
Hypervisor Service API

Revision 0.45

March 23, 2005

A Revision 0.45 Hypervisor SVC API
March 23, 2005

Table of Contents
1 Introduction...4

2 Common definitions..5

2.1 Function numbers for FAST_TRAP.................. 5

2.2 Data Definitions and Acronyms......................... 5

2.3 Service Status Register Definitions.................... 5

3 API Call Descriptions... 6

3.1 Data Send and Receive.......................................6

3.2 Status APIs... 7

4 Machine Description...8

4.1 Property Definitions... 8

5 Virtual device bindings... 9

5.1 Open Firmware device node representation....... 9

5.2 Virtual Device Nodes....................................... 10

6 Transmitter/Receiver State transitions...................... 12

Page 2 of 12

Hypervisor SVC API Revision 0.45
March 23, 2005

Revision Author Comment
0 1 – 0 42 David Redman Created, undated for FWARC submission

0 42
David Redman

David Kahn
Include State transition diagram from David Kahn

0 43 David Redman Added the OBP device node information

0 44
David Redman

 David Kahn
Merged edits from David Kahn, added revision table

0,45 David Kahn Comments from Hitendra and Sunit
(FWARC approved version)

Revision Information

Page 3 of 12

A Revision 0.45 Hypervisor SVC API
March 23, 2005

1 Introduction
This document describes a set of APIs that describe the data link layer used to connect two

data bearing endpoints, typically a sun4v guest and a service processor. Example services are
nvram, error and fma transports. The content of the connection (packet format) will be
documented by the producer/consumers.

Services are identified and configured by nodes in the Machine Description.

Services that support send and recv are full-duplex. A service does not have to support both
send and recv.

The transport is reliable, and only a single transaction is permitted to be outstanding per
endpoint per direction. A service will not “deny service” to another service due to resource
constraints, a packet is either delivered reliably or it is not delivered at all. The hypervisor
implementation ensures that data integrity is maintained between the endpoints.

The transport is connection-less; the only delivery failure mechanism is the abnormal
termination of the remote end of the connection, this would result in an abort (ABRT) condition.
Upper software layers need to be able to recover from this if they have state outside the content of
the data being transported.

These APIs are used in certain virtual device nodes in OBP and by Operating system device
drivers to transport data in a virtualized fashion between a guest and the service processor.

Page 4 of 12

Hypervisor SVC API Revision 0.45
March 23, 2005

2 Common definitions

2.1 Function numbers for FAST_TRAP

Function numbers for fast-traps are provided in %o5 as a 64-bit value. The following are the
function numbers defined for the service API set:

SVC_SEND 0x80
SVC_RECV 0x81
SVC_GETSTATUS 0x82
SVC_SETSTATUS 0x83
SVC_CLRSTATUS 0x84

2.2 Data Definitions and Acronyms

SID A unique identifier for each service, SID Value 0 is reserved, the values are opaque
Note: The SID value is defined by a property in the machine description as described in
section 4.1.1
Implementation note: SID is restricted to 16 bits.

MTU The largest number of bytes that may be transported using a single call. Typically this
should be the length argument for an SVC_RECV call,.
Note: MTU is defined by a property in the machine description as described in section
4.1.1.

2.3 Service Status Register Definitions

This is the 64bit service status register used by the GET/SET/CLR Status APIs.

Bit State Symbol Meaning
0 R/W1C RX 'RECV' data available

1 R/W RXE RECV interrupt enabled

2 R/W1C TX SEND complete

3 R/W TXE SEND interrupt enabled

4 R/O TB Transmitter Busy

54 14 R/O Reserved, 0

15 R/W1C ABRT Channel Error

16 63 R/O Reserved, 0

R/W1C Readable, Write 1 Clear this bit may only be cleared by CLRSTATUS.

R/W Readable, Writeable, SETSTATUS and CLRSTATUS can modify this bit.

R/O Read Only, SETSTATUS and CLRSTATUS do not modify this bit.

RX Receive data available; This bit has side effects, when set and RXE is 1, an interrupt will be
generated (for services that support interrupts). The RX bit must be cleared in order to
clear the interrupt (CLRSTATUS).

TX Transmit completed; This bit has side effects, when set and TXE is 1, an interrupt will be
generated (for services that support interrupts). The TX bit must be cleared in order to
clear the interrupt (CLRSTATUS).

Page 5 of 12

A Revision 0.45 Hypervisor SVC API
March 23, 2005

3 API Call Descriptions
Registers %o0-%o5 are volatile across all service APIs unless specifically indicated otherwise.

On return, %o0 will contain the hypercall status as defined by FWARC/2005/116 (Core API).

3.1 Data Send and Receive

3.1.1 svc_send

trap# FAST_TRAP
function# SVC_SEND
arg0 SID
arg1 buffer
arg2 length

ret0 status

Send the content of buffer into the outgoing queue for delivery, the buffer may not be released
or reused until the send is complete, indicated by a transmit done interrupt or the setting of the TX
bit in the service status register (SVC_GETSTATUS). It is not necessary to clear the TX bit in order
to send another packet.

3.1.1.1 Errors

EINVAL length is larger than MTU or SID is invalid
ENORADDR bad buffer address
EWOULDBLOCK a packet is already queued for delivery (TB=1)

3.1.2 svc_recv

trap# FAST_TRAP
function# SVC_RECV
arg0 SID
arg1 buffer
arg2 length

ret0 status
ret1 actual-length

Copy a maximum length bytes of available data into buffer. If length is larger than the number
of bytes available then ret1 will return the actual number of bytes. SVC_RECV may be called many
times, the same data will be returned and the service will remain 'BUSY' until the RX bit is cleared
in the service status register (SVC_GETSTATUS). Typically length should be the MTU size
associated with this SID.

3.1.2.1 Errors

EINVAL length is larger than MTU or SID is invalid
ENORADDR bad buffer address
EWOULDBLOCK no data is available (RX=0)

Page 6 of 12

Hypervisor SVC API Revision 0.45
March 23, 2005

3.2 Status APIs

The status APIs return information about the endpoints.

SVC_RECV will succeed and return data, if RX is set.

SVC_SEND will return EWOULDBLOCK, if TB is set.

if TX is set then the transmission is complete, and the SVC_SEND buffers may be reused.

3.2.1 svc_getstatus

trap# FAST_TRAP
function# SVC_GETSTATUS
arg0 SID

ret0 status
ret1 service status register

Return the service control register for service SID.

3.2.1.1 Errors

EINVAL SID is invalid

3.2.2 svc_setstatus

trap# FAST_TRAP
function# SVC_SETSTATUS
arg0 SID
ret1 service status register

ret0 status

Set bits marked R/W in the service control register for service SID, this is a write-1-set
operation, read-only bits are unchanged, reserved bits remain 0.

3.2.2.1 Errors

EINVAL SID is invalid

3.2.3 svc_clrstatus

trap# FAST_TRAP
function# SVC_CLRSTATUS
arg0 SID
ret1 service status register

ret0 status

Clear bits marked R/W or W1C in the service control register for service SID, this is a write-1-
clear operation, read-only bits are unchanged, reserved bits remain 0.

3.2.3.1 Errors

EINVAL SID is invalid

Page 7 of 12

A Revision 0.45 Hypervisor SVC API
March 23, 2005

4 Machine Description
Services are described and configured by nodes in the machine description.

4.1 Property Definitions

4.1.1 Platform_service node

Property Type Optional Meaning/Purpose
name PROP_STR no A human readable name to describe this service (nvram, fma etc)

flags PROP_VAL no Configuration information about this service

ino PROP_VAL yes Virtual INO generated, required if bit1 or 3 is set in flags

mtu PROP_VAL no Maximum data payload in bytes for this service

sid PROP_VAL no SID to identify this service

compatible PROP_DATA yes An array of strings used by the operating system to bind devices drivers to this
channel The property is only required for nodes that Solaris would bind

drivers to

4.1.1.1 Flags Definitions

Bit Meaning
0 SVC'_RECV available

1 RECV interrupt capable

2 SVC_SEND available

3 SEND interrupt capable

The purpose of the flags property is to permit lower resource utilization for services that are
unidirectional or do not generate interrupts.

Page 8 of 12

Hypervisor SVC API Revision 0.45
March 23, 2005

5 Virtual device bindings
This section describes the device bindings to Open Firmware for the sun4v devices using the

SVC APIs, the property values are all extracted from the Machine Description, and nodes are
created under the /virtual-devices node for each platform_service found in the Machine
Description.

Note: Since these nodes are children of the 'virtual-devices' node, the reg property format is defined by
the 'virtual-devices' binding, which is specified by FWARC/2005/111.

5.1 Open Firmware device node representation

There are no OBP drivers for most of these nodes, so no device_type property or methods are
required for most nodes.

5.1.1 Open Firmware Defined Properties

"reg" standard propname defining the devices address space

Value: A single configuration space entry.

"name" standard propname defining the device name

Value: An encoded string, from the Machine Description property of the same name.

 "compatible" standard propname defining driver compatibility

Value: An encoded string, from the Machine Description property of the same name.

Note: This property is optional.

"interrupts" standard propname defining the interrupts

Value: A single encoded int with the value 1

This property is only required for nodes that generate interrupts.

“sid” propname defining the service ID to use for this transport.

Value: A single encoded int, from the Machine Description property of the same name.

“mtu” propname defining the maximum payload in bytes for this transport.

Value: A single encoded int, from the Machine Description property of the same name.

“flags” propname defining the capabilities of this transport.

Value: A single encoded int, from the Machine Description property of the same name.

Page 9 of 12

A Revision 0.45 Hypervisor SVC API
March 23, 2005

5.2 Virtual Device Nodes

This section defines the 'Great Lakes' platform-specific implementation of device nodes that
use the Services API defined by this document.

The nodes all have the same set of properties as defined in section 4.1.1, For simplicity the
properties and their expected values are placed in table forms in the next subsections. Unless stated
otherwise these nodes have no device methods and no “device_type” property.

5.2.1 FMA connector

This service provides the operating system with the translated e-reports from the service
processor and connects the OS fma engine to components on the service processor to manage fault
status.

Property Value
name fma

flags 0xf

mtu 504

interrupts 1

Sid (a non-zero integer value)

5.2.2 Explorer connector

This service provides the operating system with a transport to the service processor used to
extract FRU and environment status from the service processor.

Property Value
name explorer

flags 0xf

mtu 128

interrupts 1

sid (a non-zero integer value)

5.2.3 LED connector

This service provides the operating system with a mechanism to control the platform
dependant LEDs (light emitting diodes) present in the systemchassis.

Property Value
name led

flags 0xf

mtu 128

interrupts 1

sid (a non-zero integer value)

Page 10 of 12

Hypervisor SVC API Revision 0.45
March 23, 2005

5.2.4 NVRAM

This is the virtual device transport used by OpenBoot to retain environment variables in a
binary format, the content of the virtual device is private to OpenBoot (the same as it has always
been. An OpenFirmware client uses the setprop interface on properties in the options node to set
them.

Property Value
name nvram

flags 5

mtu 64

sid (a non-zero integer value)

device_type nvram

5.2.4.1 NVRAM Methods

These are documented for information purposes only; these are the 'standard' methods used
by OBP4.X to abstract the interface between OpenBoot and the hardware implementation of the
backing store.

open (-- true|false) Standard method

close (--) Standard method

read (buf, len –actual) Standard method

write (buf, len – actual) Standard method

size (-- rem) Method to return the number of bytes remaining

 in the device.

seek (offset type – error?) offset is a byte offset in the device

If type is 0, offset is relative to the beginning of the device.
Offset must be zero or a positive value.

If type is 1, offset is relative to the current position, and offset
may be zero or a positive or negative value.

All other types result in an error return.

sync (--) Flush any outstanding state to the backing store.

These methods will use the service APIs to transport blocks of data to the SP.

Page 11 of 12

A Revision 0.45 Hypervisor SVC API
March 23, 2005

6 Transmitter/Receiver State transitions

Page 12 of 12

Ready to SEND
TX = 0
TB = 0

Send in Progress
TX = 0
TB = 1

Data Read
At endpoint

RX = 1

Data Available
At endpoint

RX = 1

Ready to RCV
RX = 0

svc_send

svc_recv

svc_clrstatus
Clear RX bit

Send Complete
TX = 0
TB = 1

svc_clrstatus
Clear TX bit

Data ACK-ed
By RCV side

TX = 1
TB = 0

If RXE set
Send interrupt

If TXE set
Send interrupt

TX SIDE RX SIDE

