
A Revision 1.0 Hypervisor API
February 14, 2006

9 API versioning

This section describes the API versioning interface available to all privileged code.

9.1 API call

9.1.1 api_set_version

trap# CORE_TRAP
function# API_SET_VERSION
arg0 api_group
arg1 major_number
arg2 req_minor_number

ret0 status
ret1 act_minor_number

The API service enables a guest to request and check for a version of the Hypervisor APIs
with which it may be compatible. It uses its own trap number to ensure consistency between
future versions of the virtual machine environment. API services are grouped into sets that
are specified by the argument api_group, (defined in the table below). For the specified group
the guest's requested API major version number is given by the argument major_number and a
requested API minor version number is given by the argument req_minor_number.

If the major_number is supported, the actual minor version implemented by the
Hypervisor is returned in ret1 (act_minor_number). Note that the actual minor version number
may be less than, equal to, or greater than the requested minor version number. (See Notes,
below). If the returned act_minor_number is greater than the req_minor_number then the APIs
enabled by the Hypervisor for api_group will be compatible with req_minor_number.

If the major_number is not supported, the Hypervisor returns an error code in ret0, and
ret1 is undefined. (See Errors, below.)

If the major_number requested is zero, the version of the api_group selected is requested
to return to the initial un-set (disabled) state. If the call succeeds it will return with EOK in
status, and zero in act_minor_number.

The version number of a specified API group may be set at any time with this API
service, however;

1. The act of selecting an API version for an api_group, or requesting that the group
return to being un-set (major_number=0), does not reset any previous state associated with
services within a group - unless specified explicitly for that group associated state after a
api_set_version call is undefined.

2. Any API calls belonging to the same api_group being made concurrently with this
api_set_version service will have undefined results.

3. Calls to APIs made concurrently with api_set_version that are not in api_group
proceed as normally defined.

4. Simultaneous calls to api_set_version using the same api_group, may succeed but leave
the api_group in an undefined state.

5. Simultaneous calls to api_set_version and api_get_version using the same api_group
have undefined results for api_get_version.

6. api_set_version does not affect the CORE_TRAP API calls - these remain unaffected
and may be called at any time.

Page 38 of 127

Hypervisor API Revision 1.0
February 14, 2006

The API groups are defined in Appendix B: Number Registry (on page 123) together with
the approved version numbers for each of the API services defined in this specification.

Programming note: Each API group is treated independently of the others from a versioning
perspective, so one group can have its version negotiated while APIs from other groups are actively
being used. However, a guest operating system should take care to ensure that while a api_set_version
is in progress, no APIs from the same api_group are used, and no other calls to api_set_version or
api_get_version are made using the same api_group.

9.1.1.1 Errors

EINVAL If api_group field is unknown to this hypervisor,
(this error takes precedent over ENOTSUPPORTED)

ENOTSUPPORTED If major number for that api_group is not
supported

EOK If api_group and major_number match, or
major_number is zero

EWOULDBLOCK Operation would block
EBUSY The api_group is currently in use, and the

requested version would leave the virtual machine
in an illegal state

9.1.1.2 Usage Notes:

This API uses its own trap number, not for performance reasons, but to ensure its
constancy even in the face of new API major versions.

Regardless of version number, the Hypervisor core APIs (CORE_TRAP) defined above
enables any guest to print a message and cleanly exit its virtual machine environment in the
event it is unsuccessful in negotiating an API version with which to communicate with other
hypervisor functions.

The following informative text is provided as a guide to assist the reader in
understanding the hypervisor versioning API.

API functions and returned data structures are categorized into specific groups. Each
group represents an area of hypervisor functionality that may change independently of the
others, and therefore may be versioned independently.

For each API group there is a major and a minor version number. Differences in the
major version number indicate incompatible changes. Differences in the minor number
indicate compatible changes, such that a higher version number espoused by the hypervisor
will be compatible with a lower minor number requested by a guest. If the api_group is not
supported the api_version function will return EINVAL. If the major version number for a
valid api_group is not supported the api_version function will return ENOTSUPPORTED.

The handling of an unsupported API version is purely guest policy, however a guest may
freely attempt a different major version if it is capable of driving that alternate interface. The
suggested minimal behaviour is to print a warning message and exit the virtual machine.

By way of example consider a guest that requests minor version 'Requested', and this API
may return minor version 'Actual' for a given major_number and api_group.

If Requested == Actual, then the requested minor version is available.

If Actual < Requested, the guest must be able to determine if the interface with minor
version Actual offers the required services and proceed accordingly. (This is a guest policy
issue.)

A Revision 1.0 Hypervisor API
February 14, 2006

If Actual > Requested, then the guest may assume it can operate compatibly with version
Requested. Minor version number increments are defined to be compatible with the
preceeding version, so in general the guest may accept Actual when Actual > Requested. In
this case, the guest may want to print a warning, but that is up to the policy of the guest.

Alternatively in the event that Actual>Requested, the hypervisor may elect to emulate
version Requested, thus returning Requested.

For situations such as the co-residence of OBP with Solaris, or mutliple Solaris modules
using the same API group, a layered software approach must be taken for version
negotiation.

For example, it is recommended that OpenBoot intially negotiate to the lowest version
number supported for the firmware consolidation for api groups it intends to use. A
subsequent guest operating system may then negotiate versions up for each api group by
calling though OpenBoot's CIF interface. Using the CIF interface means OpenBoot will be
aware of the version negotiation and can adapt itself accordingly to new api versions, or
simply veto requested versions it cannot compatibly upgrade to. If a guest negotiates versions
directly with the hypervisor bypassing the CIF, the guest is responsible for dismissing
OpenBoot and providing OpenBoot services for itself.

Page 40 of 127

Hypervisor API Revision 1.0
February 14, 2006

9.1.2 api_get_version

trap# CORE_TRAP
function# API_GET_VERSION
arg0 api_group

ret0 status
ret1 major_number
ret2 minor_number

This service is used to determine the major and minor number of the most recently
successfully set API version for the specified group (see section 9.1.1). In the event that no
API version has been successfully set the call returns the error code EINVAL and ret1 and
ret2 are set to 0.

9.1.2.1 Errors

EINVAL - No API version yet successfully set

	9 API versioning
	9.1 API call
	9.1.1 api_set_version
	9.1.1.1 Errors
	9.1.1.2 Usage Notes:

	9.1.2 api_get_version
	9.1.2.1 Errors

