
LDoms VIO Protocol Specification Revision v5
March 31, 2008

1.1 Virtual IO communication protocol
Virtual devices, clients and/or services, at the most basic level rely on the underlying Hypervisor

LDC framework (FWARC/2005/733) and LDC transport layer (FWARC/2006/140) to transfer data.
Since both these layers only provide a basic communication mechanism, VIO devices will first go
through a basic handshake procedure to agree on transmission properties for the channel, before
meaningful data can be exchanged between the two channel endpoints. As part of the handshake they
will negotiate a common version, device attributes, data transfer type, and if necessary shared memory
descriptor ring information. Following a successful handshake, the devices can send and receive data.
All VIO devices use the LDC unreliable transport mode for all communication.

The figure below shows two logical domains with VIO device clients and services communicating
with each other using the VIO protocol and layered on top of the underlying LDC framework. Domain
A has exclusive access to local physical devices through native device drivers and exports access to
these devices over the LDC connection to domain B.

1.1.1 VIO data transfer

VIO devices will transfer data either using packet mode by storing the data in LDC datagrams or
sharing the data using the shared memory capability of the Hypervisor. A VIO device that uses packet
mode, will use either a single LDC datagram packet or use the fragmentation-reassembly capabilities
of the LDC transport layer to packetize and transfer larger messages. The Hypervisor shared memory
support allows guests to share memory regions in their address space with another guest at the other
end of a channel (FWARC/2006/184). This capability allows VIO client drivers to share segments of
memory with a VIO client or service so that data can be transferred efficiently and much faster, instead
of transferring data over the channel by packetizing each transfer.

Like conventional IO devices, the virtual IO devices that use the Hypervisor shared memory
infrastructure for data transfer, will setup and use descriptor rings. The descriptor ring is a contiguous
circular ring buffer that IO devices use to queue requests, receive responses and transfer associated
data. VIO devices that use shared memory will either share their descriptor rings or send the
descriptors as in-band messages. The subsequent sections describe the content of control and data
packets, the transfer protocol and the structure of the descriptor rings used by VIO devices. It also
specifies the device specific content of the LDC packets and descriptors for virtual network and disk
devices.

Sun Proprietary/Confidential: Page 1 of 20
Internal Use Only

Domain A Domain B

LDC Transport

VIO Protocol VIO Protocol

Virtual
Disk

Server

Virtual
Network
Switch

Virtual
Network

Virtual
Disk

Block Device

Network Device

LDC Transport

N
at

iv
e

D
is

k
D

rv

N
at

iv
e

N
et

 D
rv

Hypervisor

5

10

15

20

25

30

LDoms VIO Protocol Specification Revision v5
March 31, 2008

1.1.2 VIO device message tag

All packets exchanged by VIO devices over a channel will use a common message tag as the
header for the message. The message tag uniquely identifies the session, the type and subtype of the
message. The subtype envelope contains message specific meta-data. All packets sent/received by
VIO devices will specify all message tag fields and no field is optional. The format of the message tag
along with values for the type, subtype and subtype_env fields are shown below:

1.1.3 VIO device peer-to-peer handshake

For VIO devices, both the server and/or client has to successfully complete a handshake before
data transfer can commence. The handshake can be initiated by either parties. In the description below
each message sent or received is specified using the format <type> / <subtype> / <subtype_env>.

1.1.3.1 Version negotiation
A handshake is initiated by one peer sending a CTRL/INFO/VER_INFO to the other endpoint.

This message consists of a 'dev_class' field identifying the type of the sending device, and a
'major/minor' pair which specify the protocol version (the protocol version will determine the type and
amount of data that will be expected to be exchanged in later phases of the handshake). It also sets the
session ID (sid) to a random value by setting it to the lower 32-bits of the CPU tick. The client will
send a new session ID with each version negotiation request. The session ID corresponding to the
accepted version gets used as part of each message sent as part of the session.

If the device class is recognized and the version major/minor numbers are acceptable then the
receiving endpoint responds back with a CTRL/ACK/VER_INFO message leaving all the parameters
unchanged. It also stores the sender's SID for use in future message exchanges.

If the major version is not supported, then the peer sends back a CTRL/NACK/VER_INFO

Sun Proprietary/Confidential: Page 2 of 20
Internal Use Only

 6 3 3 1 1
 3 2 1 6 5 8 7 0

+----------------------------+---------------+-------+-------+
| SID | STYPE_ENV | STYPE | TYPE |
+----------------------------+---------------+-------+-------+

Messages Types: Sub-Message Types:
VIO_TYPE_CTRL 0x01 VIO_SUBTYPE_INFO 0x01
VIO_TYPE_DATA 0x02 VIO_SUBTYPE_ACK 0x02
VIO_TYPE_ERR 0x04 VIO_SUBTYPE_NACK 0x04

Sub-Type Envelope :
if type = VIO_TYPE_CTRL (0x0000 - 0x003f)

VIO_VER_INFO 0x0001
VIO_ATTR_INFO 0x0002
VIO_DRING_REG 0x0003
VIO_DRING_UNREG 0x0004
VIO_RDX 0x0005
(reserved) 0x0006 – 0x003f

if type = VIO_TYPE_DATA (0x0040 - 0x007f)
VIO_PKT_DATA 0x0040
VIO_DESC_DATA 0x0041
VIO_DRING_DATA 0x0042
(reserved) 0x0043 – 0x007f

if type = VIO_TYPE_ERR (0x0080 - 0x00ff)
(reserved) 0x0080 – 0x00ff

device class specific sub-type envelopes
VNET_xxx 0x0100 - 0x01ff
VDSK_xxx 0x0200 - 0x02ff
(reserved) 0x0300 - 0xffff

35

40

45

50

LDoms VIO Protocol Specification Revision v5
March 31, 2008

message containing the next lower major version it supports. If it does not support any lower major
numbers, it will NACK with the version major and minor values set to zero. The initiating endpoint
can then if it wishes send another CRTL/INFO/VER_INFO message either with the major number it
received from its peer, if it is acceptable, or with its next lower choice of version. If the major version
is supported but not at the specified minor version level, the receiver will ACK back with a lower
supported minor version number.

Similarly, if the 'dev_class' is unrecognized, the receiver will respond back with
CTRL/NACK/VER_INFO with the parameters unchanged and the handshake is deemed to have
failed. The format of the version exchange packet to shown below:

The currently supported devices types are listed below:
VDEV_NETWORK 0x1

VDEV_NETWORK_SWITCH 0x2

VDEV_DISK 0x3

VDEV_DISK_SERVER 0x4

NOTE: Irrespective of what state the receiving endpoint believes the channel to be in, receipt of a
CTRL/INFO/VER_INFO message at any time will cause the endpoint to reset any internal state it
may be maintaining for that channel and restart the handshake.

1.1.3.2 Attribute exchange
Following the initial version negotiation phase, VIO device clients/services will exchange device

specific attribute information, depending on the device class and the agreed upon API version. Each
attribute information packet is of the type CTRL/INFO/ATTR_INFO and contains parameters like
transfer mode, maximum transfer size, and other device specific attributes. A ACK response is an
acknowledgment by the peer that it will use these attributes in future transfer. A NACK response is an
indication of mismatched attributes. It is up to the particular device class whether it restarts the
handshake or exchanges other attributes. The device specific section for virtual disk and network
devices contains more information about the exchanged attributes.

1.1.3.3 Descriptor ring registration
Most virtual devices will use the shared memory capabilities of the Hypervisor LDC framework to

send and receive data. Like conventional IO devices, the virtual IO devices will use descriptor rings to
keep track of all transactions being performed by the device. Prior to using a descriptor ring, and
following version negotiation, and other device specific attribute exchange, VIO clients will register
shared descriptor ring information with its channel peer.

Sun Proprietary/Confidential: Page 3 of 20
Internal Use Only

 6 3 3 3 1 1
 3 9 2 1 6 5 8 7 0

 +----------------------------+---------------+-------+---------+
word 1: | SID | VER_INFO | I/A/N |TYPE_CTRL|
 +------------------+---------+---------------+-------+---------+
word 2: | rsvd |DEV_CLASS| MINOR | MAJOR |
 +------------------+---------+---------------+-----------------+

 6 3 3 1 1
 3 2 1 6 5 8 7 0

 +----------------------------+--------------+-------+-----------+
 word 1: | SID | ATTR_INFO | I/A/N | TYPE_CTRL |
 +----------------------------+--------------+-------+-----------+
word 2-7: | (device specific attributes) |
 +---+

55

60

65

70

75

80

85

LDoms VIO Protocol Specification Revision v5
March 31, 2008

A VIO client will register a descriptor ring by sending a CTRL/INFO/DRING_REG message to its
peer. The message will contain information about the number of descriptors in the ring, the descriptor
size, the LDC transport cookie(s) associated with the descriptor ring memory and the number of
cookies. The options field allows certain VIO clients to specify descriptor ring properties that describe
its intended use. The supported values in v1.0 of the VIO protocol are:

VIO_TX_DRING 0x1 /* Tx descriptor ring */

VIO_RX_DRING 0x2 /* Rx descriptor ring */

On receiving the registration message, the receiver will ACK the message, and in the ACK
provide the sender an unique dring_ident. The dring_ident will be used by the sender to either
unregister the ring or refer to the descriptor ring during data transfer. A NACK to this message from
the receiving end is regarded as a fatal error and the entire session is deemed to have failed and a new
session has to be established by re-initiating a handshake. The dring_ident field is not used in the
registration message and only used during the ACK.

• LDC transport cookie:

A LDC transport cookie (LDC_TRANSPORT_COOKIE) is 16-bytes in size and consists of
cookie_addr and cookie_size fields. The cookie_addr field corresponds to the Hypervisor LDC shared
memory cookie for each page (see FWARC/2006/184) and the cookie_size corresponds to the actual
number of bytes that is shared within the page pointed to by the cookie. If the descriptor ring memory
segment spans multiple pages, an unique transport cookie is used to refer to each page within the
segment. The format of the LDC transport cookie is shown below:

When two or more successive pages in the descriptor ring memory segment are stored in
consecutive entries in the LDC map table, a single transport cookie can be used refer to all these page
entries. The cookie_addr in this case will still point to first page in the set, but the cookie_size will
correspond to the size spanning all consecutive entries.

A VIO device might typically share multiple descriptor rings with its peer and can choose to
register all descriptor rings with its peer at the time of the initial handshake or at any point after data
transfer has commenced. If a device intends to do all its data transfer using descriptor rings, it will
have to register at least one descriptor ring before data transfer can commence.

A VIO client can unregister a descriptor ring by sending a CTRL/INFO/DRING_UNREG
message to its peer. It will specify the dring_ident it received from the peer at the time of registration.
The peer will ACK a successful unregister request and NACK the request if the dring_ident specified

Sun Proprietary/Confidential: Page 4 of 20
Internal Use Only

 6
 3 0

 +---+
 | HV shared memory cookie (cookie_addr) |
 +---+
 | cookie_size |
 +---+

 6 3 3 1 1
 3 2 1 6 5 8 7 0

 +--------------------------------+-----------+-------+----------+
 word 1: | SID | DRING_REG | I/A/N |TYPE_CTRL |
 +--------------------------------+-----------+-------+----------+
 word 2: | DRING_IDENT |
 +--------------------------------+------------------------------+
 word 3: | DESCRIPTOR_SIZE | NUM_DESCRIPTORS |
 +--------------------------------+-----------+------------------+
 word 4: | NCOOKIES | reserved | OPTIONS |
 +--------------------------------+-----------+------------------+
word 5-n: | (LDC_TRANSPORT_COOKIE * NCOOKIES) |
 +---+

90

95

100

105

110

115

LDoms VIO Protocol Specification Revision v5
March 31, 2008

is invalid. If subsequent data transfers refer to an unregistered descriptor ring, the DRING_DATA
requests will be NACKd.

1.1.3.4 Handshake completion
After successful completion of all negotiations and required information exchange, an endpoint

will send a RDX message to its peer to indicate that it can now receive data from it. An endpoint
initiates this by sending a CTRL/INFO/RDX message to the receiving end. The receiver acknowledges
the message by sending CTRL/ACK/RDX. Because LDC connections are duplex, each endpoint has
to send a RDX message to its peer before data transfer can commence in both directions. When a RDX
is sent by an endpoint, the endpoint is explicitly enabling a simplex communication path, whereby it
announces that it can now receive data from its peer. It is VIO device specific whether they require the
establishment of a duplex connection before data transfer can commence. There is no payload
associated with a RDX message and they are not NACKed.

Once the channel has been established (indicated by the receipt of a RDX message) in either
simplex or duplex mode further informational messages may be sent by the initiating endpoint or
requested by the receiving endpoint as time goes by. The content and effect these messages have on
the session is device specific. These messages are also regarded as in-band notifications.

1.1.4 VIO data transfer modes

VIO devices can send data to their peers over a channel using different transfer modes. During
the handshake, each device will specify to its peer the transfer mode (xfer_mode) it intends to use as
part of the attribute info message. The device specific attribute message format specifies the location
of the xfer_mode field in the message. The supported transfer modes in versions 1.0 and 1.1 of the
VIO protocol are:

VIO_PKT_MODE 0x1 /* packet based transfer */

VIO_DESC_MODE 0x2 /* in-band descriptors */

VIO_DRING_MODE 0x3 /* descriptor rings */

In version 1.2, the VIO protocol will allow concurrent use of the different transfer modes,
specifically packet based transfer and descriptor ring modes. In order to do this, the xfer_mode field in
the attribute info message will be changed to a bit mask with the following values:

VIO_PKT_MODE 0x1 /* packet based transfer */

VIO_DESC_MODE 0x2 /* in-band descriptors */

VIO_DRING_MODE 0x4 /* descriptor rings */

In version 1.2, the virtual network and switch clients will use the packet transfer mode in addition
to the descriptor ring mode (xfer_mode=0x5) to send high priority ethernet frames as data packets for
faster out-of-band processing.

Sun Proprietary/Confidential: Page 5 of 20
Internal Use Only

 6 3 3 1 1
 3 2 1 6 5 8 7 0

 +----------------------------+----------+----------+------------+
word 1: | SID | RDX | INFO/ACK | TYPE_CTRL |
 +----------------------------+----------+----------+------------+

 6 3 3 1 1
 3 2 1 6 5 8 7 0

 +----------------------------+---------------+-------+----------+
 word 1: | SID | DRING_UNREG | I/A/N |TYPE_CTRL |
 +----------------------------+---------------+-------+----------+
 word 2: | DRING_IDENT |
 +---+

120

125

130

135

140

145

150

LDoms VIO Protocol Specification Revision v5
March 31, 2008

1.1.4.1 Packet based transfer

As discussed in the earlier section, VIO packets always consist of a generic message tag header
and a sequence id (which is incremented with each packet sent). Additionally, if a VIO device intends
to use packet mode for sending data, it can use up to 40 bytes of a LDC datagram without using LDC
transport's packet fragmentation capability. Larger transfers will require the use of the fragmentation-
reassembly support provided by the underlying LDC transport. The format of a LDC packet containing
data is shown above.

1.1.4.2 Descriptor rings
As mentioned in the earlier section, a descriptor ring is a contiguous circular ring buffer VIO

devices use to queue requests, receive responses and transfer associated data. Each descriptor in the
ring holds request and response parameters specific to the particular device along with opaque cookies
that point to the page(s) of memory that are being shared for reading and/or writing. The descriptor
ring will utilize Hypervisor shared memory support, so that clients at both ends of the channel can
modify the contents of the descriptor(s).

Each VIO client will specify that it intends to use descriptor rings, as part of the attribute info
exchange. It will also specify whether or not it intends to share the descriptors using shared memory
or send each descriptor as an in-band message. If it shares the descriptor ring using shared memory, it
will register at least one descriptor ring with its peer at the other end.

Each entry in a descriptor ring consists of a common descriptor ring entry header and the
descriptor payload as shown in the figure below. The descriptor payload consists of fields that are
device class specific and are discussed in more detail in sec 1.1.5 and 1.1.6.

The descriptor dstate specifies the state of the the descriptor. The valid state values are:
VIO_DESC_FREE 0x1

VIO_DESC_READY 0x2

VIO_DESC_ACCEPTED 0X3

VIO_DESC_DONE 0x4

Initially when a descriptor ring is allocated, all entries in the ring are marked with value of
VIO_DESC_FREE. When a client queues one or more requests, it will change the flags value for the
corresponding descriptor(s) to VIO_DESC_READY. It will then send a message to its peer requesting
it to process the descriptors. The client that is processing the descriptor will first change the state to
VIO_DESC_ACCEPTED, acknowledging receipt of the request and prior to processing the request.
On completing the request, it will update the descriptor with its response and change the value of the
flag to VIO_DESC_DONE. The client that initiated the request, will take the appropriate action after
seeing the request as been marked as VIO_DESC_DONE and then change it to VIO_DESC_FREE. If

Sun Proprietary/Confidential: Page 6 of 20
Internal Use Only

 6
 3 9 8 7 0

+---+---+-----------+
| reserved | A | DSTATE |
+---+---+-----------+
| (descriptor payload) |
+---+

 6 3 3 1 1
 3 2 1 6 5 8 7 0

 +----------------------------+------------+-------+----------+
 word 1: | SID | PKT_DATA | I/A/N |TYPE_DATA |
 +----------------------------+------------+-------+----------+
 word 2: | SEQ_NO |
 +--+
word 3-7: | DATA_PAYLOAD |
 +--+

155

160

165

170

175

180

LDoms VIO Protocol Specification Revision v5
March 31, 2008

the state of a descriptor transitions to an unexpected state, the behavior is undefined. A VIO device
under these circumstances, might either reset the session and restart the handshake, or send an error
message to its peer.

When the requesting client updates one or more descriptors and marks them as ready for
processing, it will send a DATA/INFO/DRING_DATA message to its peer at the other end of the
channel. The message will contain the dring_ident the requester received at the time of registering the
descriptor ring. It also specifies the start and end index corresponding to the descriptors that have been
updated. If end index value specified is -1, the receiver will process all descriptors starting with the
start index and continue until it does not find a descriptor marked VIO_DESC_READY. The receiver
at this point will send an implicit ACK to the sender to let it know that it is done processing all
requests. Subsequently, if the sender marks additional entries as VIO_DESC_READY, it will re-
initiate processing by sending another DRING_DATA request.

If the start and end index, either overlap with requests sent earlier or correspond to descriptors not
in VIO_DESC_READY state, the request will be NACKed by the receiver.

The requester can also request an explicit acknowledgment from the client processing the request
(to track progress) by setting the (A)cknowledge field in the descriptor. The client, after processing the
descriptor (changes state as VIO_DESC_DONE), will send a DATA/ACK/DRING_DATA message
with the dring_ident for this descriptor ring and end_idx equal to this descriptor.

When the requester sends requests with an end_idx = -1, the proc_state field in the ACK/NACK
message, is used by the receiver to indicate its current processing state. The valid proc_state field
values are:

VIO_DP_ACTIVE 0x1 /* active processing req */

VIO_DP_STOPPED 0x2 /* stopped processing req */

If the receiver continues to process requests or is waiting for more descriptors to be marked
VIO_DESC_READY, it will ACK with proc_state set to VIO_DP_ACTIVE. Instead, if the receiver
stops after processing the last ACK/NACK, and is waiting for an explicit DATA/INFO/DRING_DATA
message, it will set the proc_state set to VIO_DP_STOPPED. The proc_state value is then used by
the requester to determine when the receiver's state, and accordingly sends an explicit DRING_DATA
message when more requests are queued.

It is not always necessary that clients need to register a shared descriptor ring to make use of the
HV shared memory infrastructure. A simpler client can still use the shared memory capabilities and
instead of sharing the descriptor ring, it will send the descriptor itself as in-band data. The
DESC_HANDLE in the pkt is an opaque handle that corresponds to the descriptor in the sender's ring.
The content of the in-band descriptor packet is shown below:

In case of both a DRING_DATA and DESC_DATA message, if the receiver gets a data packet out
of order (as indicated by a non-consecutive sequence number) then it will NACK the packet and will
not process any further data packets from this client. If there are no errors the receiver will ACK the
receipt of descriptor ring or descriptor data packets if there is an explicit request by the sender to ACK
a data packet by setting the (A)cknowledge bit in the descriptor.

Sun Proprietary/Confidential: Page 7 of 20
Internal Use Only

 6 3 3 1 1
 3 2 1 6 5 8 7 0
 +----------------------------+------------+-------+------------+
 word 1: | SID | DRING_DATA | I/A/N | TYPE_DATA |
 +----------------------------+------------+-------+------------+
 word 2: | SEQ_NO |
 +--+
 word 3: | DRING_IDENT |
 +----------------------------+---------------------------------+
 word 4: | END_IDX | START_IDX |
 +----------------------------+--------------------+------------+
 word 5: | reserved | PROC_STATE |
 +---+------------+

185

190

195

200

205

210

215

220

LDoms VIO Protocol Specification Revision v5
March 31, 2008

Implementation Note: Upon receipt of a NACK, the sending client can either try to recover or stop
sending data and return to initial state and restart the channel negotiation again.

1.1.5 Virtual Disk specific data

In the protocol outlined above, the attribute exchange and descriptor payload contents are
undefined and left to be specified by the VIO devices. This section describes the contents of these
packets for use by both the virtual disk client and server to exchange data. The vDisk client, following
an attribute exchange, will send to the server block disk read and write requests, in addition to disk
control requests. The server will export each block device over an unique channel, and accept requests
from the client, once a session has been established.

1.1.5.1 Attribute information
During the initial handshake, as part of the CTRL/INFO/ATTR_INFO message, the virtual disk

server and client exchange information about the transfer protocol and the physical device itself. The
format of the attribute contents is shown below:

The vDisk client will provide the server with the transfer mode (xfer_mode) and the requested
maximum transfer size (max_xfer_sz) it intends to use for sending disk requests to the server.

The vdisk_block_size is specified in bytes. The vdisk_size and max_xfer_sz are specified in
multiples of the vdisk_block size.

For version 1.0 of the vDisk protocol the client's request must set vdisk_block_size to the
minimum block size the client wishes to handle, and specify the max_xfer_size. If the server cannot
support the requested vdisk_block_size or max_xfer_sz requested by the client, but can support a lower
size, it will specify its vdisk_block_size and/or a lower max_xfer_sz in its ACK. If the client has no
minimum block size requirement it may use the value of 0 as its requested vdisk_block_size, in this
case the max_xfer_size in the client's attribute request to the server is interpreted as being specified in
bytes. Either client or server may simply reset the LDC connection if they fail to agree on
communication attributes.

For version 1.1 of the vDisk protocol, the vDisk server can set vdisk_size to -1 if it can not obtain
the size at the time of the handshake. This can happen when the underlying disk has been reserved by
another system. Under these circumstances, the vDisk client can retrieve the size at a later time, after

Sun Proprietary/Confidential: Page 8 of 20
Internal Use Only

 6 3 3 1 1
 3 2 1 6 5 8 7 0
 +----------------------------+------------+-------+----------+
 word 1: | SID | DESC_DATA | I/A/N |TYPE_DATA |
 +----------------------------+------------+-------+----------+
 word 2: | SEQ_NO |
 +--+
 word 3: | DESC_HANDLE |
 +--+
 | (descriptor payload) |
 +--+

 6 3 3 2 2 1 1
 3 2 1 4 3 6 5 8 7 0
 +-------------------------+------+----------+-------+---------+
 word 1: | SID | ATTR_INFO | I/A/N |TYPE_CTRL|
 +-------------------------+------+----------+-------+---------+
 word 2: | VDISK_BLOCK_SIZE | rsvd | VD_MTYPE |VD_TYPE|XFER_MODE|
 +--------------------------------+----------+-------+---------+
 word 3: | OPERATIONS |
 +---+
 word 4: | VDISK_SIZE |
 +---+
 word 5: | MAX_XFER_SZ |
 +---+

225

230

235

240

245

250

LDoms VIO Protocol Specification Revision v5
March 31, 2008

the completion of the handshake, using the VD_OP_GET_CAPACITY operation.

 If either client or server cannot support the specified transfer mode, the connection will be reset
and the handshake may be restarted. The server in its ACK message will also provide the vdisk type
(vd_type), vdisk_block_size and vdisk_size to the client. The supported types are:

VD_DISK_TYPE_SLICE 0x1 /* slice in blk device */

VD_DISK_TYPE_DISK 0x2 /* entire blk device */

All other disk types are reserved and for version 1.0 of the vdisk protocol should be considered as
an error.

Only in protocol versions 1.1 and higher of the vdisk protocol, the server in its ACK message will
provide the client the vdisk_size (specified as a multiple of the block size), and the vdisk media type
(vdisk_mtype). The supported vdisk media types are:

VD_MEDIA_TYPE_FIXED 0x1 /* Fixed device */

VD_MEDIA_TYPE_CD 0x2 /* CD device */

VD_MEDIA_TYPE_DVD 0x3 /* DVD device */

All other disk media types are reserved and for version 1.1 of the vdisk protocol should be
considered as an error.

Both these fields are reserved and not available in version 1.0 of the vdisk protocol. Clients should
use the disk geometry information (see section 1.1.5.11) to compute the vdisk size.

The operations field is a bit-mask specifying all the disk operations supported by the server, where
each bit position, if set, corresponds to the operation command supported by the server. The list of
supported operations encodings is described in section 1.1.5.2.

1.1.5.2 vDisk descriptors
Virtual disk clients will send their disk requests by queueing them in descriptors as part of a

shared descriptor ring.

As requests are initiated only by the client, and the buffers pointed to by each descriptor are used
for both writing and reading disk blocks, the vDisk client will register the descriptor ring as both a Tx
and Rx ring. In the case of descriptor rings that are not shared, the virtual disk client will send the
requests as in-band descriptor messages.

The descriptor payload is formatted as follows:

The payload contains the operation being performed.

The offset field specifies the relative disk block address when doing a block read or write

Sun Proprietary/Confidential: Page 9 of 20
Internal Use Only

 6 3 3 2 2 1 1
 3 2 1 4 3 6 5 8 7 0

 +------------------------------+-----+-----+-------+---------+
 | REQ_ID |
 +------------------------------+-----------+-------+---------+
 | STATUS | reserved | SLICE |OPERATION|
 +------------------------------+-----------+-------+---------+
 | OFFSET |
 +--+
 | SIZE |
 +------------------------------+-----------------------------+
 | reserved | NCOOKIES |
 +------------------------------+-----------------------------+
 | LDC_COOKIE * NCOOKIES |
 +--+

255

260

265

270

275

280

LDoms VIO Protocol Specification Revision v5
March 31, 2008

operation to the disk. This corresponds to the block offset from the start of the disk, or the disk slice as
appropriate. It is specified in terms of the vdisk_block_size received from the server.

The size field specifies the number of blocks being read or written when doing a VD_OP_BREAD
or VD_OP_BWRITE operation. In the case where the vdisk_block_size in the client's attribute request
is zero the size is interpreted as being specified in bytes.

For each client request sent to the server, the server will process the descriptor contents and
submit the request to the device. Each virtual disk request is identified by an unique req_id. The
operation field specifies the operation being done on the device. The server will then return the status
of the operation in the same descriptor but with the 'status' field containing the outcome of the
operation. The supported values in version 1.0 of the vdisk protocol are:

VD_OP_BREAD 0x01 /* Block Read */

VD_OP_BWRITE 0x02 /* Block Write */

VD_OP_FLUSH 0x03 /* Flush disk contents */

VD_OP_GET_WCE 0x04 /* Get W$ status */

VD_OP_SET_WCE 0x05 /* Enable/Disable W$ */

VD_OP_GET_VTOC 0x06 /* Get VTOC */

VD_OP_SET_VTOC 0x07 /* Set VTOC */

VD_OP_GET_DISKGEOM 0X08 /* Get disk geometry */

VD_OP_SET_DISKGEOM 0x09 /* Set disk geometry */

VD_OP_GET_DEVID 0x0b /* Get device ID */

VD_OP_GET_EFI 0x0c /* Get EFI */

VD_OP_SET_EFI 0x0d /* Set EFI */

• VD_OP_xxx 0x0e - 0xff /* reserved for 1.0 */

In addition, the following values are supported in version 1.1 of the vDisk protocol:
VD_OP_SCSICMD 0x0a /* SCSI control command */

VD_OP_RESET 0x0e /* Reset disk */

VD_OP_GET_ACCESS 0x0f /* Get disk access */

VD_OP_SET_ACCESS 0x10 /* Set disk access */

VD_OP_GET_CAPACITY 0x11 /* Get disk capacity */

VD_OP_xxx 0x12 - 0xff /* reserved for 1.1 */

As mentioned before, the vDisk server at the time of the initial attribute exchange will specify the
bit mask of operations it supports. If the server does not support a required operation, it is up to the
specific client implementation to decide whether it returns an error or internally implements the
operation. All operations can be optionally implemented by a particular vDisk server implementation.
If an operation is supported by the server, the outcome of the operation will be always available in the
descriptor ring entry status field.

The ncookies and ldc_cookie fields refer to the segment of memory from/to which data is being
read/written. See sec 1.1.3.3 for more information about the LDC transport cookie.

Sun Proprietary/Confidential: Page 10 of 20
Internal Use Only

285

290

295

300

305

310

315

320

LDoms VIO Protocol Specification Revision v5
March 31, 2008

1.1.5.3 Disks and slices
A vdisk server may export either an entire disk device, or a simple slice (or partition) of a disk to a

client as configured by the administrator. In the event that an entire disk is exported to a client, it is
client policy as to how it determines the partitioning information or re-partitions that whole virtual
disk.

To enable a server to potentially mount or examine a disk created by a client, the server may elect
to offer the VD_OP_GET/SET_VTOC operations to its client. If the client elects to use these
operations to retrieve partition information, the client when it reads or writes to the disk must specify
the slice being accessed - in this case the offset field for those transactions is specified relative to the
start of the referenced slice (not the start of the disk).

A client is not required to use the VTOC operations, and the server is not required to support
them. In either of these events, if the client wishes to use the disk exported by the server it must read
(and write - if re-partitioning) its own partition table at some client specific location on the disk.

Attempts to mix reads and writes with get and set VTOC operations to read/manipulate disk
partition information have undefined results, and clients are required (though this may only be
optionally enforced by the server) to use a consistent approach to discovering or modifying disk
partition information.

The slice field is currently only used for VD_OP_BREAD and VD_OP_BWRITE. For all other
operations it is ignored, and should be set to zero. If the disk served is of type
VD_DISK_TYPE_SLICE the slice field is treated as reserved; i.e. must be set to zero, and ignored by
the consumer. For a VD_DISK_TYPE_DISK the slice field refers to the disk slice or partition on
which a specific operation is being done - the field only has meaning for disk servers that export a
GET_VTOC service so that clients know which slice corresponds to which partition.

If the vDisk client does not use the VTOC service, it must specify a value of 0xff for the slice field
for read and write transactions so that the server knows that the offset specified is the absolute offset
relative to the start of a disk. Mixing read and write transactions to specific slices together with
absolute disk transactions has undefined results, and clients must not do this. A client must close the
disk channel and re-negotiate the vDisk service if it wishes to switch between using slice based access
(explicitly passing the value of the slice being accessed) and absolute access (where slice is 0xff) when
the server offers a disk type of VD_DISK_TYPE_DISK.

1.1.5.4 VDisk Block Read command (VD_OP_BREAD)
This command performs a basic read of a block from the device service. The decriptor ring entry

for this command contains the offset and number of blocks to read together with the LDC cookies for
the data buffers.

Once completed the status field in the descriptor is updated with the completion status of the
operation.

1.1.5.5 VDisk Block Write command (VD_OP_BWRITE)
This command performs a basic write of a block from the device service. The decriptor ring entry

for this command contains the offset and number of blocks to write together with the LDC cookies for
the data buffers.

Once completed the status field in the descriptor is updated with the completion status of the
operation.

1.1.5.6 VDisk Flush command (VD_OP_FLUSH)
This command performs a barrier and synchronisation operation with the disk service. There are

no additional parameters in the decriptor entry for this command.

Sun Proprietary/Confidential: Page 11 of 20
Internal Use Only

325

330

335

340

345

350

355

360

365

LDoms VIO Protocol Specification Revision v5
March 31, 2008

Before completing this command, the disk service will ensure that all previously executed write
operations are flushed to their respective disk devices, and all previously executed reads are completed
and their data returned to the client.

1.1.5.7 VDisk Get Write Cache enablement status (VD_OP_GET_WCE)
This command is used by a virtual disk client to query whether write-caching has been enabled on

the disk being exported by the vDisk server. The payload is a single 32 bit unsigned integer. A value of
0 means write caching is not enabled, a value of 1 means write-caching is enabled (a flush operation
should be used as a barrier to ensure writes are forced to non-volatile storage). All other values are
reserved and have undefined meaning.

1.1.5.8 VDisk Enable/Disable Write Cache (VD_OP_SET_WCE)
This command is used a virtual disk client to enable or disable the write cache on the disk being

exported by the vDisk server. The payload is a single 32 bit integer. A value of zero disables write-
caching on the server side. A value of 1 enables write caching on the server side. All other values are
reserved and are treated as errors by the vDisk server.

1.1.5.9 VDisk Get Volume Table of Contents (VD_OP_GET_VTOC)
This command is used to return information about the table of contents for the disk volume a

client is attached to. The successful result of this command includes the following data structure being
returned to the client in the buffer described by the LDC cookie(s) in the descriptor ring.

The returned data structure has the following header format:

The volume name is an 8 character ASCII name for the volume.

The ASCII label is a 128 character ASCII label assigned to this disk volume. This is distinct from
the actual volume name.

The field sector_size is the size in bytes of each sector of the disk volume.

The field num_partitions is the number of partitions on this disk volume. The header described
above is immediately followed by the structure below repeated once for each of the number of
partitions specified by the header:

Reserved fields should be ignored.

Sun Proprietary/Confidential: Page 12 of 20
Internal Use Only

 6 3 3 1 1
 3 2 1 6 5 0
 +--+
 word 0: | Volume name |
 +----------------------------+----------------+--------------+
 word 1: | reserved | num_partitions | sector_size |
 +----------------------------+----------------+--------------+
 word 2: | ASCII Label |
 +--+
 word 3: | ASCII Label continued |
 +--+

 6 3 3 1 1
 3 2 1 6 5 0

 +----------------------------+----------------+--------------+
 word X+0: | reserved | perm flags |ID tag of part|
 +----------------------------+----------------+--------------+
 word X+1: | start block number of partition |
 +--+
 word X+2: | number of blocks in partition |
 +--+

370

375

380

385

390

LDoms VIO Protocol Specification Revision v5
March 31, 2008

1.1.5.10 VDisk Set Volume Table of Contents (VD_OP_SET_VTOC)
This command is used by a virtual disk client to set the table of contents for the disk volume the

client is attached to.

The supplied data structure has the same format as for the get VTOC command
(VD_OP_GET_VTOC). Reserved fields must be set to zero.

1.1.5.11 VDisk Get Disk Geometry (VD_OP_GET_DISKGEOM)
This command is used to return the geometry information about the disk volume a client is

attached to. The successful result of this command includes the following data structure being returned
to the client in the buffer described by the LDC cookie(s) in the descriptor ring.

The returned data structure has the following format:

Byte offset Size in
bytes

Field name Description

0 2 ncyl Number of data cylinders

2 2 acyl Number of alternate cylinders

4 2 bcyl Cylinder offset for fixed head area

6 2 nhead Number of heads

8 2 nsect Number of sectors

10 2 intrlv Interleave factor

12 2 apc Alternative sectors per cylinder (SCSI only)

14 2 rpm Revolutions per minute

16 2 pcyl Number of physical cylinders

18 2 write_reinstruct Number of sectors to skip for writes

20 2 read_reinstruct Number of sectors to skip for reads

1.1.5.12 VDisk Set Disk Geometry (VD_OP_SET_DISKGEOM)
This command is used by a virtual disk client to set the geometry information for the disk volume

the client is attached to.

The supplied data structure has the same format as the get disk geometry command
(VD_OP_GET_DISKGEOM).

1.1.5.13 VDisk SCSI Command (VD_OP_SCSICMD)
This command is used to deliver a SCSI packet to the vDisk server. It is implementation specific

as to whether the server passes the received packet directly to a SCSI drive or whether it chooses to
simulate the SCSI protocol itself. A server must not advertise this command if it does not support
either capability.

 The LDC cookie in the descriptor ring should point to the following data structure which
describes the command arguments. The same buffer is also used to return the result of the command to
the vDisk client.

Sun Proprietary/Confidential: Page 13 of 20
Internal Use Only

395

400

405

410

415

LDoms VIO Protocol Specification Revision v5
March 31, 2008

 The cstat field reports to the vDisk client the SCSI command completion status. SCSI command
completion status are described in the SCSI Architecture Model documents3.

 The sstat field reports to the vDisk client the SCSI command completion status of the SCSI sense
request. SCSI command completion status are described in the SCSI Architecture Model documents3.
The sstat field is defined only if a SCSI sense buffer was provided and if the SCSI command
completion status indicates that sense data should be available.

The tattr field defines the task attribute of the SCSI command to execute. The possible attributes
are:

• 0x00 no task attribute defined

• 0x01 SIMPLE

• 0x02 ORDERED

• 0x03 HEAD OF QUEUE

• 0x04 ACA

 Task attributes are defined in the SCSI Architecture Model documents3. The vDisk server may
ignore the task attribute.

 The tprio field is a 4-bit value defining the task priority assigned to the SCSI command to
execute. The task priority is defined in the SCSI Architecture Model documents3. The vDisk server
may ignore the task priority.

 The crn field is a command reference number (CRN). SCSI command reference numbers are
defined in the SCSI Architecture Model documents3. The vDisk server may ignore the CRN.

The reserved field is reserved and should not be used.

The timeout field is the time in seconds that the vDisk server should allow for the completion of

Sun Proprietary/Confidential: Page 14 of 20
Internal Use Only

 6 4 4 4 3 3 3 2 2 1 1 0 0 0
 3 8 7 0 9 2 1 4 3 6 5 8 7 0
 +----------------+--------+--------+--------+--------+--------+--------+
word 0: | TIMEOUT |reserved| CRN | TPRIO | TATTR | SSTAT | CSTAT |
 +----------------+--------+--------+--------+--------+--------+--------+
word 1: | OPTIONS |
 +--+
word 2: | CDB LENGTH |
 +--+
word 3: | SENSE LENGTH |
 +--+
word 4: | DATA-IN SIZE |
 +--+
word 5: | DATA-OUT SIZE |
 +--+
word 6: | CDB DATA |
 : : :
word I: | |
 +--+
word I+1 | SENSE DATA |
 : : :
word J: | |
 +--+
word J+1: | DATA-IN |
 : : :
word K: | |
 +--+
word K+1: | DATA-OUT |
 : : :
word L: | |
 +---+

420

425

430

435

440

LDoms VIO Protocol Specification Revision v5
March 31, 2008

the command. If it is set to 0 then no timeout is required.

The options field is a bitmask specifying options for the SCSI command to execute. The possible
bitmask values are:

• 0x01 (CRN)
This bitmask indicates that a command reference number (CRN) is specified in the
request.

• 0x02 (NORETRY)
This bitmask indicates that the vDisk server should not attempt any retry or other recovery
mechanisms if the SCSI command terminates abnormally in any way.

The Command Descriptor Block (CDB) length field is set by the vDisk client and indicates the
number of bytes available in the CDB field.

The sense length field is initially set by the vDisk client and indicates the number of bytes
available in the sense field for storing sense data for SCSI commands returning with a SCSI command
completion status indicating that sense data should be available. After the execution of the SCSI
command, the vDisk server sets the sense length field to the number of bytes effectively returned in
the sense field, or 0 if no sense data were returned.

The data-in size field is initially set by the vDisk client and indicates the number of bytes
available for data transfers to the data-in field. After the execution of the SCSI command, the vDisk
server sets the data-in size field to the number of bytes effectively transfered to the data-in field, or 0
if no data were transfered.

The data-out size field is initially set by the vDisk client and indicates the number of bytes
available for data transfers from the data-out field. After the execution of the SCSI command, the
vDisk server sets the data-out size field to the number of bytes effectively transfered from the data-out
field, or 0 if no data were transfered.

The CDB field contains the SCSI Command Descriptor Block (CDB) which defines the SCSI
operation to be performed by the vDisk server. The structure of the CDB is part of the SCSI Standart
Architecture3. The size of the CDB field should be equal to the number of bytes indicated by the vDisk
client in the CDB length field rounded up to a multiple of 8 bytes.

The sense field contains sense data for SCSI commands returning with a SCSI command
completion status indicating that sense data should be available.. The structure of sense data is
described in the SCSI Primary Commands documents3. The size of the sense field should be equal to
the number of bytes indicated by the vDisk client in the sense length field rounded up to a multiple of
8 bytes.

The data-in field contains command specific information returned by the vDisk server at the time
of command completion. The validity of the returned data depends on the SCSI command completion
status. The size of the data-in field should equal to the number of bytes indicated by the vDisk client in
the data-in size field rounded up to a multiple of 8 bytes.

The data-out field contains command specific information to be sent to the vDisk server. The size
of the data-out field should be equal to the number of bytes indicated by the vDisk client in the data-
out size field rounded up to a multiple of 8 bytes.

1.1.5.14 VDisk Get Device ID (VD_OP_GET_DEVID)
Device IDs1 are persistent unique identifiers for devices in Solaris, and provide a means for

identifying a device, independent of device's current name or instance number.

This command is used to return the device ID of a disk volume backing a virtual disk. A
successful completion of this command will result in the following data structure being returned to the
client in the buffer described by the LDC cookie(s) in the descriptor ring.

Sun Proprietary/Confidential: Page 15 of 20
Internal Use Only

445

450

455

460

465

470

475

480

485

LDoms VIO Protocol Specification Revision v5
March 31, 2008

The returned data structure has the following format:

The field devid contains the ID of the disk volume. The field length in the request should be set to
the size of the buffer allocated by the vdisk client for storing the device ID. The vdisk server will then
set it to the size of the returned devid in its response. The returned device ID value will be truncated if
the provided space is not large enough to store complete ID. The field type specifies the type of device
ID.

Please refer to PSARC cases 1995/352, 2001/559, 2004/504, for a description of device IDs
along and a list of the device ID type values.

1.1.5.15 VDisk Get EFI Data (VD_OP_GET_EFI)
This command is used to get EFI data for the disk volume a client is attached to. A successful

completion of this command will result in the following data structure with the EFI data in the data
field being returned to the client in the buffer described by the LDC cookie(s) in the descriptor ring.

 The returned data structure has the following format:

The field LBA is the logical block address of the disk volume to get EFI data. Data returned in the
EFI data field is determined by the value specified in the LBA field:

• If LBA is equal to 1, then the vdisk server should return the GUID Partition Table Header
(GPT).

• If LBA is equal to the PartitionEntryLBA field from the GUID Partition Table Header, then
the vdisk server should return the GUID Partition Entry array (aka GPE).

If the EFI data buffer is not large enough to return the request data then the vdisk server should
return an error. The field length is the maximum number of bytes that can be stored in the data field of
the provided structure.

The format of the GUID Partition Table Header and GUID Partition Entry are beyond the scope of
this document and are defined in the Extensible Firmware Interface Specification2.

1.1.5.16 VDisk Set EFI Data (VD_OP_SET_EFI)
This command is used by a virtual disk client to set EFI data for the disk volume the client is

attached to. The supplied data structure has the same format as for the get EFI command
(VD_OP_GET_EFI).

The value of the LBA field determines the content of the EFI data field and the action taken by the
vdisk server.

• If LBA = 1, then the vdisk server should use the contents of the EFI data field to set the GUID

Sun Proprietary/Confidential: Page 16 of 20
Internal Use Only

 6
 3 0

 +--+
 word 0: | LBA |
 +--+
 word 1: | length |
 +--+
 word 2-N: | EFI data |
 +--+

 6 4 4 3 3
 3 8 7 2 1 0

 +-------------+--------------+-------------------------------+
 word 0: | reserved | type | length |
 +----------------------------+-------------------------------+
 word 1-N: | devid |
 +--+

490

495

500

505

510

515

LDoms VIO Protocol Specification Revision v5
March 31, 2008

Partition Table Header (aka GPT).

• If LBA is equal to the PartitionEntryLBA field from the GUID Partition Table Header, then
the vdisk server should the contents of the EFI data field to set the GUID Partition Entry array
(aka GPE).

The format of the GUID Partition Table Header and GUID Partition Entry are beyond the scope of
this document and are defined in the Extensible Firmware Interface Specification2.

1.1.5.17 VDisk Reset (VD_OP_RESET)
This command is used by the vDisk client to request the vDisk server to reset the disk or device

being exported by it. It is implementation independent as to whether the server physically resets the
underlying device or it chooses to only simulate a device reset.

Following a reset, any exclusive access rights or options that might have been set using the
VD_OP_SET_ACCESS operation should be cleared in a way similar to receiving a
VD_OP_SET_ACCESS operation with the CLEAR option.

In the event of a connection loss between the vDisk client and server, the vDisk server should
behave as if it has received a VD_OP_RESET operation. It should clear any exclusive access rights or
options set using the VD_OP_SET_ACCESS operation. A vDisk server implementing the disk reset is
required to complete the operation prior to reestablishing the connection with the vDisk client.

1.1.5.18 VDisk Get Access (VD_OP_GET_ACCESS)
This command is used by the vDisk client to query whether it has access to the disk being

exported by the vDisk server. The response has a payload of a single 64 bit unsigned integer, and may
contain the following values:

• 0x00 (DENIED)
The access to the disk is not allowed.

• 0x01 (ALLOWED)
The access to the disk is allowed.

1.1.5.19 VDisk Set Access (VD_OP_SET_ACCESS)
 This command is used by the vDisk client to request exclusive access to the disk being exported

by the vDisk server. The payload is a single 64 bit unsigned integer. It can either contain a value of 0,
or a bitmask of the following non-zero values:

• 0x00 (CLEAR)
The vDisk server should clear any exclusive access rights, and restore non-exclusive, non-
preserved access rights. In particular, the vDisk server should relinquish any exclusive access
rights that have been acquired with the EXCLUSIVE flag, and disable any mechanism to
preserve exclusive access rights enabled with the PRESERVE flag.

• 0x01 (EXCLUSIVE)
The vDisk server should acquire exclusive access rights to the disk. When the vDisk server
has exclusive access rights to the disk then any access to the disk from another host should
fail. If another host already has acquired exclusive access rights to the disk then the vDisk
server should fail to acquire exclusive access rights.

• 0x02 (PREEMPT)
The vDisk server can forcefully acquire exclusive access rights to the disk. If another host has
already acquired exclusive access rights to the disk, then the vDisk server can preempt the
other host and acquire exclusive access rights.

• 0x04 (PRESERVE)

Sun Proprietary/Confidential: Page 17 of 20
Internal Use Only

520

525

530

535

540

545

550

555

560

LDoms VIO Protocol Specification Revision v5
March 31, 2008

The vDisk server should try to preserve exclusive access rights to the disk. The vDisk server
should try to restore exclusive access rights if exclusive access rights are broken via random
events (for example disk resets). When restoring the exclusive access rights, the vDisk server
should not preempt any other host having exclusive access rights to the disk.

The PREEMPT and PRESERVE flags are only valid when the EXCLUSIVE flag is set.

In the event of a connection loss between the vDisk client and server, the vDisk server should
perform the equivalent operation to a vDisk Reset Command (VD_OP_RESET) received from the
client, and exclusive access rights and options should be cleared.

 If the vDisk client still requires exclusive access rights following a connection reset, then it
should send a new VD_OP_SET_ACCESS operation to the vDisk server and request exclusive access.

1.1.5.20 VDisk Get Capacity (VD_OP_GET_CAPACITY)
This command is used to get information about the capacity of the disk volume export by the

vDisk server. A successful completion of this command will result in the following data structure
being returned to the client in the buffer described by the LDC cookie(s) in the descriptor ring:

The vdisk_block_size field contains the length in byte of the logical block of the vDisk. The
vdisk_block_size should be the same value as the vdisk_block_size returned during the initial
handshake as part of the attribute exchange.

The vdisk_size field contains the size of the vDisk in blocks specified as a multiple of
vdisk_block_size.

If the vDisk server is unable to obtain the vDisk size, it should set the vdisk_size to -1. Under these
circumtances, the vDisk client can retry the operation later to check if the size is available.

1.1.6 Virtual network specific data

1.1.6.1 Attribute information
During the initial handshake, as part of the CTRL/INFO/ATTR_INFO message, the virtual

network device will exchange information with the virtual switch and other vNetwork devices about
the transfer protocol, its address and MTU. The format of the attribute payload is shown below:

The sending client, be it a virtual network device and/or virtual switch will provide its peer with
the transfer mode, acknowledgment frequency, address, address type and MTU it intends to use for

Sun Proprietary/Confidential: Page 18 of 20
Internal Use Only

 6 3 3 1 1
 3 2 1 6 5 8 7 0
 +----------------------------+-----------+---------+---------+
 word 1: | SID | ATTR_INFO | I/A/N |TYPE_CTRL|
 +----------------------------+-----------+---------+---------+
 word 2: | reserved | ACK_FREQ |ADDR_TYPE|XFER_MODE|
 +----------------------------+-----------+---------+---------+
 word 3: | ADDR |
 +--+
 word 4: | MTU |
 +--+

 6 3 3
 3 2 1 0
 +------------------------------+------------------------------+
 word 0: | reserved | VDISK_BLOCK_SIZE |
 +------------------------------+------------------------------+
 word 1: | VDISK_SIZE |
 +---+

565

570

575

580

585

590

LDoms VIO Protocol Specification Revision v5
March 31, 2008

sending network packets. The peer ACKs the attribute message if it agrees to all the parameters.
Currently the only supported address type is:

VNET_ADDR_ETHERMAC 0x1 /* Ethernet MAC Address */

The addr field contains the mac address of the client sending the attribute information.

1.1.6.2 Multicast information
Virtual network devices can set/unset the multicast groups they are interested in to a virtual

network switch at any point after a succesful handshake and during normal data transfer. Each packet
sent by a vnet device is of type CTRL/INFO/MCAST_INFO.

VNET_MCAST_INFO 0x101 /* Multicast information */

If the set field is equal to '1', then the corresponding mcast addresses are being set by the vnet
device, or else the switch assumes that the specified address(es) are being removed. The peer will
ACK the info packet if it successfully registered or removed the specified multicast mac addresses. If
the multicast address was already set earlier or if the network device tries to unset an address that was
not set earlier, the virtual switch will NACK the request. The MCAST_ADDR field can contain a max
of VNET_NUM_MCAST=7 multicast addresses, where each address is ETHERADDRL=6 bytes in
length. The count field specifies the actual number of multicast addresses in the packet.

1.1.6.3 vNet descriptors
Virtual network and switch device clients that use HV shared memory will send / forward Ethernet

frames by specifying the length of the data and the LDC memory cookie(s) corresponding to the
page(s) containing the frame in each descriptor. The descriptor payload will be of the following
format:

The nbytes field specifies the number of bytes being transmitted. The ncookies and ldc_cookie
fields refer to the segment of memory from/to which data is being read/written. See sec 1.1.3.3 for
more information about the LDC transport cookie.

In the current implementation, since each request/payload contained within a descriptor
corresponds to an Ethernet frame being transmitted by either a vNet or vSwitch device, the vNet and
vSwitch will register the descriptor ring as a transmit ring. Future implementations of the protocol
might use the descriptor rings as receive rings.

1.1.6.4 Virtual LAN (VLAN) support
The VIO protocol for virtual network and switch devices will be extended in version 1.3 to

include support for virtual LANs (VLANs) as specified by the IEEE 802.1Q4 specification . A VLAN
aware network or switch device will be capable of sending, receiving or switching ethernet frames that

Sun Proprietary/Confidential: Page 19 of 20
Internal Use Only

 6 3 3 1 1
 3 2 1 6 5 8 7 0
 +---------------------------+--------------+-------+---------+
 word 1: | SID | MCAST_INFO | I/A/N |TYPE_CTRL|
 +---------------------------+--------------+-------+---------+
 word 2: | MCAST_ADDR[0] | COUNT | SET |
 +--+-------+---------+
word 3-7: | MCAST_ADDR[1-6] |
 +--+

 6 3 3
 3 2 1 0
 +-------------------------------+----------------------------+
 | ncookies | nbytes |
 +--+
 | ldc_cookie * ncookies |
 +--+

595

600

605

610

615

620

LDoms VIO Protocol Specification Revision v5
March 31, 2008

contain a vlan tagged header. If a network/switch device negotiates version 1.3 or higher with its peer,
the MTU size it specifies in the attribute info message (sec 1.1.6.1) should correspond to the size of a
tagged ethernet frame. Similarly, if a peer negotiates version 1.2 or lower, sending/receiving tagged
frames can result in undefined behavior including the frames being dropped.

1.2 References
1. ARC Cases

• FWARC/2005/633 - Project Q Logical Domaining Umbrella

• FWARC/2006/055 - Domain Services

• FWARC/2006/074 - sun4v interrupt cookies

• FWARC/2006/135 - sun4v channel console packets

• FWARC/2006/140 - sun4v channels transport protocol

• FWARC/2006/072 – sun4v virtual devices machine description data

• PSARC/1995/352 – Disk IDs

2. Extensible Firmware Interface Specification
http://developer.intel.com/technology/efi/main_specification.htm

3. SCSI Standards Architecture
http://www.t10.org/scsi-3.htm

4. 802.1Q – Virtual LANs
http://www.ieee802.org/1/pages/802.1Q.html

Sun Proprietary/Confidential: Page 20 of 20
Internal Use Only

625

630

635

640

http://developer.intel.com/technology/efi/main_specification.htm
http://www.t10.org/scsi-3.htm
http://www.t10.org/scsi-3.htm
http://www.t10.org/scsi-3.htm
http://www.t10.org/scsi-3.htm
http://www.t10.org/scsi-3.htm
http://www.t10.org/scsi-3.htm
http://developer.intel.com/technology/efi/main_specification.htm
http://developer.intel.com/technology/efi/main_specification.htm

	1.1Virtual IO communication protocol
	1.1.1VIO data transfer
	1.1.2VIO device message tag
	1.1.3VIO device peer-to-peer handshake
	1.1.3.1Version negotiation
	1.1.3.2Attribute exchange
	1.1.3.3Descriptor ring registration
	1.1.3.4Handshake completion

	1.1.4VIO data transfer modes
	1.1.4.1Packet based transfer
	1.1.4.2Descriptor rings

	1.1.5Virtual Disk specific data
	1.1.5.1Attribute information
	1.1.5.2vDisk descriptors
	1.1.5.3Disks and slices
	1.1.5.4VDisk Block Read command (VD_OP_BREAD)
	1.1.5.5VDisk Block Write command (VD_OP_BWRITE)
	1.1.5.6VDisk Flush command (VD_OP_FLUSH)
	1.1.5.7VDisk Get Write Cache enablement status (VD_OP_GET_WCE)
	1.1.5.8VDisk Enable/Disable Write Cache (VD_OP_SET_WCE)
	1.1.5.9VDisk Get Volume Table of Contents (VD_OP_GET_VTOC)
	1.1.5.10VDisk Set Volume Table of Contents (VD_OP_SET_VTOC)
	1.1.5.11VDisk Get Disk Geometry (VD_OP_GET_DISKGEOM)
	1.1.5.12VDisk Set Disk Geometry (VD_OP_SET_DISKGEOM)
	1.1.5.13VDisk SCSI Command (VD_OP_SCSICMD)
	1.1.5.14VDisk Get Device ID (VD_OP_GET_DEVID)
	1.1.5.15VDisk Get EFI Data (VD_OP_GET_EFI)
	1.1.5.16VDisk Set EFI Data (VD_OP_SET_EFI)
	1.1.5.17VDisk Reset (VD_OP_RESET)
	1.1.5.18VDisk Get Access (VD_OP_GET_ACCESS)
	1.1.5.19VDisk Set Access (VD_OP_SET_ACCESS)
	1.1.5.20VDisk Get Capacity (VD_OP_GET_CAPACITY)

	1.1.6Virtual network specific data
	1.1.6.1Attribute information
	1.1.6.2Multicast information
	1.1.6.3vNet descriptors
	1.1.6.4Virtual LAN (VLAN) support

	1.2References

