
LDoms VIO Arch Spec (Preliminary Draft) Revision 0.7
October 9, 2006

4.3 LDC virtual link layer
Logical domain channels provide a virtual link layer abstraction that are designed as

point-to-point communication channels between logical domains or between a logical
domain and an external entity such as a service processor or the Hypervisor itself. Logical
domain channels provide an encapsulation protocol onto which higher level transport can
be built such as TCP/IP and PPP.

Within a LDom a LDC is instantiated as a single endpoint (unless the LDC loops back to
the same LDom). The identity of the owner of the other endpoint is opaque to the LDom -
this enables LDCs to be re-connected to other endpoints at will. Conventional attestation
protocols may be layered on top of the basic LDC mechanism if the identity of the owner of
the other end of a LDC is required. Such attestation is beyond the scope for this document.

Logical Domain Channels (LDC) provide two ways of transferring data between
endpoints. A simple packet based transfer mechanism where data is sent in 64-byte packets.
The second approach allows clients to export regions of their memory address space with
clients at the other end of specified LDC connections. The importing clients can then access
the remote memory region by either mapping it into its address space, use an Hypervisor
API call to copy data to/from exported memory, or program an IOMMU (or MMU) to
directly read/write the memory.

4.3.1 Communication overview

Data transferred between domains can be encapsulated into LDC packets or transferred
directly from one domain's memory to another using the Hypervisor shared memory
communication support. The link layer protocol defined here provides clients the ability to
choose either mechanism for data transfer. The link layer will fragment and reassemble
messages as part of the transfer. It will insert additional header information as part of each
packet to indicate the start and end of a fragmented data transfer. The LDC link layer uses
network byte ordering to transfer all data. The actual details of the transfer protocol itself

Page 23 of 108

Hypervisor (LDC framework)

Guest 1 Guest 2

LDC
virtual link layer

LDC
virtual link layer

VIO
client 1

VIO
client 2

Misc
in-kernel
clients

VIO
svc 1

VIO
svc 2

Misc
in-kernel
clients

680

685

690

695

700

A Revision 0.7 LDoms VIO Arch Spec (Preliminary Draft)
October 9, 2006

will be invisible to the clients.

• Packet Based Transfer

Data can be transferred out of a virtual machine by encapsulating it into LDC packets or
transferring it directly from one domain's memory to another using the Hypervisor
shared memory communication support. The link layer protocol will provide client
drivers the ability to choose either mechanism for data transfer.

In the case of the packet based mechanism, the link layer protocol will fragment and
reassemble messages as part of the transfer. It will insert additional header information
as part of each packet to indicate the start and end of a fragmented data transfer. The
actual details of the transfer itself will be invisible to the client driver. It is recommended
that this approach be used only for short messages.

• Shared Memory Access

The shared memory access mechanism allows a client driver to make sections of its
memory visible to other domains. This support is build on top of the underlying
Hypervisor infrastructure for setting up memory map tables to share memory segments.
Client drivers will use the interface to obtain a cookie associated with the memory they
want to expose. The client can then send the cookie to a client driver in a remote domain
using the packet based transfer. The receiving client can then request its LDC framework
to consume the cookie and map the remote domain's memory into its address space.
Once the mapping is completed, clients can read, write these shared memory regions and
also setup DMA operations to directly transfer data into or out of domain buffers.

A slight modification to the direct memory map is the copy option, where the data is
copied in to or out of the buffers that have been exposed by a virtual device client or
server via a Hypervisor API. In this approach, when a virtual device wants to send data,
either the device client or server will first copy the data from the exporter's memory to a
local memory buffer.

Both methods of data transfer is provided because all virtual machine client may not
allow shared memory communication either due to technology limitations or security
concerns.

• Protocol modes

Clients of the LDC mechanism can either be clients that implement sophisticated
transport layer like capabilities i.e. virtual ethernet with a TCP/IP stack, or a simple
client with no special transport capability like the FMA daemon or a virtual console
device. These clients have different reliability requirements on the underlying virtual link
layer protocol. The virtual link layer protocol will meet the requirements of either type of
client by implementing three different types of data transfer protocol.

• Raw mode

The raw virtual link layer protocol protocol does not add any overhead by appending
any headers and sends only 64-byte packets at a time. It has no support for session
management, message fragmentation and re-assembly, or retransmissions. It provides
a very thin layer over the Hypervisor interface and mostly passes through read and
write requests to the Hypervisor.

• Unreliable mode

Page 24 of 108

705

710

715

720

725

730

735

740

745

LDoms VIO Arch Spec (Preliminary Draft) Revision 0.7
October 9, 2006

The unreliable link layer protocol will implement a communication mechanism that
will include support of connection establishment via a simple handshake protocol. It
will also implement support for negotiating a session and detecting session
termination. It will only implement support to detect either lost or out-of-order
packets, and not reassemble out of order packets and only stitch together packets
received in order. The unreliable mode also supports fragmentation and reassembly of
LDC datagrams. Clients of this link layer mechanism will need to implement their
own error detection mechanism and do the required retransmission.

• Reliable mode

The reliable link layer protocol implements all the support encompassed within the
unreliable link layer protocol. In addition, it implements support for streaming
buffers, detecting out-of-order packets and packet loss and acknowledges received
packets. The primary distinction of reliable mode is to provide an error detection
capability via packet ACKs and NACKs.

Page 25 of 108

750

755

760

765

770

775

780

A Revision 0.7 LDoms VIO Arch Spec (Preliminary Draft)
October 9, 2006

4.3.2 Packet formats

The Hypervisor LDC framework provides the capability to deliver 64-byte packets
between peer channel endpoints. It does not impose any predefined format for each word in
the 64-byte packet. Depending on whether the clients want to use a raw, reliable or
unreliable link mode, the link will utilize different formats for each LDC packet. In the case
of the reliable link each packet will consist of a 16-byte header, and 48-bytes of data payload.
The unreliable link will have a smaller 8-byte header, and contains 56-bytes of data payload.
The raw link will utilize the complete 64-bytes for the data payload. The high-level format of
the raw, unreliable and reliable packet is shown below:

Page 26 of 108

Raw Datagram Packet:

6

3 0

+--+

word 0-7:| data payload |

+--+

Unreliable Datagram Packet:

6 3 3 2 2 1 1

3 2 1 4 3 6 5 8 7 0

+----------------------+-----+------+-------+------+

word 0: | seqid | env | ctrl | stype | type
|

+----------------------+-----+------+-------+------+

word 1-7: | data payload |

+--+

Reliable Datagram Packet:

6 3 3 2 2 1 1

3 2 1 4 3 6 5 8 7 0

+----------------------+-----+------+-------+------+

word 0: | seqid | env | ctrl | stype | type
|

+----------------------+-----+------+-------+------+

word 1: | ackid | seqid
(reserved) |

+--+

word 2-7: | data payload |

+--+

785

790

LDoms VIO Arch Spec (Preliminary Draft) Revision 0.7
October 9, 2006

Description:

• Packet Type (Word 0, Bits 0-7): Each packet sent from one LDC endpoint to
another can consist of either control, data or error information or a combination
there-of. The appropriate 'type' field bit(s) are set to indicate packet contents.

LDC_CTRL 0x01

LDC_DATA 0x02

LDC_ERR 0x10

• Packet Sub-Type (Word 0, Bits 8-15): The stype field contains values INFO, ACK
or NACK and defines the type of data, control or error message. The
combination of the type and stype fields define the nature of the message.

LDC_INFO 0x01

LDC_ACK 0x02

LDC_NACK 0x04

• Control Info (Word 0, Bits 16-23): The ctrl field contains either basic control
information and/or error information. The control info values currently
supported are listed below:

Basic Control Values :

LDC_VERS 0x01 Link Version

LDC_RTS 0x02 Request to Send

LDC_RTR 0x03 Ready To Receive

LDC_RDX 0x04 Ready for data exchange

• Packet Envelope (Word 0, Bits 24-31): The env field, depending on the packet
type, contains either control or data related information. If the packet contains a
control info of type RTS or RTR, the envelope contains protocol mode and will
have one of the following values:

LDC_MODE_RAW 0x0 Raw Mode

LDC_MODE_UNRELIABLE 0x1 Unreliable Mode

(RESERVED) 0x2

LDC_MODE_RELIABLE 0x32 Reliable Mode

When using RAW mode, since there is no handshake as part of the protocol, the
RAW mode value specified above is never exchanged as part of the packet
envelope. It is only specified here for completeness.

In the case of packets containing data, the envelope contains the number of bytes
in the current packet. It also contains information pertaining to fragmented
transfers. The format of the envelope for a data packet is shown below:

Page 27 of 108

795

800

805

810

815

820

825

A Revision 0.7 LDoms VIO Arch Spec (Preliminary Draft)
October 9, 2006

When a message is fragmented, the first fragment has the start bit in the
envelope field, set to 1. The last fragment has the stop bit set to 1. Intermediate
fragments between a start and stop packet have neither bit set. In the case of a
single packet transfer (less than the max payload), both start and stop bits in the
envelope are set to 1.Session ID (Word 0, Bits 32-63): Each channel endpoint
generates a unique session identification (sid) that the other side has to use in all future
data exchange. At the start of initial handshake process each side sends its session ID to
the other side. Following a successful handshake each side maintains its session ID and
the session ID it received from its peer. During data transfer, a sender will send with the
packet the receiver's 'sid', and the receiver will validate this against the session ID it is
maintaining. When the session is torn down, and a new session is established, new SIDs
are exchanged by both ends as part of the negotiation. Transmitting incorrect session IDs
during regular data transfer results in the channel getting reset.

• Implementation Note: In order to generate a unique session ID, it is recommended that
the link uses 32-bits from the CPU tick register as the session ID.

•

• Sequence ID (Word 0, Bits 32-63): The seqID field is populated with an unique
sequential number for every packet sent from one endpoint to another. This is
used by the receiver to detect and enforce packet ordering, and acknowledging
received packets.

The AckID fields below – SequenceID, and AckID areis only used for the reliable link
implementationImplementation Note: In order to generate a unique session ID, it is
recommended that the link uses 32-bits from the CPU tick register as the session ID.

• Sequence ID (Word 1, Bits 0-31): The seqID field is populated with a unique
sequential number for every packet sent from one endpoint to another. This is
used by the receiver to detect and enforce packet ordering, and acknowledging
received packets..

• Acknowledgment ID (Word 1, Bits 31-63): An endpoint can acknowledge packets
it has received by sending an ACK back to its peer. The 'ackid' field contains the
sequence ID of the last packet received in correct order by an endpoint. The peer
may send a separates messages to ACK received packets or embedded
acknowledgments in data packets.

4.3.3 Communication protocol

The link layer implements a thin connection establishment, tear down and data transfer
protocol on top of the Hypervisor infrastructure. When clients opens a channel for
communication, the link allocates memory for transmit and receive queues and registers
these with the Hypervisor. Since neither endpoints have any knowledge about a endpoint's

Page 28 of 108

3 3 2 2

1 0 9 4

+--------------+----------------------------+

| stop | start | pkt_size |

+--------------+----------------------------+

830

835

840

845

850

855

860

865

LDoms VIO Arch Spec (Preliminary Draft) Revision 0.7
October 9, 2006

capabilities and whether it is ready to receive data , a simple handshaking protocol is
needed to prior to starting the data transfer. This also ensures that clients can start and
terminate their sessions independent of each other, and reestablish a connection when
necessary.

Implementation Note: In the case of a reliable connection, the link should buffer outgoing
messages for retransmission purposes. It will mark packets in the transmit queue as completed
when it receives ACKs. In the event of a packet loss / timeout, this allow the link to retransmit
pkts.

• Session establishment

• After setting up the Tx and Rx queues, either endpoint will initiate a version
negotiation by sending a LDC_VERS message, with the version number it
supports in the second word of the message. The link will use a simple count
down algorithm so that both sides use to agree on a mutual version. If the peer
endpoint agrees with the same version or the same major but a lower minor
version, it will respond back with an ACK (same msg with the ACK bit set). If it
does not support the version, it will respond with an error message NACK and
also set the version field to the next lower version version it supports. If it does
not support a lower version, it will set the version fields to zero. The sender can
then re-send another VERS request with the received lower version or a new
even lower version. This will continue on until either the endpoint initiating the
VERSION handshake exhausts all the version it supports or the peer accepts a
version or responds with an NACK message with version set to zero.

• Following the version negotiation, either endpoints will negotiate a 3-way
handshake. As part of this handshake, the endpoints will exchange initial
sequence IDs and session IDs for the session.

Page 29 of 108

6 3 3 2 2 1 1

3 2 1 4 3 6 5 8 7 0

+------------------------+-----+------+------+------+

| | - | VERS | INFO | CTRL |

+------------------------+-----+------+------+------+

| | major | minor |

+------------------------+------------+-------------+

870

875

880

885

890

A Revision 0.7 LDoms VIO Arch Spec (Preliminary Draft)
October 9, 2006

• The sending link endpoint aka endpoint_A will initiate an handshake with the
other side i.e. endpoint_B by sending an LDC_RTS message that contains a
unique Session ID, the initial seqID (if reliable), and the mode it would like to use
for communication.

• If endpoint_B has setup a receive queue, it will either:

• respond back with a LDC_RTR message, that contains its initial seqID (if
reliable) and session ID and the matching link mode message.

• endpoint_A will then respond back with a LDC_RDX message. This will
mark the channel status as UP and data transfer can now commence.

• If endpoint_B has not setup a receive queue, the hypervisor send (hv_tx_set_qtail)
operation will fail.

Page 30 of 108

6 3 3 2 2 1 1

3 2 1 4 3 6 5 8 7 0

+------------------------+-----+------+------+------+

| SIDseqID | - | RTS/ | INFO |
CTRL |

| | | RTR | | |

+------------------------+-----+------+------+------+

| | init_seqID |

+ + +

6 3 3 2 2 1 1

3 2 1 4 3 6 5 8 7 0

+------------------------+-----+------+------+------+

| peer_SID peer_init_seqID + 1 | - |
RDX | INFO | CTRL |

+------------------------+-----+------+------+------+

| | peer_init_seqID + 1 |

+ + +

895

900

LDoms VIO Arch Spec (Preliminary Draft) Revision 0.7
October 9, 2006

Following a successful handshake, both sides can start transmitting data. All future
exchanges should contain the negotiated peer's session ID in the 'SID' field of the packet.

• Session termination

A session between two endpoints can be torn down either due to a packet error, repeated
packet loss, too many retransmissions or at the request of a client. A session is normally
terminated by either un-configuring or reconfiguring the receive queue. On receiving a
CHANNEL_DOWN or CHANNEL_RESET notification from the Hypervisor the receiver will
reset its internal state from which a version negotiation and handshake will need to occur
prior to fresh data transmission.

• Session status notification

A session is established when either endpoints initiate a handshake or is terminated
following an Rx queue un-configuration or reconfiguration. Following either events, the
link can notify its client about a change in session state via the callback registered by the
client.

Page 31 of 108

Endpoint A Endpoint B

| |

| |

| CTRL/INFO/VERS(ver_3.x) |

+ -----------------------------> +

| CTRL/NACK/VERS(ver_2.x) |

version + <----------------------------- +

negotiation | CTRL/INFO/VERS(ver_1.x) |

+ -----------------------------> +

| CTRL/ACK/VERS(ver_1.x) |

+ <----------------------------- +

. .

. CTRL/INFO/RTS .

| (sid_A, seqid_A, mode) |

+ -----------------------------> +

. .

| CTRL/INFO/RTR |

handshake | (sid_B, seqid_B, mode) |

+ <----------------------------- +

| |

. CTRL/INFO/RDX .

| (sid_A, seqid_A+1, mode) |

+ -----------------------------> +

| |

data xmit data xmit

| |

905

910

915

A Revision 0.7 LDoms VIO Arch Spec (Preliminary Draft)
October 9, 2006

• Data transfer

Packet format:

When sending data to its peer, depending on the size, a link will either send the data in
one packet or fragment the data into multiple packets. The type field in the msg pkt will
be set to DATA for all packet based transfers. The stype field will be of value INFO and
the envelope field will contain the number of bytes being sent in each packet. The start and
stop bits are used to indicate the start and end of a fragmented transfer. The first packet
in the transfer will have the start bit set to 1. Subsequent packets have neither the start
nor stop bit set. The last packet sent as part of a fragmented transfer will have have the
stop bit set to 1. If the data is transmitted in a single packet, both the start and stop bit will
be set to 1.

Streaming support:

The Reliable mode also implements support for streaming data transfers. It does this by
breaking each message into MTU size blocks, specified by the client at the time of
channel initialization. During send (ldc_write), each message is first broken up into MTU
size blocks before being transmitted using the packet transfer approach discussed above.
On the receiving end, the link layer passes data back to client in MTU size blocks without
any reassembly. Using streaming eliminates the need to allocate very large Tx and Rx
queues in the link layer as very large messages can be transferred in MTU size chunks.

Message ACKs:

Message ACKs are used in the case of reliable link mode to indicate data transfer
progress. A client can only queue a fixed number of packets, after which it will have to
wait for an ACK from the receiver before it can send more packets. The receiver will
periodically respond back with a DATA/ACK control message, and the 'ackid' field will
contain the sequence ID of the last packet it received in correct order. Since the packet
control field bits for an ACK message do not overlap with those of a regular data packet,
a endpoint can send an ACK message embedded in a data packet.

Transmit queues and retransmissions:

In the case of a reliable link, the link will retransmit the packets in the event of a data
loss. For each message sent by a client, the link will maintain it in a list of message
segments. Each segment corresponds to one more fragments i.e. packets in the transmit
queue. It will store the seqID corresponding to first fragment with the segment. It will
initiate a send by storing the fragmented packets in the transmit queue. At the same time
it will start a timer for the message. If a ACK for the packets are not received before the
timer expires, the sender will retransmit the message with the same set of start of end
seqIDs. If an duplicate ACK is received, it will discard it.

The sender will also maintain a head and tail pointer to keep track of the packets that
have been transmitted and the ones that have been ACKed. In the event of a timeout, the
sender will retransmit packets by copying over the packets into queue locations starting
at tail location. All packets in the queue will purged when a session is torn down and/or
established.

There are multiple retransmit scenarios and these are handled in the following manner:

• Packet loss

Page 32 of 108

920

925

930

935

940

945

950

955

960

LDoms VIO Arch Spec (Preliminary Draft) Revision 0.7
October 9, 2006

This is the simplest of all cases. In the event of packet loss, the receiver will
discard all future packets until it receives a packet in correct sequence. The
sender will initiate retransmission on timeout.

• Premature timeout / Delayed ACKs

There are cases when the receiver is backed up and does not respond to the
sender in a timely fashion. This will cause the sender to timeout prematurely and
retransmit the segment's packets to the receiver. It might either during the
retransmission or subsequently receive ACKs for the first transfer. When it
receives the ACK, it can mark the message segment as successfully sent. It will
then ignore any duplicate ACKs received as a result of the retransmission.
Similarly, the receiver will discard packets associated with the retransmission
(same seqID range), if it had previously received the message successfully. Even
if the receiver discards incoming messages as duplicates, it will need to ACK the
messages as earlier ACKs could have been lost.

• Lost ACKs

In the event, the message was sent successfully, but the ACK was lost, the sender
will eventually timeout and retransmit the segment packets. Since receiver
already received the message, it will discard the message but still send an ACK.
If there is an error during retransmission, the receiver will discard the packets as
before.

Link errors:

Either during the initial handshake or during the course of data transmission, either
endpoints can detect an error and take the corresponding action. The errors currently
detected and handled within the link are listed below:

• Packet error

During data transmission, packets can either get dropped or gets sent out of
order. When the receiver detects a packet that is out of order, it will purge all
pending packets in its transmit queue, until it finds a packet with the correct
sequence. The unreliable link does not support retransmissions, and packets are
dropped on error. Transmit sequence errors are detected via invalid start/stop
bits in pkts.

In the case of reliable link mode, packet loss is detected using seqID. It will send
an ACK for the last packet that was received in correct order. This allows the
sender to determine what seqID to start the retransmission from. Since there
might be packets in flight (pkts between the ACKd pkt and the current TX tail
ptr), the receiver will have to continue dropping all future packets until it
receives a packet with the seqID that corresponds to the lost packet. The sender
will eventually timeout and recopy lost or unacknowledged packets starting
from the current tail location and initiate the retransmission of packets starting
with the lost packet.

Link interrupt handler:

Links that are capable of handling interrupts can register an interrupt handler for each
LDC channel with a target CPU to which the interrupt should be delivered. The link
should allocate the CPU to channels in a round-robin manner. When a channel has

Page 33 of 108

965

970

975

980

985

990

995

1000

1005

A Revision 0.7 LDoms VIO Arch Spec (Preliminary Draft)
October 9, 2006

pending data in its LDC queue, the Hypervisor will send a dev_mondo interrupt to the
link. The link will either process the packet in the queue (if it is a control packet), or
invoke the client's callback (if it is a data packet) to let it know that there is pending data.

Page 34 of 108

1010

1015

1020

1025

1030

1035

