP
function# CPU_START
arg0 cpuid
arg1 pc
arg2 rtba
arg3 target_arg0

ret0 status

Start CPU with id cpuid with pc in %pc and with a real trap base address value of rtba.
The indicated CPU must be in the stopped state. The supplied rtba must be aligned on a
256byte boundary. On successful completion, the specified cpu will be in the running state
and will be supplied with target_arg0 in %o0 and rtba in %tba.

7.2.1.1 Errors

ENOCPU Invalid cpuid
EINVAL Target cpuid is not in the stopped state
ENORADDR Invalid pc or rtba real address
EBADALIGN Unaligned pc or unaligned rtba
EWOULDBLOCK if starting resource is not available

Page 16 of 46

Hypervisor API Revision 0.21
March 23, 2005

7.2.2 cpu_stop

trap# FAST_TRAP
function# CPU_STOP
arg0 cpu

ret0 status

Stop CPU cpu. The indicated CPU must be in the running state. On completion, it will
be in the stopped state. It is not legal to stop the current CPU.

Note: As this service cannot be used to stop the current cpu, this service may not be used to stop
the last running CPU in a domain. To stop and exit a running domain a guest must use the
mach_exit service.

7.2.2.1 Errors

ENOCPU Invalid cpu
EINVAL target cpu is the current cpu
EINVAL target cpu is not in the running state
EWOULDBLOCK if stopping resource is not available
ENOTSUPPORTED if not supported on the platform

7.2.3 cpu_set_rtba

trap# FAST_TRAP
function# CPU_SET_RTBA
arg0 rtba

ret0 status
ret1 previous_rtba

Set the real trap base address of the local cpu to the value of rtba. The supplied rtba must
be aligned on a 256byte boundary. Upon success the previous value of rtba is returned in
ret1.

Note: the real trap table is described in the sun4v architecture specification.

Note: this service does not affect %tba

7.2.3.1 Errors

ENORADDR Invalid rtba real address
EBADALIGN rtba is incorrectly aligned for a trap table

7.2.4 cpu_get_rtba

trap# FAST_TRAP
function# CPU_GET_RTBA

ret0 status
ret1 previous_rtba

Returns the current value of rtba in ret1.

7.2.4.1 Errors

No possible error

Page 17 of 46

A Revision 0.21 Hypervisor API
March 23, 2005

7.2.5 cpu_yield

trap# FAST_TRAP
function# CPU_YIELD

ret0 status

Suspend execution on the current CPU. Execution will resume when a interrupt (device,
stick_cmpr, or cross-call) is targeted to the CPU. On some CPUs, this API may be used by
the hypervisor to save power by disabling hardware strands.

7.2.5.1 Errors

No possible error

7.2.6 cpu_qconf

trap# FAST_TRAP
function# CPU_QCONF
arg0 queue
arg1 base raddr
arg2 nentries

ret0 status

Configure queue queue to be placed at real address base, and of nentries entries. nentries
must be a power of two number of entries. Base must be aligned exactly to match the queue
size. Each queue entry is 64 bytes long, so for example, a 32 entry queue must be aligned on
a 2048 byte real address boundary.

The specified queue is un-configured if nentries is 0.

For the current version of this API service the argument queue is defined as follows:

queue description
0x3c cpu mondo queue
0x3d device mondo queue
0x3e resumable error queue
0x3f non-resumable error queue

Programming note: The maximum number of entries for each queue for a specific cpu may be
determined from the machine description.

7.2.6.1 Errors

ENORADDR Invalid base
EINVAL Invalid queue or,

nentries not a power of two in number or,
nentries is less than two or too large.

EBADALIGN baseaddr is not correctly aligned for size

Page 18 of 46

Hypervisor API Revision 0.21
March 23, 2005

7.2.7 cpu_qinfo

trap# FAST_TRAP
function# CPU_QINFO
arg0 queue

ret0 status
ret1 base raddr
ret2 nentries

Return the configuration info for queue queue. The base_raddr is the currently defined
read address base of the defined queue, and nentries is the size of the queue in terms of
number of entries.

For the current version of this API service the argument queue is defined as follows:

queue description
0x3c cpu mondo queue
0x3d device mondo queue
0x3e resumable error queue
0x3f non-resumable error queue

If the specified queue is a valid queue number, but no queue has been defined this
service will return success, but with nentries set to 0 and base_raddr will have an undefined
value.

7.2.7.1 Errors

EINVAL Invalid queue

7.2.8 cpu_mondo_send

trap# FAST_TRAP
function# CPU_MONDO_SEND
arg0-1 cpulist
arg2 data

ret0 status

Send a mondo interrupt to CPU list cpulist with 64 bytes of data pointed to by data. data
must be a 64 byte aligned real address. The mondo data will be delivered to the cpu_mondo
queues of the recipient cpus.

In all cases, (error or no), the cpus in cpulist to which the mondo has been successfully
delivered will be indicated by having their entry in cpulist updated with the value 0xffff.

7.2.8.1 Errors

EBADALIGN Mondo data is not 64byte aligned
or cpulist is not 2byte aligned

ENORADDR Invalid data mondo address, or
invalid cpu list address

ENOCPU Invalid CPU in cpus
EWOULDBLOCK Some or all of the listed cpus did not

receive the mondo
EINVAL cpulist includes caller's cpuid

Page 19 of 46

A Revision 0.21 Hypervisor API
March 23, 2005

7.2.9 cpu_myid

trap# FAST_TRAP
function# CPU_MYID

ret0 status
ret1 cpuid

Return the hypervisor ID handle for the current CPU. Used by a virtual cpu to discover
its own identity.

7.2.9.1 Errors

No errors defined

7.2.10 cpu_state

trap# FAST_TRAP
function# CPU_STATE
arg0 cpuid

ret0 status
ret1 state

Retrieve the current state of cpu cpuid. The states are:

CPU_STATE_STOPPED 0x1 cpu is in the stopped state
CPU_STATE_RUNNING 0x2 cpu is in the running state
CPU_STATE_ERROR 0x3 cpu is in the error state

7.2.10.1 Errors

ENOCPU Invalid CPU in cpuid

Page 20 of 46

Hypervisor API Revision 0.21
March 23, 2005

8 MMU services

These hypervisor services control the behavior of address translations handled by the
hypervisor.

A basic sun4v guest operating system, need not use any of these services at all. The
default/initial operating environment for a guest is with virtual address translation
disabled. In this mode all instructions and data references are made with real addresses.

If a guest operating system enables MMU translations, then virtual to real mappings
may be specified in one of three different ways; either as permanent mappings, or as
mappings that may be evicted and reloaded into system TLBs directly via MMU service
functions, or indirectly via Translation Storage Buffers (TSBs). Moreover, with translations
enabled, a guest Operating System must declare a Fault Status area for the hypervisor to
provide information in the event of a translation fault.

8.1 Definition for translation table entry (TTE)

The format of a translation table entry (TTE) is defined in the Sun4v Architecture
Specification.

8.2 Translation Storage Buffer (TSB) specification

The TSB functions control two sets of TSBs, one for when the virtual address context is
zero, and one for when it is not zero. The demap functions remove translations from
hardware TLBs. See the Address Model chapter in the sun4v Architecture Specification for
more information on TSBs and TLBs.

A TSB description is a memory data structure that defines a single TSB:

offset size contents
0 2 page size to use for index shift in TSB
2 2 associativity of TSB
4 4 size of TSB in TTEs (16 bytes)
8 4 context_index
12 4 page size bitmask
16 8 real address of TSB base
24 8 reserved

The maximum TSB associativity supported is indicated in the machine description.

8.2.1 Page sizes

The Sun4v Architecture Specification defines value encodings of page size for
translation table entries (TTEs). The page size bitmask indicates which of these encodings
may be specified for TTEs within a given TSB. For each bit in the page size bitmask, if set,
the sun4v page size may be specified. For example, bit 0 corresponds to an 8KByte page size,
bit 1 to a 64K page size, and so on in multiples of 8 of the page size for each bit in the field:

Bit Page size
0 8K
1 64K
2 512K
3 4MB
4 32MB
5 256MB
6 2GB
7 16GB

Bits 8 through 15 are reserved and must be set to zero.

Page 21 of 46

A Revision 0.21 Hypervisor API
March 23, 2005

The index shift page size indicates the page size to use for computing the TSB index for
TTE retrieval. This value is the same as the page size value that may be specified in an
individual sun4v TTE:

Value Page size assumed for index computation
0 8K
1 64K
2 512K
3 4MB
4 32MB
5 256MB
6 2GB
7 16GB

Values 8 though 15 are reserved. The index shift value must correspond to the smallest
page size specified in the page size bit mask.

8.2.2 Context index

This TSB description field enables TSBs to be defined where the context value for a page-
translation is supplied within each entry of the TSB, or where a single value applies to the
whole TSB. The latter enables a single TSB to be used for multiple context values (the context
field within each TSB entry (TTE) is required to be zero). The context index field within a
TSB description selects which of these two modes the TSB is defined to use.

If a context index field value of -1 (0xffffffff) is given in the TSB description, the TSB is
defined to use the context field within each TTE.

If a context index field contains a value between 0 and mmu-#shared-contexts, the context
value used for every entry in the TSB (TTE) will be taken from sun4v context register
identified by the context index field at the time the TTE is used. For example for a translation
required for (express or implied) ASI_PRIMARY and matched by a TTE in the TSB, will take
its context value from the register PRIMARY_CONTEXT1 if the context index field of the
TSB description is 1.

Any other value supplied in context index field is invalid.

The value of mmu-#shared-contexts is provided in the "cpu" node of the machine
description for each virtual cpu.

8.3 MMU flags

The MMU APIs are designed to function for both instruction and data address
translations. Therefore, many of these interfaces take an MMU 'flags' argument in order to
specify whether the operation is relevant to instruction or data mappings, or both. To ensure
consistency between the MMU services this flags argument is defined here, and as follows:

The flags argument applies the API operation to instruction translations if bit 1 is set,
and in addition applies the API operation to data translation entries if bit 0 is set. For every
API service requiring a flags argument, at least one of bit 0 and/or bit 1 must be set.

Implementation note: For hardware implementations with unified instruction and data
functions (for example; TLBs); Mapping an instruction translation entry may also cause an identical
data translation entry to be mapped, and vice-versa even if not explicitly requests by the flags
argument. Similarly, demapping an instruction translation entry may also cause the data translation

Page 22 of 46

Hypervisor API Revision 0.21
March 23, 2005

entry to be demaped, and vice-versa even if not explicitly requested by the flags setting.

8.4 MMU Fault status area

MMU related faults have their status and fault address information placed into a
memory region made available by privileged code. Like the TSBs above, the fault status area
for each virtual processor is declared to the hypervisor via a hypervisor API call.

It is possible for MMU related faults to be delivered either by the hypervisor or directly
by processor hardware if so implemented. For this reason, the MMU fault area is arranged
on an aligned address boundary with instruction and data fault fields arranged into distinct
64byte blocks.

The layout of the MMU fault status area is described in the table below:

Offset (bytes) Size (bytes) Field

0x00 0x8 Instruction fault type (IFT)

0x08 0x8 Instruction fault address (IFA)

0x10 0x8 Instruction fault context A(IFC)

0x18 0x28 reserved

0x40 0x8 Data fault type (DFT)

0x48 0x8 Data fault address (DFA)

0x50 0x8 Data fault context (DFC)

0x58 0x28 reserved

The reserved fields must not be used. Their contents are undefined, and are not
guaranteed preserved if written.

The definition of the values of the instruction and data fault type fields is as follows:

Code Fault type

1 fast miss

2 fast protection

3 MMU miss

4 invalid RA

5 privileged violation

6 protection violation

7 NFO access

8 so page/NFO side effect

9 invalid VA

10 invalid ASI

11 nc atomic

12 privileged action

13 reserved

14 unaligned access

15 invalid page size

16 to -2 reserved

Page 23 of 46

A Revision 0.21 Hypervisor API
March 23, 2005

Code Fault type

-1 (0xffffffffffffffff) multiple errors

For each MMU related trap, the fault status area is updated as follows; (a blank entry for
IFT,IFA,IFC,DFT,DFA or DFC indicates the field is not updated for the particular condition
and is therefore undefined, and '�' indicates the field is updated with the relevant fault type,
address or context information for the trap).

sun4v trap type Fault type IFT IFA IFC DFT DFA DFC Comments

instruction_access_exception invalid RA (0x4)
� �

instruction fetch to real
address out of range

privilege violation (0x5)

� � �

non privileged
instruction access to

privileged page
(TTE.p=1)

NFO access (0x7)
� � �

instruction access to
non-faulting load page

(TTE.nfo=1)

invalid VA (0x9)
� � �

instruction virtual
access out of range

Invalid TSB entry
� � �

Hardware table walk
found an invalid RA in a
TTE loaded from a TSB

Protection violation (0x6)
� � �

Instruction access to
page without execute

permission

Multiple error (-1)
�

Hardware encountered
multiple errors

instruction_access_MMU_miss MMU miss (0x3) � � � TSB Miss

Page 24 of 46

Hypervisor API Revision 0.21
March 23, 2005

sun4v trap type Fault type IFT IFA IFC DFT DFA DFC Comments

data_access_exception invalid RA (0x4) � � � real address out of range

privilege violation (0x5)
� � �

Non-privileged data
access to privileged

page (TTE.p=1)

NFO access (0x7)

� � �

Data access to non-
faulting page

(TTE.nfo=1) with ASI
other than a non-

faulting ASI.

so page/NFO side effect
(0x8) � � �

Non-faulting ASI data
access to side-effect

page (TTE.e=1)

invalid VA (0x9)
� � �

Data or branch virtual
access out of range

invalid ASI (0xa)
� � �

Invalid ASI for
instruction

nc atomic (0xb)
� � �

Atomic access to non-
cacheable page

(TTE.cp=0)

privileged action (0xc)

� � �

Data access by non-
privileged software

using a privileged or
hyper-privileged ASI

invalid page size (0xf) �

Multiple error (-1)
�

Hardware encountered
multiple errors

data_access_MMU_miss MMU miss (0x3) � � � TSB Miss

data_access_protection protection violation (0x6) � � � store to non-writeable ??

mem_address_not_aligned
LDDF_mem_address_not_aligned
STDF_mem_address_not_aligned
LDQF_mem_address_not_aligned
STQF_mem_address_not_aligned

unaligned access (0xe)

� �

� �

� �

� �

� �

Data access is not
properly aligned

fast_instruction_access_MMU_miss fast miss (0x1) � � TLB Miss

fast_data_access_MMU_miss fast miss (0x1) � � TLB MIss

fast_data_access_protection fast protection (0x2)
� �

Store data access to page
without write

permission

privileged_action privileged action (0xc)
� �

Use of privileged ASI
when pstate.priv = 0

Page 25 of 46

A Revision 0.21 Hypervisor API
March 23, 2005

8.5 API calls

8.5.1 mmu_tsb_ctx0

trap# FAST_TRAP
function# MMU_TSB_CTX0
arg0 ntsb
arg1 tsbdptr

ret0 status

Configures the TSBs for the current CPU for virtual addresses with context zero. tsbdptr
is a pointer to an array of ntsbs TSB descriptions.

Note: the maximum number of TSBs available to a virtual CPU is given by the mmu-
max-#tsbs property of the cpu's corresponding “cpu” node in the machine description.

8.5.1.1 Errors

ENORADDR Invalid tsbdptr or TSB base in a TSB descriptor
EBADALIGN tsbdptr is not aligned to an 8 byte boundary, or

TSB base in a descriptor is not aligned for a
TSB size

EBADPGSZ Invalid pagesize in a TSB descriptor
EBADTSB Invalid associativity or size in a TSB descriptor
EINVAL Invalid ntsbs, or

invalid context index in a TSB descriptor, or
index page size not equal to smallest page size

in page size bitmask field.

8.5.2 mmu_tsb_ctxnon0

trap# FAST_TRAP
function# MMU_TSB_CTXNON0
arg0 ntsb
arg1 tsbdptr

ret0 status

Configures the TSBs for the current CPU for virtual addresses with non-zero contexts.
tsbdptr is a pointer to an array of ntsbs TSB descriptions.

A maximum of 16 TSBs may be specified in the TSB description list.

8.5.2.1 Errors

ENORADDR Invalid tsbdptr or TSB base in a TSB descriptor
EBADALIGN tsbdptr is not aligned to an 8 byte boundary, or

TSB base in a descriptor is not aligned for a
TSB size

EBADPGSZ Invalid pagesize in a TSB descriptor
EBADTSB Invalid associativity or size in a TSB descriptor
EINVAL Invalid ntsbs, or

invalid context index in a TSB descriptor, or
index page size not equal to smallest page size

in page size bitmask field.

Page 26 of 46

Hypervisor API Revision 0.21
March 23, 2005

8.5.3 mmu_demap_page

trap# FAST_TRAP
function# MMU_DEMAP_PAGE
arg0 reserved
arg1 reserved
arg2 vaddr
arg3 context
arg4 flags

ret0 status

Demaps any page mapping of virtual address vaddr in context context for the current
virtual CPU. Any virtual tagged caches are guaranteed to be kept consistent. The flags
argument is defined according to section 8.3; “MMU flags“.

Arguments arg0 and arg1 are reserved and must be set zero.

8.5.3.1 Errors

The implementation of this function is not required to check for all possible errors, and
may return the following error codes:

EINVAL Invalid vaddr, context or flag value
ENOTSUPPORED arg0 or arg1 is non-zero

8.5.4 mmu_demap_ctx

trap# FAST_TRAP
function# MMU_DEMAP_CTX
arg0 reserved
arg1 reserved
arg2 context
arg3 flags

ret0 status

Demaps all non-permanent virtual page mappings previously specified for context
context for the current virtual CPU. Any virtual tagged caches are guaranteed to be kept
consistent. The flags argument is defined according to section 8.3; “MMU flags“.

Arguments arg0 and arg1 are reserved and must be set zero.

8.5.4.1 Errors

The implementation of this function is not required to check for all possible errors, and
may return the following error codes:

EINVAL Invalid context or flag value
ENOTSUPPORED arg0 or arg1 is non-zero

Page 27 of 46

A Revision 0.21 Hypervisor API
March 23, 2005

8.5.5 mmu_demap_all

trap# FAST_TRAP
function# MMU_DEMAP_ALL
arg0 reserved
arg1 reserved
arg2 flags

ret0 status

Demaps all non-permanent virtual page mappings previously specified for the current
virtual CPU. Any virtual tagged caches are guaranteed to be kept consistent. The flags
argument is defined according to section 8.3; “MMU flags“.

Arguments arg0 and arg1 are reserved and must be set zero.

8.5.5.1 Errors

The implementation of this function is not required to check for all possible errors, and
may return the following error codes:

EINVAL Invalid flag value
ENOTSUPPORED arg0 or arg1 is non-zero

8.5.6 mmu_map_addr

trap# MMU_MAP_ADDR
arg0 vaddr
arg1 context
arg2 TTE
arg3 flags

ret0 status

This API service creates a non-permanent mapping using the TTE to virtual address
vaddr for context for the calling virtual CPU. The flags argument is defined according to
section 8.3; “MMU flags“.

Given a TTE specified with the valid bit clear, this service will have undefined behavior.

Note: This API call is for privileged code to specify temporary translation mappings without the
need to create and manage a TSB.

8.5.6.1 Errors

The implementation of this function is not required to check for all possible errors, and
may return the following error codes:

EINVAL Invalid vaddr, context, or flag error
EBADPGSZ Invalid page size value
ENORADDR Invalid real address in TTE

Page 28 of 46

Hypervisor API Revision 0.21
March 23, 2005

8.5.7 mmu_map_perm_addr

trap# FAST_TRAP
function# MMU_MAP_PERM_ADDR
arg0 vaddr
arg1 reserved
arg2 TTE
arg3 flags

ret0 status

This API service creates a permanent mapping using the TTE to virtual address vaddr for
the calling virtual CPU for context 0. The reserved field must be specified as zero.

A maximum of 8 such permanent mappings may be specified by privileged code.
Mappings may be removed with mmu_unmap_perm_addr below.

The flags argument is defined according to section 8.3; “MMU flags“.

Given a TTE specified with the valid bit clear, this service will have undefined behavior.

Note: This API call is used to specify address space mappings for which privileged code does not
expect to receive misses. For example, this mechanism can be used to map kernel nucleus code and
data.

8.5.7.1 Errors

EINVAL Invalid vaddr, or flag error
EBADPGSZ Invalid page size value
ENORADDR Invalid real address in TTE
ETOOMANY Too many mappings (maximum of 8 reached)

8.5.8 mmu_unmap_addr

trap# MMU_UNMAP_ADDR
arg0 vaddr
arg1 context
arg2 flags

ret0 status

Demaps virtual address vaddr in context context on this CPU. This function is intended to
be used to demap pages mapped with mmu_map_addr. This service is equivalent to
invoking mmu_demap_page with only the current CPU in the CPU list.

The flags argument is defined according to section 8.3; “MMU flags“.

Attempting to perform an unmap operation for a previously defined permanent
mapping will have undefined results.

8.5.8.1 Errors

The implementation of this function is not required to check for all possible errors, and
may return the following error codes:

EINVAL Invalid vaddr, context or flag value

Page 29 of 46

A Revision 0.21 Hypervisor API
March 23, 2005

8.5.9 mmu_unmap_perm_addr

trap# FAST_TRAP
function# MMU_UNMAP_PERM_ADDR
arg0 vaddr
arg1 reserved
arg2 flags

ret0 status

Demaps any permanent page mapping (established via mmu_map_perm_addr) of
virtual address vaddr for context 0 for the current virtual CPU. Any virtual tagged caches are
guaranteed to be kept consistent.

The flags argument is defined according to section 8.3; “MMU flags“.

8.5.9.1 Errors

EINVAL Invalid vaddr or flag value
ENOMAP Specified mapping was not found

8.5.10 mmu_fault_area_conf

trap# FAST_TRAP
function# MMU_FAULT_AREA_CONF
arg0 raddr

ret0 status
ret1 previous mmu fault area raddr

Configure the MMU fault status area for the calling CPU. A 64 byte aligned real address
specifies where MMU fault status information is placed. The return value is the previously
specified area, or 0 for the first invocation. Specifying a fault area at real address 0 is not
allowed.

8.5.10.1 Errors

ENORADDR Invalid real address
EBADALIGN Invalid alignment for fault area

Page 30 of 46

Hypervisor API Revision 0.21
March 23, 2005

8.5.11 mmu_enable

trap# FAST_TRAP
function# MMU_ENABLE
arg0 enable_flag
arg1 return_target

ret0 status

This function either enables or disables virtual address translation for the calling CPU
within the virtual machine domain. If the enable_flag is zero, translation is disabled, any non-
zero value will enable translation.

When this function returns, the newly selected translation mode will be active. The
argument return_target is a virtual address if translation is being enabled, or return_target is a
real address in the event that translation is to be disabled.

Upon successful completion, this API service will return control to the return_target
address with the new operating mode. In the event of call failure, the previous operating
mode remains, and the service simply returns to the caller with the appropriate error code in
ret0.

8.5.11.1 Errors

ENORADDR Invalid real address when disabling translation
EBADALIGN return_target is not aligned to an instruction
EINVAL enable_flag requests current operating mode;

(e.g. disable if already disabled).

8.5.12 mmu_tsb_ctx0_info

trap# FAST_TRAP
function# MMU_TSB_CTX0_INFO
arg0 maxtsbs
arg1 bufferptr

ret0 status
ret1 ntsbs

This function returns the TSB configuration as previously defined by mmu_tsb_ctx0 into
the buffer provided by arg1. The size of the buffer is given in arg1 in terms of number of TSB
description entries.

Upon return, ret1 always contains the number of TSB descriptions previously
configured.

If zero TSBs were configured, then EOK is returned with ret1 containing 0.

8.5.12.1 Errors

EINVAL supplied buffer (maxtsbs) is too small
EBADALIGN bufferptr is badly aligned
ENORADDR invalid real address for for buffer at bufferptr

Page 31 of 46

A Revision 0.21 Hypervisor API
March 23, 2005

8.5.13 mmu_tsb_ctxnon0_info

trap# FAST_TRAP
function# MMU_TSB_CTXNON0_INFO
arg0 maxtsbs
arg1 bufferptr

ret0 status
ret1 ntsbs

This function returns the TSB configuration as previously defined by mmu_tsb_ctxnon0
into the buffer provided by arg1. The size of the buffer is given in arg1 in terms of number of
TSB description entries.

Upon return ret1 always contains the number of TSB descriptions previously
configured.

If zero TSBs were configured, then EOK is returned with ret1 containing 0.

8.5.13.1 Errors

EINVAL supplied buffer (maxtsbs) is too small
EBADALIGN bufferptr is badly aligned
ENORADDR invalid real address for for buffer at bufferptr

8.5.14 mmu_fault_area_info

trap# FAST_TRAP
function# MMU_FAULT_AREA_INFO

ret0 status
ret1 fara

This API service returns the currently defined MMU fault status area for the current
CPU. The real address of the fault status area is returned in ret1, or 0 is returned in ret1 if no
fault status area is defined.

Note: mmu_fault_area_conf may be called with the return value (ret1) from this service if there is
a need to save and restore the fault area for a cpu.

8.5.14.1 Errors

no errors are defined

Page 32 of 46

Hypervisor API Revision 0.21
March 23, 2005

9 Cache and Memory services

In general, caches and memory are not exposed to the supervisor, although they are
described to it in the machine description.

9.1 API calls

9.1.1 mem_scrub

trap# FAST_TRAP
function# MEM_SCRUB
arg0 raddr
arg1 length

ret0 status
ret1 length scrubbed

This service zeros the memory contents for the memory address range raddr to
raddr+length-1. It also creates a valid error-checking code for the memory address range
raddr to raddr+length-1.

This service starts scrubbing at raddr, but may scrub less than length bytes of memory.
On success the actual length scrubbed is returned in ret1.

The arguments raddr and length must be aligned to an 8K page boundary or must
contain the start address and length from a sun4v error report.

Note: There are two uses for this function: The first use is to block clear and initialize memory
and the second is to scrub an uncorrectable error reported via a resumable or non-resumable trap. The
second use requires the arguments to be equal to the raddr and length provided in a sun4v memory
error report.

9.1.1.1 Errors

ENORADDR Invalid raddr
EBADALIGN Either the start address or length are

not correctly aligned.
EINVAL length == 0

Page 33 of 46

A Revision 0.21 Hypervisor API
March 23, 2005

9.1.2 mem_sync

trap# FAST_TRAP
function# MEM_SYNC
arg0 raddr
arg1 length

ret0 status
ret1 length synced

For the memory address range raddr to raddr+length-1, this service forces the next access
within that range to be fetched from main system memory.

This service starts syncing at raddr, but may sync less than length bytes of memory. On
success the actual length synced is returned in ret1.

The arguments raddr and length must be aligned to an 8K page boundary.

9.1.2.1 Errors

ENORADDR Invalid raddr
EBADALIGN Either the start address or length are

not correctly aligned.
EINVAL length == 0

Page 34 of 46

Hypervisor API Revision 0.21
March 23, 2005

10 Device interrupt services

Device interrupts are allocated to system bus bridges by the hypervisor, and described
to the boot firmware in the machine description. OBP then describes them to Solaris via the
device tree. The services described here are the generic interrupt services only, it is expected
that the system bus nexus drivers will have additional APIs for functions that are specific to
that bridge.

10.1 Definitions

These definitions apply to the following services:

cpuid A unique opaque value which represents a target cpu.

devhandle Device handle. The device handle uniquely identifies a sun4v device. It
consists of the the lower 28-bits of the hi-cell of the first entry of the
sun4v device's "reg" property as defined by the Sun4v Bus Binding to
Open Firmware.

devino Device interrupt number. Specifies the relative interrupt number within
the device. The unique combination of devhandle and devino are used
to identify a specific device interrupt.

Note: The devino value is the same as the values in the "interrupts" property
or "interrupt-map" property in the sun4v device.

 sysino System Interrupt Number. A 64-bit unsigned integer representing a
unique interrupt within a virtual machine.

intr_state A flag representing the interrupt state for a given sysino. The state
values are defined as:

Name Value Definition

INTR_IDLE 0 Nothing Pending

INTR_RECEIVED 1 Interrupt received by hardware

INTR_DELIVERED 2 Interrupt delivered to queue

intr_enabled A flag representing the 'enabled' state for a given sysino. The state
values are defined as:

Name Value Definition

INTR_DISABLED 0 sysino not enabled

INTR_ENABLED 1 sysino enabled

10.2 API calls

Page 35 of 46

A Revision 0.21 Hypervisor API
March 23, 2005

10.2.1 intr_devino_to_sysino

trap# FAST_TRAP
function# INTR_DEVINO2SYSINO
arg0 devhandle
arg1 devino

ret0 status
ret1 sysino

Converts a device specific interrupt number given by the arguments devhandle and
devino into a system specific ino (sysino).

10.2.1.1 Errors

EINVAL Invalid devhandle/devino

10.2.2 intr_getenabled

trap# FAST_TRAP
function# INTR_GETENABLED
arg0 sysino

ret0 status
ret1 intr_enabled

Returns state in intr_enabled for the interrupt defined by sysino. Return values are:

INTR_ENABLED or INTR_DISABLED

10.2.2.1 Errors

EINVAL Invalid sysino

10.2.3 intr_setenabled

trap# FAST_TRAP
function# INTR_ENABLED
arg0 sysino
arg1 intr_enabled

ret0 status

Sets the 'enabled' state of the interrupt sysino legal values for intr_enabled are:

INTR_ENABLED or INTR_DISABLED

10.2.3.1 Errors

EINVAL Invalid sysino or intr_enabled value

Page 36 of 46

Hypervisor API Revision 0.21
March 23, 2005

10.2.4 intr_getstate

trap# FAST_TRAP
function# INTR_GETSTATE
arg0 sysino

ret0 status
ret1 intr_state

Returns the current state of the interrupt given by the sysino argument.

10.2.4.1 Errors

EINVAL Invalid sysino

10.2.5 intr_setstate

trap# FAST_TRAP
function# INTR_SETSTATE
arg0 sysino
arg1 intr_state

ret0 status

Sets the current state of the interrupt given by the sysino argument to the value given in
the argument intr_state.

Note: Setting the state to INTR_IDLE clears any pending interrupt for sysino.

10.2.5.1 Errors

EINVAL Invalid sysino or invalid intr_state

10.2.6 intr_gettarget

trap# FAST_TRAP
function# INTR_GETTARGET
arg0 sysino

ret0 status
ret1 cpuid

Returns the cpuid that is the current target of the interrupt given by the sysino argument.

The cpuid value returned is undefined if the target has not been set via intr_settarget.

10.2.6.1 Errors

EINVAL Invalid sysino

Page 37 of 46

A Revision 0.21 Hypervisor API
March 23, 2005

10.2.7 intr_settarget

trap# FAST_TRAP
function# INTR_SETTARGET
arg0 sysino
arg1 cpuid

ret0 status

Set the target cpu for the interrupt defined by the argument sysino to the target cpu value
defined by the argument cpuid.

10.2.7.1 Errors

EINVAL Invalid sysino
ENOCPU Invalid cpuid

Page 38 of 46

Hypervisor API Revision 0.21
March 23, 2005

11 Time of day services

The time of day (TOD) is maintained by the hypervisor on a per-domain basis. Setting
the TOD in one domain does not affect any other domain.

Time is described by a single unsigned 64-bit word equivalent to a time_t for the POSIX
time(2) system call. The word contains the time since the Epoch (00:00:00 UTC, January 1,
1970), measured in seconds.

11.1 API calls

11.1.1 tod_get

trap# FAST_TRAP
function# TOD_GET

ret0 status
ret1 time-of-day

Returns the current time-of-day. May block if TOD access is temporarily not possible.

11.1.1.1 Errors

EWOULDBLOCK TOD resource is temporarily unavailable
ENOTSUPPORTED If TOD not supported

11.1.2 tod_set

trap# FAST_TRAP
function# TOD_SET
arg0 tod

ret0 status

The current time-of-day is set to the value specified in arg0. May block if TOD access is
temporarily not possible.

11.1.2.1 Errors

EWOULDBLOCK TOD resource is temporarily unavailable
ENOTSUPPORTED If TOD not supported

Page 39 of 46

A Revision 0.21 Hypervisor API
March 23, 2005

12 Console services

This section describes the API services provided for a guest console.

12.1 API calls

12.1.1 cons_getchar

trap# FAST_TRAP
function# CONS_GETCHAR

ret0 status
ret1 character

Returns a character from the console device. If no character is available then an
EWOULDBLOCK error is returned. If a character is available, then the returned status is
EOK and the character value is in ret1.

A virtual BREAK is represented by the 64-bit value -1.

A virtual HUP signal is represented by the 64-bit value -2.

12.1.1.1 Errors

EWOULDBLOCK No character available

12.1.2 cons_putchar

trap# FAST_TRAP
function# CONS_PUTCHAR
arg0 char

ret0 status

This service sends a character to the console device. Only character values between 0
and 255 may be used. Values outside this range are invalid except as follows:

A virtual BREAK may be sent using the 64-bit value -1.

12.1.2.1 Errors

EINVAL Illegal character
EWOULDBLOCK Output buffer currently full, would block

Page 40 of 46

Hypervisor API Revision 0.21
March 23, 2005

13 Core dump services

When privileged code in a domain crashes/panics it may provide a capability to dump
its internal state for later debugging. Such “core dumps” can be provided from the field to
help diagnose field problems. However the hypervisor virtualizes much of the platform
hardware, thus obscuring information about the physical resources that can be useful in
diagnosing configuration related bugs.

Instead of adding a core dumping capability to the hypervisor, this API allows the
domain's privileged code to dump platform and hypervisor-specific information as part of
its own core dumping procedure. Privileged code allocates a section of its own memory
space and informs the hypervisor that this may be used as a “dump buffer” for the
hypervisor to place hypervisor specific debug/dump information.

Once declared, a dump buffer can be used at any time by the hypervisor to record
private debug information, thus avoiding having such logs within the hypervisor itself.

The required size of the dump buffer is provided to the domain as part of the initial
machine description.

During a core-dump operation, a guest requests that the hypervisor update any
information in the dump buffer in preparation to being dumped as part of the domain's
memory image.

Dump buffer information is highly platform and hypervisor specific. The format and
content of the buffer are hypervisor private and should not be considered useable by sun4v
code. Some platform hypervisors may provide no dump buffer information for security
reasons.

Page 41 of 46

A Revision 0.21 Hypervisor API
March 23, 2005

13.1 API calls

13.1.1 dump_buf_update

trap# FAST_TRAP
function# DUMP_BUF_UPDATE
arg0 raddr
arg1 size

ret0 status
ret1 required size of dump buffer

This function declares a domain dump buffer to the hypervisor. The raddr supplies the
real base address of the dump-buffer and must be 64-byte aligned.

The size field specifies the size of the dump buffer allocated, and may be larger than the
minimum size specified in the machine description.

The hypervisor will fill the dump buffer with opaque data.

Note: a guest may elect to include dump buffer contents as part of a crash dump to assist with
debugging. This function may be called any number of times so that a guest may relocate a dump
buffer, or create “snapshots” of any dump-buffer information. Each call to dump_buf_update

atomically declares the new dump buffer to the hypervisor.

A specified size of 0 unconfigures the dump buffer.

If raddr is an illegal or badly aligned real address, then any currently active dump buffer
is disabled (equivalent to passing a size of 0) and an error is returned.

In the event that the call fails with EINVAL, ret1 contains the minimum size required by
the hypervisor for a valid dump buffer.

13.1.1.1 Errors

ENORADDR Invalid raddr
EBADALIGN raddr not aligned on 64byte boundary
EINVAL size is non-zero but less than minimum

size required
ENOTSUPPORTED If not supported for current logical domain

13.1.2 dump_buf_info

trap# FAST_TRAP
function# DUMP_BUF_INFO

ret0 status
ret1 real address of current dump buffer
ret2 size of current dump buffer

This service returns the currently configured dump buffer description.

A returned size of 0 bytes indicates an undefined dump buffer. In this case the return
address (ret1) is undefined.

13.1.2.1 Errors

No errors defined

Page 42 of 46

Hypervisor API Revision 0.21
March 23, 2005

14 Trap trace services

The hypervisor provides a trap tracing capability for privileged code running on each
virtual CPU.

Privileged code provides a round-robin trap trace queue within which the hypervisor
writes 64 byte entries detailing hyperprivileged traps taken on behalf of privileged code.
This is provided as a debugging capability for privileged code.

14.1 Trap trace buffer control structure

The trap trace control structure is 64 bytes long and placed at the start (offset 0) of the
trap trace buffer.

The format of the control structure is as follows:

Offset Size Field definition

0x00 8 Head offset
0x08 8 Tail offset
0x10 0x30 Reserved

The head offset is the offset of the most recently completed entry in the trap-trace buffer.
The tail offset is the offset of the next entry to be written.

The control structure is owned and modified by the hypervisor. A guest may not modify
the control structure contents. Attempts to do so will result in undefined behavior for the
guest.

14.2 Trap trace buffer entry format

Trap trace entries all have the following format:

Offset Size Name Description

0 x0 1 TTRACE_ENTRY_TYPE Indicates hypervisor or guest entry

0x01 1 TTRACE_ENTRY_HPSTATE Hyper-privileged state

0x02 1 TTRACE_ENTRY_TL Trap level

0x03 1 TTRACE_ENTRY_GL Global register level

0x04 2 TTRACE_ENTRY_TT Trap type

0x06 2 TTRACE_ENTRY_TAG Extended trap identifier

0x08 8 TTRACE_ENTRY_TSTATE Trap state

0x10 8 TTRACE_ENTRY_TICK Tick

0x18 8 TTRACE_ENTRY_TPC Trap PC

0x20 8 TTRACE_ENTRY_F1 Entry specific

0x28 8 TTRACE_ENTRY_F2 Entry specific

0x30 8 TTRACE_ENTRY_F3 Entry specific

0x38 8 TTRACE_ENTRY_F4 Entry specific

Page 43 of 46

A Revision 0.21 Hypervisor API
March 23, 2005

For each entry the TTRACE_ENTRY_TYPE field value is defined as follows:

Value Name Description

0x00 TTRACE_TYPE_UNDEF Entry content undefined

0x01 TTRACE_TYPE_HV Hypervisor trap entry

0xff TTRACE_TYPE_GUEST Guest entry via ttrace_addentry service

14.3 API calls

14.3.1 ttrace_buf_conf

trap# FAST_TRAP
function# TTRACE_BUF_CONF
arg0 raddr
arg1 nentries

ret0 status
ret1 nentries

This function requests hypervisor trap tracing and declares a virtual cpu's trap trace
buffer to the hypervisor. The raddr supplies the real base address of the trap trace queue and
must be 64byte aligned.

The nentries field specifies the size in 64-byte entries of the buffer allocated. Specifying a
value of zero for nentries disables trap tracing for the calling virtual cpu. The buffer allocated
must be sized for a power of two number of 64 byte trap trace entries plus an initial 64 byte
control structure.

This function may be called any number of times so that a virtual cpu may relocate a
trap trace buffer, or create “snapshots” of information.

If raddr is an illegal or badly aligned real address, then trap tracing is disabled
(equivalent to passing a nentries value of 0) and an error is returned.

Upon success ret1 is nentries.

Upon failure with EINVAL this service call returns in ret1 (nentries) the minimum
number of buffer entries required.

Upon other failure ret1 is undefined.

14.3.1.1 Errors

ENORADDR Invalid raddr
EINVAL if size too small
EBADALIGN raddr not aligned on 64byte boundary

Page 44 of 46

Hypervisor API Revision 0.21
March 23, 2005

14.3.2 ttrace_buf_info

trap# FAST_TRAP
function# TTRACE_BUF_INFO

ret0 status
ret1 raddr
ret2 size

This function returns the size and location of the previously declared trap-trace buffer.
In the event that no buffer was previously declared, or the buffer disabled (e.g. via a
ttrace_bufconf call with a size of zero), this call will return a size of zero (0) bytes.

14.3.2.1 Errors

none defined

14.3.3 ttrace_enable

trap# FAST_TRAP
function# TTRACE_ENABLE
arg0 enable

ret0 status
ret1 previous enable state

This function enables (or disables) trap tracing, returning the previously enabled state in
ret1. Future systems may define various flags for the enable argument (arg0), for the
moment a guest should pass (uint64_t)-1 to enable, and (uint64_t)0 to disable all tracing -
which will ensure future compatibility.

14.3.3.1 Errors

EINVAL No buffer currently defined

14.3.4 ttrace_freeze

trap# FAST_TRAP
function# TTRACE_FREEZE
arg0 freeze

ret0 status
ret1 previous_state

This function freezes (or unfreezes) trap tracing, returning the previous freeze state in
ret1. A guest should pass a non-zero value to freeze and a zero value to un-freeze all tracing.

The returned previous_state is 0 for not frozen, and 1 for frozen.

14.3.4.1 Errors

EINVAL No buffer currently defined

Page 45 of 46

A Revision 0.21 Hypervisor API
March 23, 2005

14.3.5 ttrace_addentry

trap# FAST_TRAP
function# TTRACE_ADDENTRY
arg0 tag (16-bits)
arg1 data word 0
arg2 data word 1
arg3 data word 2
arg4 data word 3

ret0 status

This function adds and entry to the trap trace buffer. Upon return only arg0/ret0 is
modified - none of the other registers holding arguments are volatile across this hypervisor
service.

14.3.5.1 Errors

EINVAL No buffer currently defined

Page 46 of 46

