
LDC Map Table Specification Revision 1.1
July 7, 2008

1 Introduction
This document describes the mechanism by which memory from one logical domain may be

exported for access by another logical domain. This facility enables shared memory to be utilized for
such functionality as virtual device services . Using the interfaces described herein, one logical
domain may export a number of its own memory pages across a logical domain channel for access
and use by the logical domain at the other end of the channel. The mechanism is intended to be
directly analogous to the way a domain would export pages of its memory for access by I/O devices
on the other side of an I/O bridge (I/O MMU).

1.1 Map table
The principle means by which a domain may export its local memory across a domain channel is

through the use of an export map table that the guest defines within it's own local memory - much
like a TSB is used to define local virtual memory mappings.

The recipient domain at the other end of the logical channel may make use of the exported
memory either by using a hypervisor API call to copy data into or out of its local memory, or by using
a hypervisor API call to explicitly map the remote exported memory into its real address space for
access.

The real address space of each domain's virtual machine is independent of all the others.
Therefore to coordinate references to exported memory between domains, cookies are used to refer to
entries within the exporter's map table.

Consider a domain (“domain X”) that wishes to export a page of memory to another domain
(“Y”).

For this to be possible a domain channel must connect X to Y. Let us assume that such a channel
has been created by the domain manager.

In order to export any memory across this domain channel, domain X must allocate an export
map table from its local memory, and assign that map table to its local channel endpoint.

The assigned map table may be used to export multiple pages, which remain exported until
explicitly removed from the map table, or the table itself is un-assigned from the channel endpoint.

The map table must be a power of number of entries in size, and must be aligned in memory on a
real address boundary equal to its size in bytes .

Hypervisor API calls are provided to assign a map table to a channel endpoint, un-assign the
table, and to get the table info. A map table may not be assigned to more than one channel endpoint
at a time.

1.1.1 Map table cookies
For the recipient domain 'Y' to be able to refer to exported memory, it must use a 'cookie' that

describes the memory that domain 'X' is exporting. This cookie may be considered a form of address
for the remote memory, much like a dma-cookie is used for dma operations by an IO device.

The export cookie is created by the exporting domain 'X' and it contains two essential pieces of
information - the size of the exported page mapping, and the index in the exporter's map table of that
mapping. A cookie may also contain offset information so as to identify data located within the
memory page defined by a mapping.

A cookie only has meaning within the context of the domain channel its associated map table is
bound to. Thus if a map table is assigned to a channel endpoint in domain X, then domain Y must
also identify its local endpoint when using the cookie. In this way the hypervisor is not responsible
for creating or tracking or transferring cookies between domains.

A cookie is created by the exporting domain, and can be communicated by any means to the

Sun Proprietary/Confidential: Page 1 of 8
Internal Use Only

5

10

15

20

25

30

35

40

45

A Revision 1.1 LDC Map Table Specification
July 7, 2008

importing domain - for example by message over the same domain channel. When a cookie is used
(for example with a ldc_copy operation), the associated local channel endpoint enables the hypervisor
to determine the remote channel endpoint and the therefore the remote (exporting) domain and the
export table itself. The cookie may then be used to locate the entry in the export map table that
defines the memory being exported.

Cookies created by an exporting domain have the following format:
page size code table idx page offset

63 60 59
size

size-1 0

The upper four bits of the cookie identify the page size of the exported page, and use the same
page size encodings as the basic sun4v TTE format (defined in the Hypervisor API specification –
FWARC/2005/116).

The remainder of a cookie consists of an offset within the specified exported page and an index to
the entry within the exporting domain's map table that identifies the actual exported page. The offset
field ranges from bit zero, to the number of offset bits relevent for the cookie's page size. The index
field starts at the first bit for the page frame number and continues to bit 59. For example, for an 8K
page; the page size field (bits 60 to 63) is zero, the page offset is in bits 0 through 12, and the table
index is specified in bits 13 through 59.

This compressed cookie format enables a page size, index value and page offset to be transferred
in one single 64bit value that may in effect be treated as an address itself. Basic arithmetic may be
applied to the offset field, which if it overflows will automatically adjust the table index field. In this
way a large number of sequential map table entries of the same page size can be described by a single
cookie value.

1.1.2 Map table entries
Word 0: map entry (bytes 0 through 7)

 reserved In

Use

 RA S

W
1

S

W
2

C

P
W

C

P
R

I

O
W

I

O
R

X W R Sz[3:0]

63 57 56 55
13

12 11 10 9 8 7 6 5 4 3
0

Word 1: revocation entry (bytes 8 through 15)

Revocation Cookie
63
0

For the export map table, each entry consists of a two 64-bit words illustrated in the figure above.

The map entry (word 0) bit fields are defined as follows:

Bit Field Mnemonic Meaning

63 – 57 reserved Must be written as zero
56 In Use This bit is set by the hypervisor if a map-table entry is still in use by the

importing domain. It is also cleared by the hypervisor if the entry is no
longer mapped by the importing domain.

55-13 RA Real address bits 55 to 13. For page sizes larger than 8KB, the low order
address bits below the page size must be set to zero

12 SW1 This bit is available for use by software.
11 SW2 This bit is available for use by software.

Page 2 of 8 Sun Proprietary/Confidential:
Internal Use Only

50

55

60

65

70

LDC Map Table Specification Revision 1.1
July 7, 2008

10 CPW Copy writeable; if set to 1 the hypervisor ldc_copy API may be used by
the importing domain to write to this exported page.

9 CPR Copy readable; if set to 1 the hypervisor ldc_copy API may be used by
the importing domain to read from this exported page.

8 IOW I/O writeable; if set to 1 this exported page may be mapped by an
IOMMU for writing by an I/O DMA operation.

7 IOR I/O readable; if set to 1 this exported page may be mapped by an
IOMMU for reading by an I/O DMA operation.

6 X eXecute; if set to 1 instructions may be fetched and executed from this
page by the importing domain

5 W Writeable; if set to 1 this page may be mapped and written to as shared
memory by the importing domain

4 R Readable; if set to 1 this page may be mapped and read from as shared
memory by the importing domain

3-0 Sz Size: page size
0 = 8KB, 1=64KB, 2=512KB, 3=4MB, 4=32MB, 5=256MB, 6=2GB, 7=16GB

Sizes 8 through 15 are reserved.

The permissions bits (bits 4 through 10) indicate the access permissions granted by the exporting
domain to the importer of the page described by the specific map table entry. If no access permissions
are granted, (bits 4 through 10 are all zero), the map table entry is considered invalid.

Note: It is recommended that invalid map table entries have the entire 64bit word set to zero.
Map table entries must not contain overlapping or identical real address ranges - do so yields

undefined results for both exporter and importer - without guarantee that the exporter will be able to
revoke access permissions to the exported page.

1.2 Copying in and out of a peer's exported memory
Once a LDC peer has provided access to memory pages via it's map table, a guest operating

system can request the hypervisor to copy data into and out of those pages by simply presenting
cookies provided by the peer with the ldc_copy hypervisor API call.

Each time the call is made the hypervisor validates the presented cookie together with the access
permission provided in the exporter's map table to determine whether the copy should indeed be
allowed.

This is the simplest mechanism by which data may be transferred in bulk between guest
operating systems.

1.3 Mapping page use and restrictions
For a guest to use memory exported by one of it's LDC peers, it must ask the hypervisor to

provide access to the exported page. This is achieved using the ldc_mapin hypervisor API call.

The map-in call returns a real-address of where the imported shared memory page was mapped
within the importing guests virtual machine real address space. Shared memory is un-imported using
the ldc_unmap API call by passing the same real-address that was returned from the ldc_mapin API
call.

As part of the importer's real address space, the imported shared memory page may be used for
virtual memory mappings and IO MMU mappings with the same mechanisms as it's own memory
pages. However, imported shared-memory pages are not generally accessible like normal memory
pages, and the hypervisor enforces a number of restrictions upon their use:

The guest exporting a shared memory page may only allow certain types of access to that page
(for example for reading only). For example, attempts to map a page without read or write
permission for load or store instructions will fail (or in the case of TSB use generate a data or

Sun Proprietary/Confidential: Page 3 of 8
Internal Use Only

75

80

85

90

95

100

A Revision 1.1 LDC Map Table Specification
July 7, 2008

instruction access exception trap for an invalid real address).
In addition to the restrictions required by the exporting guest, the hypervisor i tself requires that

importing pages are not aliased either by virtual memory mappings, or IO MMU mappings. Virtual
memory mappings are allowed only for context 0 but are available to all virtual CPUs.

Imported shared memory must be unmapped and re-mapped in before a new virtual or IOMMU
address may be assigned - even if the old virtual address has been de-mapped with the appropriate
demap API call.

1.4 Mapping revocation
When a guest wishes to discontinue the export of a page to its LDC peer, it can do so by simply

denying further access by disabling the access permissions in the map entry word in the
corresponding map table entry. (It is recommended that an entry be disabled/invalidated) by
writing the value 0 to the whole map entry word (word 0).

Denying future accesses does not automatically revoke existing page mappings to which the LDC
peer may have access.

Well behaved peers sharing exported memory are recommended to use a communication
protocol to determine when exported memory pages are available or no longer in use by a peer. It is
anticipated, therefore, that only in extra-ordinary circumstances will a guest that exports memory
need to forcibly deny (“revoke”) access to a previously exported memory page.

To avoid the cost of an export revocation for well behaved peers, the hypervisor provides an
indication that an exported page is actually still in use by a peer in the form of a revocation cookie in
the second word of the map-table entry for the exported page. This revocation cookie word must be
initialized to zero when a page is exported, and will be over-written by the hypervisor with a
revocation cookie while the exported page is actually in use by the peer guest.

When a page is no longer to be exported, the export mapping permissions should be removed
after which the revocation cookie word can be examined to see if the page is actually still in use by
the peer guest. A revocation cookie value of zero indicates the page is not in use - at which point the
map table entry may be re-used for exporting other pages.

A non-zero value for the revocation cookie indicates that the previously exported page is still in
use by the peer guest. It then becomes a matter of policy for the exporter as to whether it wishes to
forcibly revoke the access permissions for the importer, or simply wait for the importer to clean-up
itself.

To forcibly revoke access permission for the peer guest, the exporting guest simply uses the
ldc_revoke API call with the LDC cookie for the exported page, and the revocation cookie provided in
the export map table.

Removing individual permissions for exported pages must be done by unmapping or revoking
access to the exported page first, then re-exporting it with the new permissions required.

Forcibly revoking access to an exported page, can have catastrophic consequences for the
importer - including failed memory accesses or failed device DMA transactions. Therefore, the
exporter should avoid revocation as far as possible.

Exit of the exporting guest will cause the hypervisor to automatically forcibly revoke exported
page mappings.

An importer of shared memory pages that is intended to be robust should be designed to shield
itself against exported mappings being forcibly revoked at any time either by the exporter or
automatically by the hypervisor if the exporter exits.

Importers wishing to avoid these issues may always use the ldc_copy capability to move data.

Page 4 of 8 Sun Proprietary/Confidential:
Internal Use Only

105

110

115

120

125

130

135

140

145

LDC Map Table Specification Revision 1.1
July 7, 2008

2 API Calls
The following fast trap function numbers are defined by this document;

Version 1.0 APIs

LDC_SET_MAP_TABLE 0xea

LDC_GET_MAP_TABLE 0xeb

LDC_COPY 0xec

Version 1.1 APIs

LDC_MAPIN 0xed

LDC_UNMAP 0xee

LDC_REVOKE 0xef

These LDC shared memory API calls are assigned API group number 0x101 for the purposes of
the versioning API. The ldc_set_map_table, ldc_get_map_table and ldc_copy APIs are usable when
version 1.0 of the API group is negotiated. The ldc_mapin, ldc_unmap and ldc_revoke APIs are available
in addition to the 1.0 APIs when version 1.1 of the API group is negotiated.

2.1 ldc_set_map_table
trap# FAST_TRAP

function# LDC_SET_MAP_TABLE

arg0 channel

arg1 base_ra

arg2 nentries

ret0 status

This API service enables a guest to declare an export map table and bind that map table to the
specified logical domain channel.

The map table must consist of a power of two number of entries specified by the nentri es
argument. The minimum number of entries is 2. The export map table base real address is specified in
base_ra and must be aligned to the same boundary as the overall size of the table in bytes (nentries*8).

Specifying zero (0) for nentries un-binds any map table previously bound to the domain channel.
If nentries is zero, base_ra is ignored. Unbinding a map table does not automatically revoke exported
pages, any pages still in use by an importing domain may remain accessible by that domain for an
indeterminate period of time, or until the exporting domain exits.

2.1.1 Errors
ENORADDR Invalid base_ra or real address range for

the map table

EBADALIGN map table base_ra is not correctly
aligned for the size of the table

EINVAL nentries is invalid, or specified domain
channel does not support a shared memory
interface.

ECHANNEL Illegal domain channel

EWOULDBLOCK Operation would block

Sun Proprietary/Confidential: Page 5 of 8
Internal Use Only

150

155

160

165

170

175

180

185

A Revision 1.1 LDC Map Table Specification
July 7, 2008

2.2 ldc_get_map_table
trap# FAST_TRAP

function# LDC_GET_MAP_TABLE

arg0 channel

ret0 status

ret1 base_ra

ret2 nentries

Retrieves the current map table configuration associated with the given domain channel.
If no map table is configured, both base_ra and nentries are returned as zero.

2.2.1 Errors
ECHANNEL Illegal domain channel

EWOULDBLOCK Operation would block

2.3 ldc_copy
trap# FAST_TRAP

function# LDC_COPY

arg0 channel

arg1 flags

arg2 cookie

arg3 raddr

arg4 length

ret0 status

ret1 ret_length

This API service copies data into or out of a local memory region from or to the logical domain at
the other end of the specified domain channel.

The local memory buffer to be used is a contiguous real address buffer starting at raddr, and of
size length. Both raddr and length must be aligned to 8 byte boundaries. The exported page to be
accessed by the copy operation is identified by cookie.

A copy in or copy out operation is specified by the flags argument, for which the following values
apply:

LDC_COPY_IN 0x0 Copy from remote exporting domain into
buffer of local domain

LDC_COPY_OUT 0x1 Copy from buffer of local domain into
page exported by remote domain

All other values for flags are illegal.
In the event of success, the return status is EOK, and ret_length contains the actual number of

bytes copied. In this event 0 <= ret_length <= length.

Page 6 of 8 Sun Proprietary/Confidential:
Internal Use Only

190

195

200

205

210

215

220

LDC Map Table Specification Revision 1.1
July 7, 2008

2.3.1 Errors
ECHANNEL Illegal domain channel

EINVAL Illegal flags value

EBADALIGN Badly aligned raddr, length or cookie

ENORADDR Bad real address range for local buffer

ENOMAP Cookie refers to invalid map table
entry on exporting side

ENOACCESS Requested copy operation is not
permitted by exporter's map table entry

EBADPGSZ Page size of cookie does not match
page size specified in map table entry

EWOULDBLOCK Operation would block

2.4 ldc_mapin
trap# FAST_TRAP

function# LDC_MAPIN

arg0 channel

arg1 cookie

ret0 status

ret1 raddr

ret2 perms

This API service attempts to map into the local guest's real address space the page identified by
the shared memory cookie . Upon success the service returns the real address the page was mapped at
in raddr, and the access permissions granted to that page by the exporter for cpu and IO access in
perms. Bit 0 in the perms value corresponds to bit 4 in the export table entry - namely CPU read
permission. Bit 1 in perms corresponds to bit 5 in the export map table entry, and so on. Bits 5 through
63 of perms are undefined and should be ignored.

2.4.1 Errors
ECHANNEL Illegal domain channel

EINVAL Illegal flags value

EBADALIGN Badly aligned cookie

ENOMAP Cookie refers to invalid map table
entry on exporting side

ENOACCESS Requested map operation is not
permitted by exporter's map table entry

EBADPGSZ Page size of cookie does not match
page size specified in map table entry

ETOOMANY Too many mapins already exist

EWOULDBLOCK Operation would block

2.5 ldc_unmap
trap# FAST_TRAP

Sun Proprietary/Confidential: Page 7 of 8
Internal Use Only

225

230

235

240

245

250

255

260

265

A Revision 1.1 LDC Map Table Specification
July 7, 2008

function# LDC_UNMAP

arg0 raddr

ret0 status

This API service attempts to unmap from the local guest's real address space the imported page
mapped at the real address raddr .

This API may fail if the guest has not already removed any virtual or IOMMU mappings
associated with this page.

2.5.1 Errors
ENORADDR Illegal raddr value

EBADALIGN Badly aligned raddr

ENOMAP raddr refers to a non-existent
imported page

EWOULDBLOCK Operation would block

2.6 ldc_revoke
trap# FAST_TRAP

function# LDC_REVOKE

arg0 channel

arg1 cookie

arg2 revoke_cookie

ret0 status

This API service attempts to forcibly unmap from a remote guest's real address space a page
previously exported by the local guest. The remote guest is the peer on the other end of the LDC
channel specified by channel. The cookie is the cookie originally passed to that remote guest, the
revoke_cookie is the revocation cookie supplied by the hypervisor to assist this API call. This
unmapping mechanism also forcibly unmaps any virtual or IOMMU mappings that the remote guest
may be using corresponding to this exported page.

Note: As an optimization, in the event that this API fails wi th EWOULDBLOCK, the caller should re-read
the revocation cookie from the corresponding export table entry; in the event that the revocation cookie has been
set to zero, this API should no longer be necessary.

2.6.1 Errors
ECHANNEL Illegal channel value

EINVAL Illegal revoke cookie

EBADALIGN Badly aligned cookie

EWOULDBLOCK Operation would block

Page 8 of 8 Sun Proprietary/Confidential:
Internal Use Only

270

275

280

285

290

295

300

	1 Introduction
	1.1 Map table
	1.1.1 Map table cookies
	1.1.2 Map table entries

	1.2 Copying in and out of a peer's exported memory
	1.3 Mapping page use and restrictions
	1.4 Mapping revocation

	2 API Calls
	2.1 ldc_set_map_table
	2.1.1 Errors

	2.2 ldc_get_map_table
	2.2.1 Errors

	2.3 ldc_copy
	2.3.1 Errors

	2.4 ldc_mapin
	2.4.1 Errors

	2.5 ldc_unmap
	2.5.1 Errors

	2.6 ldc_revoke
	2.6.1 Errors

