
Domain Services Specification

Revision 0.6

February 6, 2006

Please send comments & queries to:

ryan.maeda@sun.com or

eric.sharakan@sun.com

Domain Services Rev. 0.6 1 of 13 SMI confidential

Table of Contents
1 Introduction .. 3

1.1 Background...3

1.2 Domain services protocol........................... 3

1.2.1 Communication Stack........................ 3

2 Domain Services Protocol................................... 5

2.1 Definitions.. 5

2.2 DS Message Header5

2.3 DS protocol fixed message types5

2.3.1 Initiate DS connection........................5

2.3.2 Initiation acknowledgment................. 5

2.3.3 Initiation negative acknowledgment...6

2.4 DS protocol version negotiation................. 6

2.5 DS protocol version 1.0.............................. 6

2.5.1 DS Message types defined for v.1.0 of
the DS protocol.. 6

2.5.2 Service Handles7

2.5.3 Service Identifier................................8

2.5.4 DS Capability Version Negotiation &
Registration.. 8

2.5.5 Service Requests 8

2.5.6 Unregistration9

3 DS Capabilities..10

3.1 MD Update Notification version 1.0........ 10

3.2 Domain Shutdown version 1.0..................10

3.3 Domain Panic version 1.0.........................10

Appendix A: Capability Table...............................12

Appendix B: References..13

Domain Services Rev. 0.6 2 of 13 SMI confidential

1 Introduction

1.1 Background

In a Logical Domain environment the ability to discover whether a guest operating
system has various capabilities, and be able to remotely direct it to perform various
operations is important. Similarly it is equally important for a guest operating system to
be able to discover and communicate with its various support services.

Specifically, each guest domain can offer a number of capabilities to its service
entity, and similarly the service entity can offer a set of capabilities for use by the guest
domain.

Capabilities may include things such as the ability to perform dynamic
reconfiguration, or be directed to perform a graceful shutdown or reboot by a service
entity.

As a domain transitions through various operational phases, (for example while
booting) its capabilities may change. The capabilities of a simple guest OS like OpenBoot
are not the same as those of a full blown operating system such as Linux or Solaris.
Similarly services that are offered to a domain by its service entity/entities may come and
go if, for example, a service processor re-boot occurs.

Consequently it is a requirement that the mechanism for capability discovery and
communication must be able to cope with the dynamic nature of both a guest domain and
its service entities.

1.2 Domain services protocol

This document describes the protocol by which a guest OS may register its
capabilities with its service entity/entities, and vice-versa. The registration process
includes independent version negotiation between client and service for each capability

Once a capability has been registered, the domain services protocol then provides a
data transport for client and service to communicate directly with each other
independently of other capability services which may be using the same channel.

1.2.1 Communication Stack

The domain services mechanism is layered on top of domain channels to facilitate
communication between a guest domain and its service entities. The reliable protocol
mode of LDC is leveraged to ensure in-order guaranteed packet delivery as well as
detection of faults on the communication channel - including loss of connection due to,
say, the communication peer crashing or re-booting.

On top of the LDC reliable protocol the DS protocol handles the registration of
provider capabilities with their consumer(s), and subsequently the routing of data
messages for those registered capabilities.

The content of transported messages is specific to the higher-level protocol between
the particular DS service and its client. The DS communication stack is illustrated in
figure 1.

Figure 1: Communication Stack

Domain Services Rev. 0.6 3 of 13 SMI confidential

By analogy, just as LDC provides a low level transport, like IP, the domain services
protocol provides a name service and connection transport protocol, like TCP, to
facilitate communication between a capability provider and its consumer.

Messages for a set of registered capabilities are multiplexed over a shared LDC
channel. This basic communication flow is illustrated in Figure 2.

Figure 2: Domain Services Communication Path Example

Domain Services Rev. 0.6 4 of 13 SMI confidential

...

LDC Reliable Datagram Layer

Domain Services Layer

Capability
Provider

Capability
Consumer

vBSC/LDM

LDC ldc shutdown

dr_cpu

MD_updateds

...

Hypervisor

Service Entity Guest Domain

2 Domain Services Protocol

2.1 Definitions

All fields in this specification are assumed to be in network byte order (big-endian).

2.2 DS Message Header

All DS messages consist of a fixed sized header followed by a variable length data
payload. The header format is as follows;

typedef struct {
uint32_t msg_type; /* Message type */
uint32_t payload_len; /* Payload length */

} ds_hdr_t;

The data payload content is defined according to the msg_type field as follows;

2.3 DS protocol fixed message types

The DS protocol always supports the following three message types and payloads,
independent of the current version of the protocol. The type-specific payload is described
below each type.

The message types described in this section are intended for version negotiation of
the basic DS protocol. All other message types are undefined until the DS protocol
version has been negotiated.

The underlying LDC reliable protocol layer will ensure error-free packet delivery, so
corrupted packets will already have been dropped. However, receipt of unknown packet
types may still occur as a result of bugs or due to malicious guest OS behavior. Upon the
receipt of an unknown or undefined (for the currently negotiated DS protocol version)
packet type, the recipient should discard the datagram, and close the LDC channel. This
action resets the domain services channel connection. Re-opening the channel again
should ensure complete end-to-end protocol negotiation and re-registration of capabilities.

2.3.1 Initiate DS connection

DS_INIT_REQ 0x0

typedef struct {
uint16_t major_vers;
uint16_t minor_vers;

} ds_init_req_t;

2.3.2 Initiation acknowledgment

DS_INIT_ACK 0x1

typedef struct {
uint16_t minor_vers;

} ds_init_ack_t;

Domain Services Rev. 0.6 5 of 13 SMI confidential

2.3.3 Initiation negative acknowledgment

DS_INIT_NACK 0x2

typedef struct {
uint16_t major_vers;

} ds_init_nack_t;

2.4 DS protocol version negotiation

The DS protocol negotiation involves a countdown algorithm in an attempt to agree
on a common major number. Major numbers correspond to incompatible changes; both
sides must agree on a major version number for the version negotiation to proceed. As
part of agreeing on a major number agreement, each side learns of the other's highest
supported corresponding minor number. Minor numbers correspond to back-compatible
changes; the two sides implicitly agree to use the lower of the two minor numbers
exchanged, and the negotiation is successfully completed.

Specifically, the negotiation is initiated by the guest sending the DS_INIT_REQ
message to the service entity listening on the other end of the domain channel. This
message includes major and minor version numbers supported by the guest. If the service
entity can't support the major version number sent from the guest, it responds with the
DS_INIT_NACK message, specifying the closest major version number it can support.
The guest can then initiate a new negotiation if it wants (i.e. if it can support the alternate
major number returned by the service entity). However, if the service entity's
DS_INIT_NACK message includes a major number of zero, the service entity should
assume that the guest does not support any version of the DS protocol in common with it.

2.5 DS protocol version 1.0

2.5.1 DS Message types defined for v.1.0 of the DS protocol

2.5.1.1 Register Service

DS_REG_REQ 0x3

typedef struct {
uint64_t svc_handle;
uint16_t major_vers;
uint16_t minor_vers;
char svc_id[]; /* Up to MAX_STR_LEN */

} ds_reg_req_t;

MAX_STR_LEN 1024 /* MAXPATHLEN */

2.5.1.2 Register Acknowledgment

DS_REG_ACK 0x4

typedef struct {
uint64_t svc_handle;
uint16_t minor_vers;

} ds_reg_ack_t;

Domain Services Rev. 0.6 6 of 13 SMI confidential

2.5.1.3 Register Failed

DS_REG_NACK 0x5

typedef struct {
uint64_t status;
uint64_t svc_handle;
uint16_t major_vers;

} ds_reg_nack_t;

A DS_REG_NACK message can return the following status codes:
DS_OK 0x0 Success
DS_REG_NACK 0x1 Cannot support requested major version
DS_REG_DUP 0x2 Duplicate registration attempted

2.5.1.4 Unregister Service

DS_UNREG 0x6

typedef struct {
uint64_t svc_handle;

} ds_unreg_req_t;

2.5.1.5 Unregister OK

DS_UNREG_ACK 0x7

typedef struct {
uint64_t svc_handle;

} ds_unreg_ack_t;

2.5.1.6 Unregister Failed

DS_UNREG_NACK 0x8

typedef struct {
uint64_t svc_handle;

} ds_unreg_nack_t;

2.5.1.7 Data Message

DS_DATA 0x9

typedef struct {
uint64_t svc_handle;

} ds_data_handle_t;

Note: The ds_data_handle_t header is defined so that when combined with the basic
DS header the final payload delivered a service is aligned on a 64bit boundary with
regard to the entire DS datagram delivered by LDC.

This alignment is to enable an implementation to potentially utilize an optimized
copy when/if creating a message buffer for the final destination service.

2.5.2 Service Handles

A service handle is an opaque 64 bit descriptor that uniquely identifies an instance of
a service. It is analogous to a TCP port number, and is specified as part of the
DS_REG_REQ message payload, sent to begin the negotiation/registration process for a

Domain Services Rev. 0.6 7 of 13 SMI confidential

capability. It is used during this phase to identify the specific negotiation in progress
(there could be more than one). Once a capability has been registered, it is used to
identify the entity to be notified on receipt of a message. Similarly, when a capability
sends a message to a client, the handle identifies the sender. It also identifies the target
service during the unregistration process.

2.5.3 Service Identifier

The DS_REG_REQ message specifies a Service Identifier (svc_id), a NULL-
terminated character string naming the service. The format and restrictions on the svc_id
string are identical to the PROP_STR type's data field as defined in the Machine
Description Specification [md].

2.5.4 DS Capability Version Negotiation & Registration

Version negotiation for DS capabilities utilizes exactly the same countdown
algorithm as used in the DS Protocol version negotiation, with the same semantics for
major & minor numbers, and corresponding message types for implementation. The
details of that portion of the protocol are not repeated here.

The registration process is the way in which DS capabilities advertise their
availability. A registration is initiated by the service sending a DS_REG_REQ message
containing both a service handle and a service identifier.

In response to a successful registration, the other side sends back a DS_REG_ACK
message that includes the same service handle provided in the original message. Until this
response is received, the DS service interface for this client is not available.

This negotiation/registration handshake must occur whenever the underlying LDC
comes up. If there is an event that causes the LDC to go down, all services are
automatically unregistered. When the channel comes back up, all services must therefore
re-register themselves.

2.5.5 Service Requests

Once the registration handshake has occurred, a DS client can send data messages to
any of the registered servers by sending a DS_DATA message.

The data message payload includes the 'ds_handle' of the service that is the intended
recipient of the message. Following that is any service-specfic payload; the 'payload_len'
field of the header is the length of the entire payload.

The final recipient of the message payload does not receive the DS header or the
ds_handle. It only receives the remainder of the payload and an indication of the length of
that portion of the payload.

If there is an error in the message that results in the inability of DS to forward the
message to the intended recipient, a reply message is sent back with an error in the status
field. Note that the original payload is not returned.

If the message is forwarded all the way to the service successfully, the higher level
protocol implemented by that service determines what if any reply message is sent.

Domain Services Rev. 0.6 8 of 13 SMI confidential

2.5.6 Unregistration

In the event that a capability becomes unavailable, such as if the kernel module that
provides it is unloaded, a DS_UNREG message is sent.

The 'ds_handle' field of the DS header is filled with the service handle that uniquely
identifies the registered service. There is no payload to this message.

Once the first message is received, the service handle is invalidated and connections
to that service are closed.

If the DS LDC channel goes down, all registered services are forced to the
unregistered state by one or both sides that are still running. Before a service can be used
again, both the DS infrastructure handshake and the service registration handshake must
be re-negotiated.

Service handles should not be reused after a service is unregistered. This prevents
successful use of a stale handle. Service handles may be re-used after the basic LDC
connection is taken down and then up, and the overall DS framework is reset as a result.

Domain Services Rev. 0.6 9 of 13 SMI confidential

3 DS Capabilities
A DS capability is defined as any service provided by one subsystem on behalf of

another. Capabilities are based on functionality rather than software module boundaries.
Thus, a module can register multiple capabilities if it provides multiple features that are
logically grouped together. Associated with a capability are a service identifier and a
service handle.

The following sections describe the core DS capabilities supported in a Logical
Domain environment.

3.1 MD Update Notification version 1.0

The MD update capability allows a service entity to notify a guest when the entity has
modified the guest's Machine Description. It is the responsibility of the MD update
capability to parse the new MD, determine what has changed, and initiate the steps
required to adjust the guest configuration accordingly. The exact steps taken upon
receiving an MD update notification may vary depending on the type of guest running in
the domain.

3.1.1 MD Update Request

typedef struct {
uint32_t seqno;

} ds_md_update_req_t;

3.1.2 MD Update Response

typedef struct {
uint64_t status;

} ds_md_update_resp_t;

/* MD update status */
MD_UPDATE_SUCCESS 0x1
MD_UPDATE_FAILURE 0x2
MD_UPDATE_INVALID_MSG 0x3

3.2 Domain Shutdown version 1.0

The Domain Shutdown capability allows a service entity to send a DS_DATA
message requesting a guest to gracefully shutdown. A time delay can be specified (in
mS).

Domain Services Rev. 0.6 10 of 13 SMI confidential

3.2.1 Domain Shutdown Request

typedef struct {
uint32_t seqno;
uint32_t ms_delay;

} ds_domain_shutdown_req_t;

3.2.2 Domain Shutdown Response

typedef struct {
uint64_t status;
char reason[]; /* Optional; less than

 MAX_SR_LEN */
} ds_domain_shutdown_resp_t;

/* Domain shutdown status */
DOMAIN_SHUTDOWN_SUCCESS 0x1
DOMAIN_SHUTDOWN_FAILURE 0x2
DOMAIN_SHUTDOWN_INVALID_MSG 0x3

3.3 Domain Panic version 1.0

The Domain Panic capability allows a service entity to send a DS_DATA message
requesting a guest to panic and cause a crash dump to be created.

3.3.1 Domain Panic Request

typedef struct {
uint32_t seqno;

} ds_domain_panic_req_t;

3.3.2 Domain Panic Response

typedef struct {
uint64_t status;
char reason[]; /* Optional; less than

MAX_SR_LEN */
} ds_domain_panic_resp_t;

/* Domain panic status */
DOMAIN_PANIC_SUCCESS 0x1
DOMAIN_PANIC_FAILURE 0x2
DOMAIN_PANIC_INVALID_MSG 0x3

Domain Services Rev. 0.6 11 of 13 SMI confidential

Appendix A: Capability Table
This table lists the capabilities described in this document, and which need to be

added to a Domain Services registry.

Service ID Description

md_update Notification of MD updates

domain_shutdown Request graceful shutdown

domain_panic Request a panic

Domain Services Rev. 0.6 12 of 13 SMI confidential

Appendix B: References
[ldc] Logical Domain Virtual IO Architecture Specification

[Awaiting FWARC case number]
[md] Machine Description Specification

FWARC/2005/115

Domain Services Rev. 0.6 13 of 13 SMI confidential

