
Domain Services Specification

Revision 0.9.6

February 23, 2006

Please send comments & queries to:

ryan.maeda@sun.com or

eric.sharakan@sun.com

Domain Services Rev. 0.9.6 1 of 25 SMI confidential

mailto:ryan.maeda@sun.com


Table of Contents
1  Introduction ........................................................ 3

1.1  Background.................................................3

1.2  Domain services protocol........................... 3

1.2.1  Communication Stack........................ 3

2  Domain Services Protocol................................... 5

2.1  Definitions.................................................. 5

2.2  DS Message Header ...................................5

2.3  DS protocol fixed message types ...............5

2.3.1  Initiate DS connection........................5

2.3.2  Initiation acknowledgment................. 6

2.3.3  Initiation negative acknowledgment...6

2.4  DS protocol version negotiation................. 6

2.5  DS protocol version 1.0.............................. 7

2.5.1  DS Message types defined for v.1.0 of 
the DS protocol............................................ 7

2.5.2  Service Handles ...............................10

2.5.3  Service Identifier..............................11

2.5.4  DS Capability Version Negotiation & 
Registration................................................ 11

2.5.5  Service Requests ............................. 11

2.5.6  Unregistration ..................................12

3  DS Capabilities..................................................13

3.1  MD Update Notification version 1.0........ 13

3.1.1  Service ID........................................ 13

3.1.2  MD Update Request.........................13

3.1.3  MD Update Response...................... 13

3.2  Domain Shutdown version 1.0..................14

3.2.1  Service ID........................................ 14

3.2.2  Domain Shutdown Request..............14

3.2.3  Domain Shutdown Response............14

3.3  Domain Panic version 1.0.........................15

3.3.1  Service ID........................................ 15

3.3.2  Domain Panic Request..................... 15

3.3.3  Domain Panic Response...................15

3.4  CPU DR Version 1.0................................ 16

3.4.1  Service ID........................................ 16

3.4.2  CPU DR Message Header................16

3.4.3  Message types.................................. 17

3.4.4  CPU DR OK response payload........19

3.4.5  CPU DR Error response...................21

3.5  Variable Configuration version 1.0.......... 21

3.5.1  Service IDs.......................................21

3.5.2  Message Header............................... 21

3.5.3  Set Variable Payload........................22

3.5.4  Delete Variable Payload...................22

3.5.5  Response Payload............................ 23

Appendix A: Capability Table...............................24

Appendix B: References........................................25

Domain Services Rev. 0.9.6 2 of 25 SMI confidential



1  Introduction 

1.1  Background

In a Logical Domain environment the ability to discover whether a guest operating 
system has  various  capabilities,  and  be  able  to  remotely direct  it  to  perform various 
operations is important. Similarly it is equally important for a guest operating system to 
be able to discover and communicate with its various support services.

Specifically,  each guest  domain can  offer  a  number  of  capabilities  to  its  service 
entity, and similarly the service entity can offer a set of capabilities for use by the guest 
domain.

Capabilities may  include  things  such  as  the  ability  to  perform  dynamic 
reconfiguration, or be directed to perform a graceful  shutdown or reboot by a service 
entity.

As  a  domain  transitions  through  various  operational  phases,  (for  example  while 
booting) its capabilities may change. The capabilities of a simple guest OS like OpenBoot 
are not the same as those of a full blown operating system such as Linux or Solaris. 
Similarly services that are offered to a domain by its service entity/entities may come and 
go if, for example, a service processor re-boot occurs.

Consequently it  is a requirement that the mechanism for capability discovery and 
communication must be able to cope with the dynamic nature of both a guest domain and 
its service entities. 

1.2  Domain services protocol

This  document  describes  the  protocol  by  which  a  guest  OS  may  register  its 
capabilities with  its  service  entity/entities,  and  vice-versa.  The  registration  process 
includes independent version negotiation between client and service for each capability

Once a capability has been registered, the domain services protocol then provides a 
data  transport  for  client  and  service  to  communicate  directly  with  each  other 
independently of other capability services which may be using the same channel.

1.2.1  Communication Stack

The  domain  services  (DS)  mechanism is  layered on  top  of  domain  channels  to 
facilitate  communication between a guest domain and its  service entities. The reliable 
mode protocol of the Logical Domain Channel (LDC) framework is leveraged to ensure 
in-order guaranteed packet delivery as well as detection of faults on the communication 
channel -  including loss of connection due to, say, the communication peer crashing or 
re-booting.

On top  of  the LDC reliable  protocol  the DS protocol  handles the  registration of 
provider  capabilities  with  their  consumer(s),  and  subsequently  the  routing  of  data 
messages for those registered capabilities.

The content of transported messages is specific to the higher-level protocol between 
the particular DS service and its client.  The DS communication stack is illustrated in 
figure 1.

Figure 1: Communication Stack

Domain Services Rev. 0.9.6 3 of 25 SMI confidential



By analogy, just as LDC provides a low level transport, like IP, the domain services 
protocol  provides  a  name  service  and  connection  transport  protocol,  like  TCP,  to 
facilitate communication between a capability provider and its consumer.

Messages  for  a  set  of  registered  capabilities  are  multiplexed  over  a  shared  LDC 
channel.  This basic communication flow is illustrated in Figure 2.

Figure 2: Domain Services Communication Path Example

Domain Services Rev. 0.9.6 4 of 25 SMI confidential

...

LDC Reliable Datagram Layer

Domain Services Layer

Capability
Provider

Capability
Consumer

vBSC/LDM

LDC LDC domain-shutdown

dr-cpu

md-updateds

...

Hypervisor

Service Entity Guest Domain



2  Domain Services Protocol

2.1  Definitions

Unless otherwise stated,  each of the fields and sizes specified herein are given in 
bytes (octets). Byte ordering for multi-byte fields is network byte order (big-endian).

Note: For implementations in C, a data structure representation relevant for a big-
endian architecture is also presented. All variable length character array definitions are 
assumed to be NULL terminated sequences of ASCII values.

2.2  DS Message Header 

All DS messages consist of a fixed sized header followed by a variable length data 
payload. The header format is as follows;

Offset Size Field name Description
------ ---- ---------- -----------
0 4 msg_type Message type
4 4 payload_len Payload length

typedef struct {
uint32_t msg_type;
uint32_t payload_len;

} ds_hdr_t;

The data payload content is defined according to the msg_type field.

2.3  DS protocol fixed message types 

The DS protocol always supports three message types and payloads, as described 
below, independent of the current version of the protocol.  The type-specific payload is 
described below each type. 

The message types described in this section are intended for version negotiation of 
the  basic  DS protocol.  All  other  message  types  are  undefined  until  the  DS protocol 
version has been negotiated.

The underlying LDC reliable protocol layer will ensure error-free packet delivery, so 
corrupted packets will already have been dropped. However, receipt of unknown packet 
types may still occur as a result of bugs or due to malicious guest OS behavior. Upon the 
receipt of an unknown or undefined (for the currently negotiated DS protocol version) 
packet type, the recipient should discard the datagram, and close the LDC channel. This 
action  resets  the  domain  services  channel  connection.  Re-opening  the  channel  again 
should ensure complete end-to-end protocol negotiation and re-registration of capabilities.

2.3.1  Initiate DS connection

 msg_type:
DS_INIT_REQ 0x0

Payload:

Domain Services Rev. 0.9.6 5 of 25 SMI confidential



Offset Size Field name Description
------ ---- ---------- -----------
0 2 major_vers Requested major number
2 2 minor_vers Requested minor number

typedef struct {
uint16_t major_vers;
uint16_t minor_vers;

} ds_init_req_t;

2.3.2  Initiation acknowledgment

 msg_type:
DS_INIT_ACK 0x1

Payload:

Offset Size Field name Description
------ ---- ---------- -----------
0 2 minor_vers Highest supported minor version

typedef struct {
uint16_t minor_vers;

} ds_init_ack_t;

2.3.3  Initiation negative acknowledgment

msg_type:
DS_INIT_NACK 0x2

Payload:

Offset Size Field name Description
------ ---- ---------- -----------
0 2 major_vers Alternate supported major version

typedef struct {
uint16_t major_vers;

} ds_init_nack_t;

2.4  DS protocol version negotiation

The DS protocol negotiation involves a countdown algorithm in an attempt to agree 
on a common major number. Major numbers correspond to incompatible changes; both 
sides must agree on a major version number for the version negotiation to proceed. As 
part of agreeing on a major number agreement, each side learns of the other's highest 
supported corresponding minor number.  Minor numbers correspond to back-compatible 
changes;  the  two sides  implicitly  agree  to  use  the  lower  of  the  two minor  numbers 
exchanged, and the negotiation is successfully completed.  This scheme is fully described 

Domain Services Rev. 0.9.6 6 of 25 SMI confidential



as part of the versioning API, FWARC/2006/052.

Specifically,  the  negotiation  is  initiated  by the  guest  sending the  DS_INIT_REQ 
message to the service entity listening on the other  end of the domain channel.   This 
message includes major and minor version numbers supported by the guest.  

If the service entity can't support the major version number sent from the guest, it 
responds  with  the  DS_INIT_NACK  message,  specifying  the  closest  major  version 
number it can support.  The guest can then initiate a new negotiation if it wants (i.e. if it 
can support the alternate major number returned by the service entity).  However, if the 
service entity's DS_INIT_NACK message includes a major number of zero, the service 
entity  should assume that the guest does not support any version of the DS protocol in 
common with it.

If the major number sent in the DS_INIT_REQ message is one the service entity 
supports, it returns a DS_INIT_ACK message specifying the highest minor number of the 
protocol  version  it  supports.   Since minor number changes correspond to compatible 
protocol changes, once the guest receives the DS_INIT_ACK message, both sides can 
communicate using the version of the protocol corresponding to the major number agreed 
to, and the lower of the two minor numbers exchanged  The version negotiation is now 
successfully completed.

2.5  DS protocol version 1.0

2.5.1  DS Message types defined for v.1.0 of the DS protocol

2.5.1.1  Register Service

msg_type:
DS_REG_REQ 0x3

Payload:

Offset Size Field name Description
------ ---- ---------- -----------
0 8 svc_handle Service handle
8 2 major_vers Requested major version
10 2 minor_vers Requested minor version
12 Var. svc_id Service name

typedef struct {
uint64_t svc_handle;
uint16_t major_vers;
uint16_t minor_vers;
char svc_id[]; /* Up to MAX_STR_LEN */

} ds_reg_req_t;

MAX_STR_LEN 1024 /* MAXPATHLEN */

2.5.1.2  Register Acknowledgment

msg_type:

Domain Services Rev. 0.9.6 7 of 25 SMI confidential



DS_REG_ACK 0x4

Payload:

Offset Size Field name Description
------ ---- ---------- -----------
0 8 svc_handle Service handle sent in DS_REG_REQ
8 2 minor_vers Highest supported minor version

typedef struct {
uint64_t svc_handle;
uint16_t minor_vers;

} ds_reg_ack_t;

2.5.1.3  Register Failed

msg_type:
DS_REG_NACK 0x5

Payload:

Offset Size Field name Description
------ ---- ---------- -----------
0 8 svc_handle Service handle sent in DS_REG_REQ
8 8 status Reason for the failure
16 2 major_vers Alternate supported major version

typedef struct {
uint64_t svc_handle;
uint64_t status;
uint16_t major_vers; /* DS_REG_VER_NACK only */

} ds_reg_nack_t;

A DS_REG_NACK message can return the following status codes: 
DS_REG_VER_NACK 0x1 Cannot support requested major

version
DS_REG_DUP 0x2 Duplicate registration attempted

2.5.1.4  Unregister Service

msg_type:
DS_UNREG 0x6

Payload:

Domain Services Rev. 0.9.6 8 of 25 SMI confidential



Offset Size Field name Description
------ ---- ---------- -----------
0 8 svc_handle Service handle to unregister

typedef struct {
uint64_t svc_handle;

} ds_unreg_req_t;

2.5.1.5  Unregister OK

msg_type:
DS_UNREG_ACK 0x7

Payload:

Offset Size Field name Description
------ ---- ---------- -----------
0 8 svc_handle Service handle sent in DS_UNREG

typedef struct {
uint64_t svc_handle;

} ds_unreg_ack_t;

2.5.1.6  Unregister Failed

msg_type:
DS_UNREG_NACK 0x8

Payload:

Offset Size Field name Description
------ ---- ---------- -----------
0 8 svc_handle Service handle sent in DS_UNREG

typedef struct {
uint64_t svc_handle;

} ds_unreg_nack_t;

2.5.1.7  Data Message

msg_type:
DS_DATA 0x9

Payload:

Domain Services Rev. 0.9.6 9 of 25 SMI confidential



Offset Size Field name Description
------ ---- ---------- -----------
0 8 svc_handle Service handle that is the 

destination of the data message

typedef struct {
uint64_t svc_handle;

} ds_data_handle_t;

Note: The ds_data_handle_t header is defined so that when combined with the basic 
DS header  the final  payload delivered  a service is  aligned on a 64bit  boundary with 
regard to the entire DS datagram delivered by LDC.

This alignment is to  enable an implementation to potentially utilize an optimized 
copy when/if creating a message buffer for the final destination service.

2.5.1.8  Data Error

msg_type:
DS_NACK 0xa

Payload:

Offset Size Field name Description
------ ---- ---------- -----------
0 8 svc_handle Service handle sent in DS_DATA
8 8 status Reason for failure

typedef struct {
uint64_t svc_handle;
uint64_t status;

} ds_data_handle_t;

A DS_NACK message can return the following status codes: 
DS_INV_HDL 0x1 Service handle not valid
DS_TYPE_UNKNOWN 0x2 Unknown msg_type received

2.5.2  Service Handles 

A service handle is an opaque 64 bit descriptor that uniquely identifies an instance of 
a  service.   It  is  analogous  to  a  TCP  port  number,  and  is  specified  as  part  of  the 
DS_REG_REQ message payload, sent to begin the negotiation/registration process for a 
capability. It  is  used during this phase to identify the specific negotiation in progress 
(there  could  be  more  than  one).  Once  a  capability has  been  registered,  it  is  used  to 
identify the entity to be notified on receipt of a message. Similarly, when a capability 
sends a message to a client, the handle identifies the sender.  It also identifies the target 
service during the unregistration process.

Domain Services Rev. 0.9.6 10 of 25 SMI confidential



2.5.3  Service Identifier

The  DS_REG_REQ  message  specifies  a  Service  Identifier  (svc_id),  a  NULL-
terminated character string naming the service.  The format and restrictions on the svc_id 
string  are  identical  to  the  PROP_STR  type's  data  field  as  defined  in  the  Machine 
Description Specification [md].

2.5.4  DS Capability Version Negotiation & Registration

Version  negotiation  for  DS  capabilities  utilizes  exactly  the  same  countdown 
algorithm as used in the DS Protocol version negotiation, with the same semantics for 
major  & minor  numbers,  and  corresponding message types  for  implementation.   The 
details of that portion of the protocol are not repeated here.

The   registration  process  is  the  way  in  which  DS  capabilities  advertise  their 
availability.  A registration is initiated by the service sending a DS_REG_REQ message 
containing both a service handle and a service identifier.

In response to a successful registration, the other side sends back a DS_REG_ACK 
message that includes the same service handle provided in the original message. Until this 
response is received,  the DS service interface for this client is not available.

A DS_REG_NACK message is returned if the protocol major version numbers do 
not match (status: DS_REG_VER_NACK) or if a service with the same service ID is 
already registered (status: DS_REG_DUP).

This negotiation/registration handshake must occur whenever the underlying LDC 
comes  up.  If  there  is  an  event  that  causes  the  LDC  to  go  down,  all  services  are 
automatically unregistered.  When the channel comes back up, all services must therefore 
re-register themselves. 

2.5.5  Service Requests 

Once the registration handshake has occurred, a DS client can send data messages to 
any of the registered servers by sending a DS_DATA message. 

The data message payload includes the 'svc_handle' of the service that is the intended 
recipient  of  the  message.   Following  that  is  any  service-specific payload;   the 
'payload_len' field of the header is the length of the entire payload. 

The final recipient of the message payload does not receive the DS header or the 
svc_handle. It only receives the remainder of the payload and an indication of the length 
of that portion of the payload. 

If there is an error in the message that results in the inability of DS to forward the 
message to the intended recipient, a DS_NACK reply message is sent back with an error 
indication  of  either  DS_INV_HDL  (invalid  svc_handle)  or  DS_TYPE_UNKNOWN 
(unknown msg_type received) in the status field. Note that the original payload is not 
returned. 

If the message is forwarded all the way to the service successfully, the higher level 
protocol implemented by that service determines what if any reply message is sent.

Domain Services Rev. 0.9.6 11 of 25 SMI confidential



2.5.6  Unregistration 

In the event that a capability becomes unavailable, such as if the kernel module that 
provides it is unloaded,  a DS_UNREG message is sent. 

The 'svc_handle' field of the DS header is filled with the service handle that uniquely 
identifies the registered service. There is no payload to this message. 

Once the first message is received, the service handle is invalidated and connections 
to that service are closed.

If  the  DS  LDC  channel  goes  down,  all  registered  services  are  forced  to  the 
unregistered state by one or both sides that are still running. Before a service can be used 
again, both the DS infrastructure handshake and the service registration handshake must 
be re-negotiated.

Service handles should not be reused after a service is unregistered. This prevents 
successful use of a stale handle.  Service handles may be re-used after the basic LDC 
connection is taken down and then up, and the overall DS framework is reset as a result.

Domain Services Rev. 0.9.6 12 of 25 SMI confidential



3  DS Capabilities
A DS capability is defined as any service provided by one subsystem on behalf of 

another. Capabilities are based on functionality rather than software module boundaries. 
Thus, a module can register multiple capabilities if it provides multiple features that are 
logically grouped together.  Associated with a capability are a service identifier and a 
service handle.

The  following sections  describe  the  core  DS capabilities  supported  in  a  Logical 
Domain environment.

3.1  MD Update Notification version 1.0

The MD update capability allows a service entity to notify a guest when the entity has 
modified the guest's  Machine Description.   It  is  the responsibility of  the MD update 
capability  to  parse  the  new MD,  determine  what  has  changed,  and  initiate  the  steps 
required  to  adjust  the  guest  configuration  accordingly.  The  exact  steps  taken  upon 
receiving an MD update notification may vary depending on the type of guest running in 
the domain.

3.1.1  Service ID

The following service ID should should be added to the Domain Services registry for 
the MD Update capability.

Service ID Description
---------- -----------
"md-update" Notification of MD updates

3.1.2  MD Update Request

Payload:

Offset Size Field name Description
------ ---- ---------- -----------
0 8 seq_no Sequence number

typedef struct {
uint64_t seq_no;

} md_update_req_t;

The seq_no field is used to match up request & response messages; the same number 
is used in the request and its associated response; the value itself is opaque to the clients 
of the protocol.

3.1.3  MD Update Response

Payload:

Offset Size Field name Description
------ ---- ---------- -----------
0 8 seq_no Sequence number
8 4 status Status of operation

Domain Services Rev. 0.9.6 13 of 25 SMI confidential



typedef struct {
uint64_t seq_no;
uint32_t status;

} md_update_resp_t;

/* MD update status */
MD_UPDATE_SUCCESS 0x0
MD_UPDATE_FAILURE 0x1
MD_UPDATE_INVALID_MSG 0x2

3.2  Domain Shutdown version 1.0

The  Domain  Shutdown  capability  allows  a  service  entity  to  send  a  DS_DATA 
message requesting a guest to gracefully shutdown.  The response indicates whether the 
request was successful  (i.e. initiation of shutdown has occurred).  If the request is denied, 
the  response   can include  an  informational  message,  encoded  as  a  NULL-terminated 
ASCII string, describing the reason for denying the request (e.g. something like “DR in 
progress”).

3.2.1  Service ID

The following service ID should should be added to the Domain Services registry for 
the Domain Shutdown capability.

Service ID Description
---------- -----------
"domain-shutdown” Request a graceful shutdown

3.2.2  Domain Shutdown Request

Offset Size Field name Description
------ ---- ---------- -----------
0 8 seq_no Sequence number
8 4 ms_delay ms. to delay

typedef struct {
uint64_t seq_no;
uint32_t ms_delay;

} domain_shutdown_req_t;

ms_delay specifies a time delay in milliseconds before initiation of the shutdown 
operation.

3.2.3  Domain Shutdown Response

Offset Size Field name Description
------ ---- ---------- -----------
0 8 seq_no Sequence number
8 4 status Status of operation
12 Var. reason ASCII String (NULL terminated)

Domain Services Rev. 0.9.6 14 of 25 SMI confidential



typedef struct {
uint64_t seq_no;
uint32_t status;
char reason[]; /* Optional; less than 

   MAX_STR_LEN */
} domain_shutdown_resp_t;

reason is a NULL terminated ASCII string.
/* Domain shutdown status */
DOMAIN_SHUTDOWN_SUCCESS 0x0
DOMAIN_SHUTDOWN_FAILURE 0x1
DOMAIN_SHUTDOWN_INVALID_MSG 0x2

3.3  Domain Panic version 1.0

The Domain Panic capability allows a service entity to send a DS_DATA message 
requesting a guest to panic and cause a crash dump to be created.  The response indicates 
whether the request was successful  (i.e. initiation of panic processing has occurred).  If 
the request is denied, the response can include an informational message, encoded as a 
NUL-terminated  ASCII  string,  describing  the  reason  for  denying  the  request  (e.g. 
something like “DR in progress”).

3.3.1  Service ID

The following service ID should should be added to the Domain Services registry for 
the Domain Panic capability.

Service ID Description
---------- -----------
"domain-panic" Request a panic

3.3.2  Domain Panic Request

Offset Size Field name Description
------ ---- ---------- -----------
0 8 seq_no Sequence number

typedef struct {
uint64_t seq_no;

} domain_panic_req_t;

3.3.3  Domain Panic Response

Offset Size Field name Description
------ ---- ---------- -----------
0 8 seq_no Sequence number
8 4 status Status of operation
12 Var. reason ASCII String (NUL terminated)

Domain Services Rev. 0.9.6 15 of 25 SMI confidential



typedef struct {
uint64_t seq_no;
uint32_t status;
char reason[]; /* Optional; less than 

   MAX_STR_LEN */
} domain_panic_resp_t;

reason is a NULL terminated ASCII string.
/* Domain panic status */
DOMAIN_PANIC_SUCCESS 0x1
DOMAIN_PANIC_FAILURE 0x2
DOMAIN_PANIC_INVALID_MSG 0x3

3.4  CPU DR Version 1.0

The ability to add or remove virtual CPUs from a logical domain is driven from the 
LDOM manager through this domain service.

3.4.1  Service ID

The following service ID should should be added to the Domain Services registry for 
the CPU DR capability.

Service ID Description
---------- -----------
"dr-cpu" Dynamic Reconfiguration for virtual CPUs

Each DR service message consists of a fixed message header and packet payload as 
described below. The overall payload length is determined by subtracting the size of the 
CPU DR message header (4 bytes) from the entire domain services packet size.

3.4.2  CPU DR Message Header

All CPU DR messages begin with the same header.  The payload that follows the 
header is specific to a particular message type.

Offset Size Field name Description
------ ---- ---------- -----------
0 4 msg_type Message type
4 4 num_records Number of records for message
8 8 req_num Request number

typedef struct {
uint32_t msg_type;
uint32_t num_records;
uint64_t req_num;

} dr_cpu_hdr_t;

The overall CPU DR protocol consists of a command sent to the client guest that then 
responds with a reply indicating the overall success of the request. An error response 
indicates that the operation was not attempted due to an invalid request. An OK response 
indicates that the requested operation was attempted and the response record for each cpu 

Domain Services Rev. 0.9.6 16 of 25 SMI confidential



indicates the effect of the attempt for that particular cpu.

The message types identify either a request or a response to a request.

3.4.3  Message types

The following constants are defined for CPU DR domain service command identifier 
values:

Request message types:

Type   Value  ASCII    Definition
----   -----  -----    ----------
DR_CPU_CONFIGURE   0x43   'C'     Configure new CPU(s)
DR_CPU_UNCONFIGURE    0x55   'U'     Unconfigure CPU(s)
DR_CPU_FORCE_UNCONFIG 0x46   'F'     Forcibly Unconfigure CPU(s)
DR_CPU_STATUS         0x53   'S'     Request the status of CPU(s)

Response message types:

Type   Value  ASCII   Definition
----   -----  -----   ----------
DR_CPU_OK   0x6f   'o'     Request completed OK
DR_CPU_ERROR   0x65   'e'     Request failed (not

    attempted)

3.4.3.1  CPU DR Request records payload

The CPU DR requests all use the same message payload format, which is a list of 
records of virtual CPU IDs within a guest.  The number of records of IDs is specified by 
the num_records field in the packet header. Each ID is given as a single 4 byte value:

The payload layout is as follows:

Offset Size Field name Description
------ ---- ---------- -----------
0 4 id0 Virtual CPU ID
4 4 id1 Virtual CPU ID
8 4 id2 Virtual CPU ID

... etc.

Note:  IDs  should  be  provided  in  ascending  numerical  order,  and  should  not  be 
duplicated.  An implementation may not assume that IDs are arranged in a specific order, 
and may not assume that IDs are not duplicated.

3.4.3.2  Request number

The request number in the message header is a monotonically increasing number that 
uniquely identifies each request message.

Responses to requests are expected to use the same request number so that they can 
be paired with their original request.

New requests may be issued without waiting for a response to a preceding request. 
The  underlying transport  protocol  is  responsible  to  ensure  reliable,  in-order  and  un-
duplicated message packets.

Domain Services Rev. 0.9.6 17 of 25 SMI confidential



Requests are to be processed in the order received.

3.4.3.3  CPU_CONFIGURE request

This command requests that a guest providing this service attempt to configure and 
bring online  a  set  of  CPUs that  have been  dynamically reconfigured  into the guest's 
logical  domain.  The  response  to  this  request  indicates  success  of  failure  for  each 
individually specified CPU.

Before  a  configure  request,  a  CPU  must  be  part  of  the  logical  domain  in  the 
hypervisor  and must be  present  in the guest's  Machine Description.  If  either  of  these 
conditions is not satisfied, the configure response will indicate that the particular CPU is 
in  the  DR_CPU_STAT_NOT_PRESENT  state.  No  other  assumptions  may be  made 
about the state of the CPU before a configure request. In particular, attempts to configure 
a CPU already in the configured state must succeed.

If the guest provides a service for registering a Machine Description update,  that 
update notification must be provided to the guest prior to the configure request being 
given.

After a successful configure request, a CPU is in the configured state, which means 
that it is available for general use by the guest. The CPU enters the guest from the HV by 
means of the CPU_START hypervisor API (FWARC 2005/116). Further steps required 
to reach the configured state is guest operating system specific. See [dr] for details on the 
Solaris specific implementation of the configure request.

3.4.3.4  CPU_UNCONFIGURE request

This command requests that a guest take offline and unconfigure the specified set of 
CPUs.  The  response  to  this  request  indicates  success  or  failure  for  each  individually 
specified CPU.

Before an unconfigure request,  a CPU must be part  of the logical  domain in the 
hypervisor  and must be  present  in the guest's  Machine Description.  If  either  of  these 
conditions are not satisfied, the unconfigure response will indicate that the particular CPU 
is in the DR_CPU_STAT_NOT_PRESENT state. No other assumptions may be made 
about  the  state  of  the  CPU before  an  unconfigure  request.  In  particular,  attempts  to 
unconfigure a CPU already in the unconfigured state must succeed.

After a successful unconfigure request, the CPU is in the unconfigured state, which 
means that it is no longer available for general use by the guest operating system. The 
CPU is still part of the logical domain in the hypervisor and is still present in the guest's 
Machine  Description.  The  CPU  enters  the  HV  from  the  guest  by  means  of  the 
CPU_STOP hypervisor  API  (FWARC 2005/116).  Further  steps  required  to  reach the 
unconfigured state is guest operating system specific. See [dr] for details on the Solaris 
specific implementation of the unconfigure request.

If  the guest provides a service for registering a Machine Description update,  that 
update notification will be provided only after steps have been taken to remove the CPU 
from the logical domain in the hypervisor and from the guest's Machine Description.

3.4.3.5  CPU_FORCE_UNCONFIG request

This request is equivalent to CPU_UNCONFIGURE in that it requests that a guest 
take offline and unconfigure the specified set of CPUs. In addition however, the guest 
may choose to implement an override to conditions that may have caused failure for any 
step of a CPU_UNCONFIGURE operation.

Domain Services Rev. 0.9.6 18 of 25 SMI confidential



Note: For example, whereas Solaris may elect to fail a CPU_UNCONFIGURE for a 
CPU to which certain processes are bound, it  may elect to override and unbind those 
processes in response to the CPU_FORCE_UNCONFIG request in order to complete the 
unconfigure  or  offline  operation.  Such  policy  decisions  are  guest  operating  system 
specific.

The  response  to  this  request  indicates  success  or  failure  for  each  individually 
specified CPU.

If the guest provides a service for registering a Machine Description update,  that 
update notification will be provided only after steps have been taken to remove the CPU 
from the logical domain in the hypervisor and from the guest's Machine Description.

3.4.3.6  CPU_STATUS

This command requests the configuration status of specific CPU(s).  The response to 
this request is guest policy specific and is provided upon this request for informational 
purposes.

3.4.4  CPU DR OK response payload

The  CPU_DR_OK  response  uses  the  following  format.  The  response  header  is 
followed by an array of num_records status reports, one for each CPU included in the 
command request. Each status report provides information on the result of the requested 
operation.

The data payload length can be computed from the overall packet length minus the 
header length and minus the total size of the num_records status report records.

Following the array of status reports is a variable length data section that may be used 
to  hold  additional  string information specific  to  a  particular  CPU. Each status  report 
contains an offset into that data section identifying an additional human readable NUL 
terminated ASCII string when relevant. The offset is specified as the byte offset into the 
string data section relative to the first byte of the overall CPU DR packet header. The 
domain services header indicates the overall CPU DR packet length.

The CPU status reports have the following format:

Domain Services Rev. 0.9.6 19 of 25 SMI confidential



Offset Size Field name Description
------ ---- ---------- -----------
0 4 cpu_id CPU ID
4 4 result Result of the operation
8 4 status Status of the CPU
12 4 string_off String offset relative to start

of CPU DR response packet

typedef struct {
uint32_t cpuid;
uint32_t result;
uint32_t status;
uint32_t string_off;

} dr_cpu_stat_t;

3.4.4.1  CPU DR OK Result codes

The result field in the per  CPU DR OK response record details  the result of the 
requested operation on the specified CPU within each status record of the CPU DR OK 
response.

The result codes are defined as follows
Name     Value  Definition
----     -----  ----------
DR_CPU_RES_OK     0x0    Operation succeeded
DR_CPU_RES_FAILURE     0x1    Operation failed
DR_CPU_RES_BLOCKED     0x2    Operation was blocked
DR_CPU_RES_CPU_NOT_RESPONDING  0x3    CPU was not responding
DR_CPU_RES_NOT_IN_MD     0x4    CPU not defined in MD

For  DR_CPU_UNCONFIGURE  the  result  code  DR_CPU_RES_BLOCKED  is 
equivalent  to  DR_CPU_RES_FAILURE  except  that  the  guest  is  indicating  that  the 
operation may succeed with a subsequent DR_CPU_FORCE_UNCONFIG operation.

3.4.4.2  CPU DR OK status codes

The status field in the per CPU DR OK response record details the resulting status of 
the specified CPU after the requested operation.

The status codes are defined as follows
Name Value Definition
---- ----- ----------
DR_CPU_STAT_NOT_PRESENT 0x0 CPU ID does not exist even

in MD
DR_CPU_STAT_UNCONFIGURED 0x1 CPU ID exists in MD, but 

CPU is not configured for
use by guest

DR_CPU_STAT_CONFIGURED 0x2 CPU is configured for use 
by the guest.

3.4.4.3  CPU DR OK response string

Each response record may optionally include a human readable string so that the 
guest may return a NUL terminated ASCII string relevant to each CPU with regard to the 
requested operation.

Domain Services Rev. 0.9.6 20 of 25 SMI confidential



If no string is provided the string_off field in the response record for a cpu has 
the value of zero.

3.4.5  CPU DR Error response

The  message  type  DR_CPU_ERROR is  returned  as  a  response  to  a  malformed 
request message. No additional payload is provided with this message type.

3.5  Variable Configuration version 1.0

The Variable Configuration capability provides the ability for a guest to update the 
LDOM variable store that is managed by the LDOM manager or SP. The LDOM variable 
store is described in detail in FWARC 2006/086.  

3.5.1  Service IDs

There  are  two service  IDs defined  to  support  LDOM variable  updates,  one  that 
describes a primary service and one that describes a backup service. In the event that the 
primary service is not available, the guest can fall back to using the backup service. The 
backup service uses the identical protocol as the primary service but is subordinate in 
priority to the primary service.

Implementation Note:  The LDOM manager provides the primary service.  In the 
case where the LDOM manager has not been started, or is not currently running, variable 
updates  can  be  communicated  to  the  SP  using the  backup  service.  OpenBoot  in  the 
control domain will use the backup service since the LDOM manager will not be running. 
OpenBoot  in  all  other  domains  will  use  the  primary  service  as  long  as  the  LDOM 
manager is available.

The following service ID should should be added to the Domain Services registry for 
the LDOM variables capability.

Service ID     Description
----------     -----------
“var-config"       Primary LDOM variable management
“var-config-backup”     Secondary LDOM variable management

3.5.2  Message Header

Payload:

Offset Size Field name Description
------ ---- ---------- -----------
0 4 cmd Command

typedef struct {
uint32_t cmd;

} var_config_hdr_t;

3.5.2.1  Message types

The  following  constants  are  defined  for  Variable  Configuration  domain  service 
command identifier values:

Domain Services Rev. 0.9.6 21 of 25 SMI confidential



Type     Value Definition
----     ----- ----------
VAR_CONFIG_SET_REQ     0x0 Request setting a variable
VAR_CONFIG_DELETE_REQ   0x1 Request deleting a 

variable
VAR_CONFIG_SET_RESP     0x2 Response to a set request
VAR_CONFIG_DELETE_RESP  0x3 Response to a delete 

request

3.5.3  Set Variable Payload

The set command updates the variable in the store. If the variable already exists in 
the store, the new value replaces the old value. If the variable does not exist in the store, it 
is added.

The Variable Configuration header is followed by two NULL terminated strings. The 
first represents the name of the variable to set. The second represents the value to set it to.

Offset Size Field name Description
------ ---- ---------- -----------
0 Var. name Name of the variable to set
Var. Var. value Value of variable

typedef struct {
char name[];
char value[];

} var_config_set_req_t;

3.5.4  Delete Variable Payload

The delete command removes a variable from the store. The Variable Configuration 
header is followed by one NULL terminated string. The string represents the name of the 
variable to delete.

Offset Size Field name Description
------ ---- ---------- -----------
0 Var. name Name of the variable to delete

typedef struct {
char name[];

} var_config_delete_req_t;

3.5.5  Response Payload

Responses to  set  and  delete  commands  share  the  same  format.  The  Variable 
Configuration header is followed by the following response payload:

Offset Size Field name Description
------ ---- ---------- -----------
0 4 result Result of operation

Domain Services Rev. 0.9.6 22 of 25 SMI confidential



typedef struct {
uint32_t result;

} var_config_resp_t;

3.5.5.1  Response Result Codes

The result field in the  response payload details the result of the requested operation. 
The result codes are defined as follows:

Name Value Definition
---- ----- ----------
VAR_CONFIG_SUCCESS 0x0 Operation succeeded
VAR_CONFIG_NO_SPACE 0x1 Variable Store Full
VAR_CONFIG_INVALID_VAR 0x2 Invalid Variable Format
VAR_CONFIG_INVALID_VAL 0x3 Invalid Value Format
VAR_CONFIG_VAR_NOT_PRESENT 0x4 Variable not present to 

delete

Domain Services Rev. 0.9.6 23 of 25 SMI confidential



Appendix A: Capability Table
This table lists the capabilities described in this document, and which need to  be 

added to a Domain Services registry.

Service ID Description
md-update Notification of MD updates

domain-shutdown Request graceful shutdown

domain-panic Request a panic

dr-cpu Dynamic Reconfiguration for Virtual CPUs

var-config Primary LDOM variable management

var-config-backup Secondary LDOM variable management

Domain Services Rev. 0.9.6 24 of 25 SMI confidential



Appendix B: References
[md] Machine Description Specification 

FWARC/2005/115
[dr] Logical Domain Dynamic Reconfiguration Specification

http://cpubringup.sfbay.sun.com/twiki/pub/LDoms/ArchDesignPhase15/dr-design.pdf

Domain Services Rev. 0.9.6 25 of 25 SMI confidential


	1  Introduction 
	1.1  Background
	1.2  Domain services protocol
	1.2.1  Communication Stack


	2  Domain Services Protocol
	2.1  Definitions
	2.2  DS Message Header 
	2.3  DS protocol fixed message types 
	2.3.1  Initiate DS connection
	2.3.2  Initiation acknowledgment
	2.3.3  Initiation negative acknowledgment

	2.4  DS protocol version negotiation
	2.5  DS protocol version 1.0
	2.5.1  DS Message types defined for v.1.0 of the DS protocol
	2.5.1.1  Register Service
	2.5.1.2  Register Acknowledgment
	2.5.1.3  Register Failed
	2.5.1.4  Unregister Service
	2.5.1.5  Unregister OK
	2.5.1.6  Unregister Failed
	2.5.1.7  Data Message
	2.5.1.8  Data Error

	2.5.2  Service Handles 
	2.5.3  Service Identifier
	2.5.4  DS Capability Version Negotiation & Registration
	2.5.5  Service Requests 
	2.5.6  Unregistration 


	3  DS Capabilities
	3.1  MD Update Notification version 1.0
	3.1.1  Service ID
	3.1.2  MD Update Request
	3.1.3  MD Update Response

	3.2  Domain Shutdown version 1.0
	3.2.1  Service ID
	3.2.2  Domain Shutdown Request
	3.2.3  Domain Shutdown Response

	3.3  Domain Panic version 1.0
	3.3.1  Service ID
	3.3.2  Domain Panic Request
	3.3.3  Domain Panic Response

	3.4  CPU DR Version 1.0
	3.4.1  Service ID
	3.4.2  CPU DR Message Header
	3.4.3  Message types
	3.4.3.1  CPU DR Request records payload
	3.4.3.2  Request number
	3.4.3.3  	CPU_CONFIGURE request
	3.4.3.4  CPU_UNCONFIGURE request
	3.4.3.5  	CPU_FORCE_UNCONFIG request
	3.4.3.6  	CPU_STATUS

	3.4.4  CPU DR OK response payload
	3.4.4.1  CPU DR OK Result codes
	3.4.4.2  CPU DR OK status codes
	3.4.4.3  CPU DR OK response string

	3.4.5  CPU DR Error response

	3.5  Variable Configuration version 1.0
	3.5.1  Service IDs
	3.5.2  Message Header
	3.5.2.1  Message types

	3.5.3  Set Variable Payload
	3.5.4  Delete Variable Payload
	3.5.5  Response Payload
	3.5.5.1  Response Result Codes




