
Hypervisor API Revision 0.24
September 22, 2005

3 Common definitions

3.1 Trap numbers

The following are the sw_trap_numbers encoded in the Tcc instruction that enters the
hypervisor:

FAST_TRAP 0x80
MMU_MAP_ADDR 0x83
MMU_UNMAP_ADDR 0x84
TTRACE_ADDENTRY 0x85
CORE_TRAP 0xff

Unless assigned to technology or platform specific APIs all other trap numbers (0x86 to
0xfe inclusive) result in EBADTRAP being returned in %o0 as described in section 2.3.

3.2 Function numbers for FAST_TRAP

Function numbers for fast-traps are provided in %o5 as a 64-bit value. The following are
the function numbers defined for the core API set:

MACH_EXIT 0x00
MACH_DESC 0x01
MACH_SIR 0x02
MACH_SET_SOFT_STATE 0x03
MACH_GET_SOFT_STATE 0x04

CPU_START 0x10
CPU_STOP 0x11
CPU_YIELD 0x12
CPU_QCONF 0x14
CPU_QINFO 0x15
CPU_MYID 0x16
CPU_STATE 0x17
CPU_SET_RTBA 0x18
CPU_GET_RTBA 0x19

MMU_TSB_CTX0 0x20
MMU_TSB_CTXNON0 0x21
MMU_DEMAP_PAGE 0x22
MMU_DEMAP_CTX 0x23
MMU_DEMAP_ALL 0x24
MMU_MAP_PERM_ADDR 0x25
MMU_FAULT_AREA_CONF 0x26
MMU_ENABLE 0x27
MMU_UNMAP_PERM_ADDR 0x28
MMU_TSB_CTX0_INFO 0x29
MMU_TSB_CTXNON0_INFO 0x2a
MMU_FAULT_AREA_INFO 0x2b

MEM_SCRUB 0x31
MEM_SYNC 0x32

CPU_MONDO_SEND 0x42

TOD_GET 0x50
TOD_SET 0x51

CONS_GETCHAR 0x60
CONS_PUTCHAR 0x61

TTRACE_BUF_CONF 0x90
TTRACE_BUF_INFO 0x91

Page 7 of 50

A Revision 0.24 Hypervisor API
September 22, 2005

TTRACE_ENABLE 0x92
TTRACE_FREEZE 0x93
DUMP_BUF_UPDATE 0x94
DUMP_BUF_INFO 0x95

INTR_DEVINO2SYSINO 0xa0
INTR_GETENABLED 0xa1
INTR_SETENABLED 0xa2
INTR_GETSTATE 0xa3
INTR_SETSTATE 0xa4
INTR_GETTARGET 0xa5
INTR_SETTARGET 0xa6

Unless assigned to technology specific or platform specific APIs all other function
numbers used for fast-traps result in EBADTRAP being returned in %o0 as described in
section 2.3.

3.3 Function numbers for CORE_TRAPs

CORE_TRAP APIs follow the same calling conventions as FAST_TRAP API services. The
following are the function numbers defined for the core API set:

API_SET_VERSION 0x00
API_PUTCHAR 0x01
API_EXIT 0x02
API_GET_VERSION 0x03

CORE_TRAP function numbers are defined as followed:

API_VERSION is defined in section 5.

API_PUTCHAR is an alias for FAST_TRAP function CONS_PUTCHAR.

API_EXIT is an alias for FAST_TRAP function MACH_EXIT.

API_GET_VERSION is defined in section 5.

3.4 Error codes

When a hypervisor API returns, unless explicitly described by the API service, the 64-bit
value in %o0 will be one of the following error identification values.

EOK 0 Successful return
ENOCPU 1 Invalid CPU id
ENORADDR 2 Invalid real address
ENOINTR 3 Invalid interrupt id
EBADPGSZ 4 Invalid pagesize encoding
EBADTSB 5 Invalid TSB description
EINVAL 6 Invalid argument
EBADTRAP 7 Invalid function number
EBADALIGN 8 Invalid address alignment
EWOULDBLOCK 9 Cannot complete operation without blocking
ENOACCESS 10 No access to specified resource
EIO 11 I/O Error
ECPUERROR 12 CPU is in error state
ENOTSUPPORTED 13 Function not supported
ENOMAP 14 No mapping found
ETOOMANY 15 Too many items specified / limit reached

3.5 Guest states

As defined by the Sun4v Architecture Specificiation each virtual CPU can have one of
three different states:

Page 8 of 50

Hypervisor API Revision 0.24
September 22, 2005

5 API versioning

This section describes the API versioning interface available to all privileged code.

5.1 API call

5.1.1 api_set_version

trap# CORE_TRAP
function# API_SET_VERSION
arg0 api_group
arg1 major_number
arg2 req_minor_number

ret0 status
ret1 act_minor_number

The API service enables a guest to request and check for a version of the Hypervisor
APIs with which it may be compatible. It uses its own trap number to ensure consistency
between future versions of the virtual machine environment. API services are grouped into
sets that are specified by the argument api_group, (defined in the table below). For the
specified group the guest's requested API major version number is given by the argument
major_number and a requested API minor version number is given by the argument
req_minor_number.

If the major_number is supported, the actual minor version implemented by the
Hypervisor is returned in ret1 (act_minor_number). Note that the actual minor version
number may be less than, equal to, or greater than the requested minor version number. (See
Notes, below).

If the major_number is not supported, the Hypervisor returns an error code in ret0, and
ret1 is undefined. (See Errors, below.)

The API groups are defined below together with their version numbers compliant with
this specification.

Group Number

(api_group)

Group Definition Version for this specification

Common 0x0 sun4v version 1-0

0x1 API version 1-0

0x2 MMU Fault status area version 1-0

Technology 0x100 PCI 1-0

0x101 Logical Domain Channels 1-0

5.1.1.1 Errors

EINVAL If api_group field is invalid or unsupported
ENOTSUPPORTED If major number for that api_group is not

supported
EOK If api_group and major number match

Page 13 of 50

A Revision 0.24 Hypervisor API
September 22, 2005

5.1.1.2 Usage Notes:

This API uses its own trap number, not for performance reasons, but to ensure its
constancy even in the face of new API major versions.

Regardless of version number, the Hypervisor core APIs (CORE_TRAP) defined above
enables any guest to print a message and cleanly exit its virtual machine environment in the
event it is unsuccessful in negotiating an API version with which to communicate with other
hypervisor functions.

The following informative text is provided as a guide to assist the reader in
understanding the hypervisor versioning API.

API functions and returned data structures are categorized into specific groups. Each
group represents an area of hypervisor functionality that may change independently of the
others, and therefore may be versioned independently.

For each API group there is a major and a minor version number. Differences in the
major version number indicate incompatible changes. Differences in the minor number
indicate compatible changes, such that a higher version number espoused by the hypervisor
will be compatible with a lower minor number requested by a guest. If the api_group is not
supported the api_version function will return EINVAL. If the major version number for a
valid api_group is not supported the api_version function will return ENOTSUPPORTED.

The handling of an unsupported API version is purely guest policy, however a guest
may freely attempt a different major version if it is capable of driving that alternate interface.
The suggested minimal behaviour is to print a warning message and exit the virtual
machine.

By way of example consider guest that requests minor version X, and this API may
return minor version Y for a given major_number and api_group.

If X = Y, then the requested minor version is available.

If Y < X, the guest must be able to determine if the interface with minor version Y offers
the required services and proceed accordingly. (This is a guest policy issue.)

If Y > X, then the guest may assume it can operate compatibly with version Y. Minor
version number increments are defined to be compatible with the preceeding version, so in
general the guest may accept Y when Y > X. In this case, the guest may want to print a
warning, but that is up to the policy of the guest.

Alternatively in the event that X<Y, the hypervisor may elect to emulate version X, thus
returning X.

Page 14 of 50

