
LDoms VIO Protocol Specification Revision v8
March 19, 2009

1.1 Virtual IO communication protocol

Virtual devices, clients and/or services, at the most basic level rely on the underlying
Hypervisor LDC framework (FWARC/2005/733) and LDC transport layer
(FWARC/2006/140) to transfer data. Since both these layers only provide a basic
communication mechanism, VIO devices will first go through a basic handshake procedure
to agree on transmission properties for the channel, before meaningful data can be exchanged
between the two channel endpoints. As part of the handshake they will negotiate a common
version, device attributes, data transfer type, and if necessary shared memory descriptor ring
information. Following a successful handshake, the devices can send and receive data. All
VIO devices use the LDC unreliable transport mode for all communication.

The figure below shows two logical domains with VIO device clients and services
communicating with each other using the VIO protocol and layered on top of the underlying
LDC framework. Domain A has exclusive access to local physical devices through native
device drivers and exports access to these devices over the LDC connection to domain B.

1.1.1 VIO data transfer

VIO devices will transfer data either using packet mode by storing the data in LDC
datagrams or sharing the data using the shared memory capability of the Hypervisor. A VIO
device that uses packet mode, will use either a single LDC datagram packet or use the
fragmentation-reassembly capabilities of the LDC transport layer to packetize and transfer
larger messages. The Hypervisor shared memory support allows guests to share memory
regions in their address space with another guest at the other end of a channel
(FWARC/2006/184). This capability allows VIO client drivers to share segments of memory
with a VIO client or service so that data can be transferred efficiently and much faster,
instead of transferring data over the channel by packetizing each transfer.

Like conventional IO devices, the virtual IO devices that use the Hypervisor shared
memory infrastructure for data transfer, will setup and use descriptor rings. The descriptor
ring is a contiguous circular ring buffer that IO devices use to queue requests, receive
responses and transfer associated data. VIO devices that use shared memory will either share

Page 1 of 26

Domain A Domain B

LDC Transport

VIO Protocol VIO Protocol

Virtual
Disk

Server

Virtual
Network
Switch

Virtual
Network

Virtual
Disk

Block Device

Network Device

LDC Transport

N
at

iv
e

D
is

k
D

rv

N
at

iv
e

N
et

 D
rv

Hypervisor

5

10

15

20

25

LDoms VIO Protocol Specification Revision v8
March 19, 2009

their descriptor rings or send the descriptors as in-band messages. The subsequent sections
describe the content of control and data packets, the transfer protocol and the structure of the
descriptor rings used by VIO devices. It also specifies the device specific content of the LDC
packets and descriptors for virtual network and disk devices.

1.1.2 VIO device message tag

All packets exchanged by VIO devices over a channel will use a common message tag as
the header for the message. The message tag uniquely identifies the session, the type and
subtype of the message. The subtype envelope contains message specific meta-data. All
packets sent/received by VIO devices will specify all message tag fields and no field is
optional. The format of the message tag along with values for the type, subtype and
subtype_env fields are shown below:

1.1.3 VIO device peer-to-peer handshake

For VIO devices, both the server and/or client has to successfully complete a handshake
before data transfer can commence. The handshake can be initiated by either parties. In the
description below each message sent or received is specified using the format <type> /
<subtype> / <subtype_env>.

Page 2 of 26

 6 3 3 1 1
 3 2 1 6 5 8 7 0

+----------------------------+---------------+-------+-------+
| SID | STYPE_ENV | STYPE | TYPE |
+----------------------------+---------------+-------+-------+

Messages Types: Sub-Message Types:
VIO_TYPE_CTRL 0x01 VIO_SUBTYPE_INFO 0x01
VIO_TYPE_DATA 0x02 VIO_SUBTYPE_ACK 0x02
VIO_TYPE_ERR 0x04 VIO_SUBTYPE_NACK 0x04

Sub-Type Envelope :
if type = VIO_TYPE_CTRL (0x0000 - 0x003f)

VIO_VER_INFO 0x0001
VIO_ATTR_INFO 0x0002
VIO_DRING_REG 0x0003
VIO_DRING_UNREG 0x0004
VIO_RDX 0x0005
(reserved) 0x0006 – 0x003f

if type = VIO_TYPE_DATA (0x0040 - 0x007f)
VIO_PKT_DATA 0x0040
VIO_DESC_DATA 0x0041
VIO_DRING_DATA 0x0042
(reserved) 0x0043 – 0x007f

if type = VIO_TYPE_ERR (0x0080 - 0x00ff)
(reserved) 0x0080 – 0x00ff

device class specific sub-type envelopes
VNET_xxx 0x0100 - 0x01ff
VDSK_xxx 0x0200 - 0x02ff
(reserved) 0x0300 - 0xffff

30

35

45

LDoms VIO Protocol Specification Revision v8
March 19, 2009

1.1.3.1 Version negotiation

A handshake is initiated by one peer sending a CTRL/INFO/VER_INFO to the other
endpoint. This message consists of a 'dev_class' field identifying the type of the sending
device, and a 'major/minor' pair which specify the protocol version (the protocol version will
determine the type and amount of data that will be expected to be exchanged in later phases
of the handshake). It also sets the session ID (sid) to a random value by setting it to the lower
32-bits of the CPU tick. The client will send a new session ID with each version negotiation
request. The session ID corresponding to the accepted version gets used as part of each
message sent as part of the session.

If the device class is recognized and the version major/minor numbers are acceptable
then the receiving endpoint responds back with a CTRL/ACK/VER_INFO message leaving
all the parameters unchanged. It also stores the sender's SID for use in future message
exchanges.

If the major version is not supported, then the peer sends back a
CTRL/NACK/VER_INFO message containing the next lower major version it supports. If it
does not support any lower major numbers, it will NACK with the version major and minor
values set to zero. The initiating endpoint can then if it wishes send another
CRTL/INFO/VER_INFO message either with the major number it received from its peer, if it
is acceptable, or with its next lower choice of version. If the major version is supported but
not at the specified minor version level, the receiver will ACK back with a lower supported
minor version number.

Similarly, if the 'dev_class' is unrecognized, the receiver will respond back with
CTRL/NACK/VER_INFO with the parameters unchanged and the handshake is deemed to
have failed. The format of the version exchange packet to shown below:

The currently supported devices types are listed below:

VDEV_NETWORK 0x1

VDEV_NETWORK_SWITCH 0x2

VDEV_DISK 0x3

VDEV_DISK_SERVER 0x4

NOTE: Irrespective of what state the receiving endpoint believes the channel to be in,
receipt of a CTRL/INFO/VER_INFO message at any time will cause the endpoint to reset
any internal state it may be maintaining for that channel and restart the handshake.

1.1.3.2 Attribute exchange

Following the initial version negotiation phase, VIO device clients/services will exchange
device specific attribute information, depending on the device class and the agreed upon API

Page 3 of 26

 6 3 3 3 1 1
 3 9 2 1 6 5 8 7 0

 +----------------------------+---------------+-------+---------+
word 1: | SID | VER_INFO | I/A/N |TYPE_CTRL|
 +------------------+---------+---------------+-------+---------+
word 2: | rsvd |DEV_CLASS| MINOR | MAJOR |
 +------------------+---------+---------------+-----------------+

50

55

60

65

70

75

80

LDoms VIO Protocol Specification Revision v8
March 19, 2009

version. Each attribute information packet is of the type CTRL/INFO/ATTR_INFO and
contains parameters like transfer mode, maximum transfer size, and other device specific
attributes. A ACK response is an acknowledgment by the peer that it will use these attributes
in future transfer. A NACK response is an indication of mismatched attributes. It is up to the
particular device class whether it restarts the handshake or exchanges other attributes. The
device specific section for virtual disk and network devices contains more information about
the exchanged attributes.

1.1.3.3 Descriptor ring registration

Most virtual devices will use the shared memory capabilities of the Hypervisor LDC
framework to send and receive data. Like conventional IO devices, the virtual IO devices will
use descriptor rings to keep track of all transactions being performed by the device. Prior to
using a descriptor ring, and following version negotiation, and other device specific attribute
exchange, VIO clients will register shared descriptor ring information with its channel peer.

A VIO client will register a descriptor ring by sending a CTRL/INFO/DRING_REG
message to its peer. The message will contain information about the number of descriptors in
the ring, the descriptor size, the LDC transport cookie(s) associated with the descriptor ring
memory and the number of cookies. The options field allows certain VIO clients to specify
descriptor ring properties that describe its intended use. The supported values in v1.0 of the
VIO protocol are:

VIO_TX_DRING 0x1 /* Tx descriptor ring */

VIO_RX_DRING 0x2 /* Rx descriptor ring */

On receiving the registration message, the receiver will ACK the message, and in the
ACK provide the sender an unique dring_ident. The dring_ident will be used by the sender to
either unregister the ring or refer to the descriptor ring during data transfer. A NACK to this
message from the receiving end is regarded as a fatal error and the entire session is deemed
to have failed and a new session has to be established by re-initiating a handshake. The
dring_ident field is not used in the registration message and only used during the ACK.

• LDC transport cookie:

Page 4 of 26

 6 3 3 1 1
 3 2 1 6 5 8 7 0

 +----------------------------+--------------+-------+-----------+
 word 1: | SID | ATTR_INFO | I/A/N | TYPE_CTRL |
 +----------------------------+--------------+-------+-----------+
word 2-7: | (device specific attributes) |
 +---+

 6 3 3 1 1
 3 2 1 6 5 8 7 0

 +--------------------------------+-----------+-------+----------+
 word 1: | SID | DRING_REG | I/A/N |TYPE_CTRL |
 +--------------------------------+-----------+-------+----------+
 word 2: | DRING_IDENT |
 +--------------------------------+------------------------------+
 word 3: | DESCRIPTOR_SIZE | NUM_DESCRIPTORS |
 +--------------------------------+-----------+------------------+
 word 4: | NCOOKIES | reserved | OPTIONS |
 +--------------------------------+-----------+------------------+
word 5-n: | (LDC_TRANSPORT_COOKIE * NCOOKIES) |
 +---+

85

90

95

100

105

LDoms VIO Protocol Specification Revision v8
March 19, 2009

A LDC transport cookie (LDC_TRANSPORT_COOKIE) is 16-bytes in size and consists of
cookie_addr and cookie_size fields. The cookie_addr field corresponds to the Hypervisor LDC
shared memory cookie for each page (see FWARC/2006/184) and the cookie_size corresponds
to the actual number of bytes that is shared within the page pointed to by the cookie. If the
descriptor ring memory segment spans multiple pages, an unique transport cookie is used to
refer to each page within the segment. The format of the LDC transport cookie is shown
below:

When two or more successive pages in the descriptor ring memory segment are stored in
consecutive entries in the LDC map table, a single transport cookie can be used refer to all
these page entries. The cookie_addr in this case will still point to first page in the set, but the
cookie_size will correspond to the size spanning all consecutive entries.

A VIO device might typically share multiple descriptor rings with its peer and can choose
to register all descriptor rings with its peer at the time of the initial handshake or at any point
after data transfer has commenced. If a device intends to do all its data transfer using
descriptor rings, it will have to register at least one descriptor ring before data transfer can
commence.

A VIO client can unregister a descriptor ring by sending a CTRL/INFO/DRING_UNREG
message to its peer. It will specify the dring_ident it received from the peer at the time of
registration. The peer will ACK a successful unregister request and NACK the request if the
dring_ident specified is invalid. If subsequent data transfers refer to an unregistered descriptor
ring, the DRING_DATA requests will be NACKd.

1.1.3.4 Handshake completion

After successful completion of all negotiations and required information exchange, an
endpoint will send a RDX message to its peer to indicate that it can now receive data from it.
An endpoint initiates this by sending a CTRL/INFO/RDX message to the receiving end. The
receiver acknowledges the message by sending CTRL/ACK/RDX. Because LDC connections
are duplex, each endpoint has to send a RDX message to its peer before data transfer can
commence in both directions. When a RDX is sent by an endpoint, the endpoint is explicitly
enabling a simplex communication path, whereby it announces that it can now receive data
from its peer. It is VIO device specific whether they require the establishment of a duplex
connection before data transfer can commence. There is no payload associated with a RDX
message and they are not NACKed.

Once the channel has been established (indicated by the receipt of a RDX message) in
either simplex or duplex mode further informational messages may be sent by the initiating

Page 5 of 26

 6 3 3 1 1
 3 2 1 6 5 8 7 0

 +----------------------------+---------------+-------+----------+
 word 1: | SID | DRING_UNREG | I/A/N |TYPE_CTRL |
 +----------------------------+---------------+-------+----------+
 word 2: | DRING_IDENT |
 +---+

 6
 3 0

 +---+
 | HV shared memory cookie (cookie_addr) |
 +---+
 | cookie_size |
 +---+

110

115

120

125

130

135

140

LDoms VIO Protocol Specification Revision v8
March 19, 2009

endpoint or requested by the receiving endpoint as time goes by. The content and effect these
messages have on the session is device specific. These messages are also regarded as in-band
notifications.

1.1.4 VIO data transfer modes

VIO devices can send data to their peers over a channel using different transfer modes.
During the handshake, each device will specify to its peer the transfer mode (xfer_mode) it
intends to use as part of the attribute info message. The device specific attribute message
format specifies the location of the xfer_mode field in the message. The supported transfer
modes in versions 1.0 and 1.1 of the VIO protocol are:

VIO_PKT_MODE 0x1 /* packet based transfer */

VIO_DESC_MODE 0x2 /* in-band descriptors */

VIO_DRING_MODE 0x3 /* descriptor rings */

In version 1.2, the VIO protocol will allow concurrent use of the different transfer modes,
specifically packet based transfer and descriptor ring modes. In order to do this, the
xfer_mode field in the attribute info message will be changed to a bit mask with the following
values:

VIO_PKT_MODE 0x1 /* packet based transfer */

VIO_DESC_MODE 0x2 /* in-band descriptors */

VIO_DRING_MODE 0x4 /* descriptor rings */

In version 1.2, the virtual network and switch clients will use the packet transfer mode in
addition to the descriptor ring mode (xfer_mode=0x5) to send high priority ethernet frames
as data packets for faster out-of-band processing.

1.1.4.1 Packet based transfer

As discussed in the earlier section, VIO packets always consist of a generic message tag
header and a sequence id (which is incremented with each packet sent). Additionally, if a
VIO device intends to use packet mode for sending data, it can use up to 40 bytes of a LDC
datagram without using LDC transport's packet fragmentation capability. Larger transfers
will require the use of the fragmentation-reassembly support provided by the underlying
LDC transport. The format of a LDC packet containing data is shown above.

Page 6 of 26

 6 3 3 1 1
 3 2 1 6 5 8 7 0

 +----------------------------+----------+----------+------------+
word 1: | SID | RDX | INFO/ACK | TYPE_CTRL |
 +----------------------------+----------+----------+------------+

 6 3 3 1 1
 3 2 1 6 5 8 7 0

 +----------------------------+------------+-------+----------+
 word 1: | SID | PKT_DATA | I/A/N |TYPE_DATA |
 +----------------------------+------------+-------+----------+
 word 2: | SEQ_NO |
 +--+
word 3-7: | DATA_PAYLOAD |
 +--+

145

150

155

160

165

170

LDoms VIO Protocol Specification Revision v8
March 19, 2009

1.1.4.2 Descriptor rings

As mentioned in the earlier section, a descriptor ring is a contiguous circular ring buffer
VIO devices use to queue requests, receive responses and transfer associated data. Each
descriptor in the ring holds request and response parameters specific to the particular device
along with opaque cookies that point to the page(s) of memory that are being shared for
reading and/or writing. The descriptor ring will utilize Hypervisor shared memory support,
so that clients at both ends of the channel can modify the contents of the descriptor(s).

Each VIO client will specify that it intends to use descriptor rings, as part of the attribute
info exchange. It will also specify whether or not it intends to share the descriptors using
shared memory or send each descriptor as an in-band message. If it shares the descriptor
ring using shared memory, it will register at least one descriptor ring with its peer at the
other end.

Each entry in a descriptor ring consists of a common descriptor ring entry header and the
descriptor payload as shown in the figure below. The descriptor payload consists of fields
that are device class specific and are discussed in more detail in sec 1.1.6 and 1.1.7.

The descriptor dstate specifies the state of the the descriptor. The valid state values are:

VIO_DESC_FREE 0x1

VIO_DESC_READY 0x2

VIO_DESC_ACCEPTED 0X3

VIO_DESC_DONE 0x4

Initially when a descriptor ring is allocated, all entries in the ring are marked with value
of VIO_DESC_FREE. When a client queues one or more requests, it will change the flags
value for the corresponding descriptor(s) to VIO_DESC_READY. It will then send a message
to its peer requesting it to process the descriptors. The client that is processing the descriptor
will first change the state to VIO_DESC_ACCEPTED, acknowledging receipt of the request
and prior to processing the request. On completing the request, it will update the descriptor
with its response and change the value of the flag to VIO_DESC_DONE. The client that
initiated the request, will take the appropriate action after seeing the request as been marked
as VIO_DESC_DONE and then change it to VIO_DESC_FREE. If the state of a descriptor
transitions to an unexpected state, the behavior is undefined. A VIO device under these
circumstances, might either reset the session and restart the handshake, or send an error
message to its peer.

When the requesting client updates one or more descriptors and marks them as ready for
processing, it will send a DATA/INFO/DRING_DATA message to its peer at the other end
of the channel. The message will contain the dring_ident the requester received at the time of
registering the descriptor ring. It also specifies the start and end index corresponding to the
descriptors that have been updated. If end index value specified is -1, the receiver will process
all descriptors starting with the start index and continue until it does not find a descriptor
marked VIO_DESC_READY. The receiver at this point will send an implicit ACK to the

Page 7 of 26

 6
 3 9 8 7 0

+---+---+-----------+
| reserved | A | DSTATE |
+---+---+-----------+
| (descriptor payload) |
+---+

175

180

185

190

195

200

205

210

LDoms VIO Protocol Specification Revision v8
March 19, 2009

sender to let it know that it is done processing all requests. Subsequently, if the sender marks
additional entries as VIO_DESC_READY, it will re-initiate processing by sending another
DRING_DATA request.

If the start and end index, either overlap with requests sent earlier or correspond to
descriptors not in VIO_DESC_READY state, the request will be NACKed by the receiver.

The requester can also request an explicit acknowledgment from the client processing the
request (to track progress) by setting the (A)cknowledge field in the descriptor. The client, after
processing the descriptor (changes state as VIO_DESC_DONE), will send a
DATA/ACK/DRING_DATA message with the dring_ident for this descriptor ring and
end_idx equal to this descriptor.

When the requester sends requests with an end_idx = -1, the proc_state field in the
ACK/NACK message, is used by the receiver to indicate its current processing state. The
valid proc_state field values are:

VIO_DP_ACTIVE 0x1 /* active processing req */

VIO_DP_STOPPED 0x2 /* stopped processing req */

If the receiver continues to process requests or is waiting for more descriptors to be
marked VIO_DESC_READY, it will ACK with proc_state set to VIO_DP_ACTIVE. Instead, if
the receiver stops after processing the last ACK/NACK, and is waiting for an explicit
DATA/INFO/DRING_DATA message, it will set the proc_state set to VIO_DP_STOPPED.
The proc_state value is then used by the requester to determine when the receiver's state, and
accordingly sends an explicit DRING_DATA message when more requests are queued.

It is not always necessary that clients need to register a shared descriptor ring to make
use of the HV shared memory infrastructure. A simpler client can still use the shared memory
capabilities and instead of sharing the descriptor ring, it will send the descriptor itself as in-
band data. The DESC_HANDLE in the pkt is an opaque handle that corresponds to the
descriptor in the sender's ring. The content of the in-band descriptor packet is shown below:

Page 8 of 26

 6 3 3 1 1
 3 2 1 6 5 8 7 0
 +----------------------------+------------+-------+----------+
 word 1: | SID | DESC_DATA | I/A/N |TYPE_DATA |
 +----------------------------+------------+-------+----------+
 word 2: | SEQ_NO |
 +--+
 word 3: | DESC_HANDLE |
 +--+
 | (descriptor payload) |
 +--+

 6 3 3 1 1
 3 2 1 6 5 8 7 0
 +----------------------------+------------+-------+------------+
 word 1: | SID | DRING_DATA | I/A/N | TYPE_DATA |
 +----------------------------+------------+-------+------------+
 word 2: | SEQ_NO |
 +--+
 word 3: | DRING_IDENT |
 +----------------------------+---------------------------------+
 word 4: | END_IDX | START_IDX |
 +----------------------------+--------------------+------------+
 word 5: | reserved | PROC_STATE |
 +---+------------+

215

220

225

230

235

LDoms VIO Protocol Specification Revision v8
March 19, 2009

In case of both a DRING_DATA and DESC_DATA message, if the receiver gets a data
packet out of order (as indicated by a non-consecutive sequence number) then it will NACK
the packet and will not process any further data packets from this client. If there are no errors
the receiver will ACK the receipt of descriptor ring or descriptor data packets if there is an
explicit request by the sender to ACK a data packet by setting the (A)cknowledge bit in the
descriptor.

Implementation Note: Upon receipt of a NACK, the sending client can either try to recover or stop
sending data and return to initial state and restart the channel negotiation again.

1.1.5 Virtual IO Dynamic Device Service (DDS)

Virtual IO devices following the initial handshake, send and receive data using the
packet and/or descriptor based modes as described in the earlier sections. This forms the
under pinnings of the virtual IO data transfer infrastructure in a LDoms environment. While
compelling for a variety of application workloads, virtualized I/O still does not provide high
performance I/O capabilities that certain I/O oriented workloads require. The Hybrid I/O
model provides the opportunity to share device resources across multiple client domains
with better granularity while overcoming the performance bottlenecks of virtualized I/O.

A new control message type will be added in VIO protocol versions 1.3 and higher to
support the Hybrid IO model. The new Dynamic Device Service (DDS) control message, with
a subtype envelope value of VIO_DDS_INFO, will provide virtual IO devices and services the
ability to exchange and share physical device resource information with their peers.

VIO_DDS_INFO 0x6 /* DDS information */

Each DDS control message will allow a device to share or reclaim a resource, or change
the properties of a resource. A peer on receiving a CTRL/INFO/DDS_INFO message, will
take necessary action and then either ACK or NACK the message depending on whether the
requested operation was successful or not.

Each VIO_DDS_INFO message, in addition to the VIO msg header, includes a DDS
message header consisting of a DDS class, subclass, and request_id fields. Though the format of
the DDS message header itself is generic to the VIO protocol, the DDS message class and
sub-class values are specified by the virtual network or disk devices. The DDS request ID in
the header will used to correlate the INFO requests with ACK and NACK responses. The
DDS msg format is shown below:

Device specific class and subclass values, including contents of the DDS message is
discussed in section 1.1.7.5. The class value ranges reserved for various VIO device classes is
specified below:

DDS_GENERIC_XXX 0x0 - 0xf /* Generic DDS class */

DDS_VNET_XXX 0x10 – 0x1f /* vNet DDS class */

Page 9 of 26

 6 3 3 1 1
 3 2 1 6 5 8 7 0
 +----------------------------+------------+--------+----------+
 word 1: | SID | DDS_INFO | I/A/N |TYPE_CTRL |
 +----------------------------+------------+--------+----------+
 word 2: | DDS_REQUEST_ID | reserved |SUBCLASS| CLASS |
 +----------------------------+---------------------+----------+
word 3-7: | (dds message payload) |
 +---+

240

245

250

255

260

265

270

LDoms VIO Protocol Specification Revision v8
March 19, 2009

DDS_VDSK_XXX 0x20 – 0x2f /* vDisk DDS class */

reserved 0x30 – 0xff /* reserved */

1.1.6 Virtual Disk specific data

In the protocol outlined above, the attribute exchange and descriptor payload contents
are undefined and left to be specified by the VIO devices. This section describes the contents
of these packets for use by both the virtual disk client and server to exchange data. The vDisk
client, following an attribute exchange, will send to the server block disk read and write
requests, in addition to disk control requests. The server will export each block device over an
unique channel, and accept requests from the client, once a session has been established.

1.1.6.1 Attribute information

During the initial handshake, as part of the CTRL/INFO/ATTR_INFO message, the
virtual disk server and client exchange information about the transfer protocol and the
physical device itself. The format of the attribute contents is shown below:

The vDisk client will provide the server with the transfer mode (xfer_mode) and the
requested maximum transfer size (max_xfer_sz) it intends to use for sending disk requests to
the server.

The vdisk_block_size is specified in bytes. The vdisk_size and max_xfer_sz are specified in
multiples of the vdisk_block size.

For version 1.0 of the vDisk protocol the client's request must set vdisk_block_size to the
minimum block size the client wishes to handle, and specify the max_xfer_size. If the server
cannot support the requested vdisk_block_size or max_xfer_sz requested by the client, but can
support a lower size, it will specify its vdisk_block_size and/or a lower max_xfer_sz in its ACK.
If the client has no minimum block size requirement it may use the value of 0 as its requested
vdisk_block_size, in this case the max_xfer_size in the client's attribute request to the server is
interpreted as being specified in bytes. Either client or server may simply reset the LDC
connection if they fail to agree on communication attributes.

For version 1.1 of the vDisk protocol, the vDisk server can set vdisk_size to -1 if it can not
obtain the size at the time of the handshake. This can happen when the underlying disk has
been reserved by another system. Under these circumstances, the vDisk client can retrieve the
size at a later time, after the completion of the handshake, using the
VD_OP_GET_CAPACITY operation.

 If either client or server cannot support the specified transfer mode, the connection will
be reset and the handshake may be restarted. The server in its ACK message will also

Page 10 of 26

 6 3 3 2 2 1 1
 3 2 1 4 3 6 5 8 7 0
 +-------------------------+------+----------+-------+---------+
 word 1: | SID | ATTR_INFO | I/A/N |TYPE_CTRL|
 +-------------------------+------+----------+-------+---------+
 word 2: | VDISK_BLOCK_SIZE | rsvd | VD_MTYPE |VD_TYPE|XFER_MODE|
 +--------------------------------+----------+-------+---------+
 word 3: | OPERATIONS |
 +---+
 word 4: | VDISK_SIZE |
 +---+
 word 5: | MAX_XFER_SZ |
 +---+

275

280

285

290

295

300

305

LDoms VIO Protocol Specification Revision v8
March 19, 2009

provide the vdisk type (vd_type), vdisk_block_size and vdisk_size to the client. The supported
types are:

VD_DISK_TYPE_SLICE 0x1 /* slice in blk device */

VD_DISK_TYPE_DISK 0x2 /* entire blk device */

All other disk types are reserved and for version 1.0 of the vdisk protocol should be
considered as an error.

Only in protocol versions 1.1 and higher of the vdisk protocol, the server in its ACK
message will provide the client the vdisk_size (specified as a multiple of the block size), and
the vdisk media type (vdisk_mtype). The supported vdisk media types are:

VD_MEDIA_TYPE_FIXED 0x1 /* Fixed device */

VD_MEDIA_TYPE_CD 0x2 /* CD device */

VD_MEDIA_TYPE_DVD 0x3 /* DVD device */

All other disk media types are reserved and for version 1.1 of the vdisk protocol should
be considered as an error.

Both these fields are reserved and not available in version 1.0 of the vdisk protocol. Clients
should use the disk geometry information (see section 1.1.5.11) to compute the vdisk size.

The operations field is a bit-mask specifying all the disk operations supported by the
server, where each bit position, if set, corresponds to the operation command supported by
the server. The list of supported operations encodings is described in section 1.1.6.2.

1.1.6.2 vDisk descriptors

Virtual disk clients will send their disk requests by queueing them in descriptors as part
of a shared descriptor ring.

As requests are initiated only by the client, and the buffers pointed to by each descriptor
are used for both writing and reading disk blocks, the vDisk client will register the descriptor
ring as both a Tx and Rx ring. In the case of descriptor rings that are not shared, the virtual
disk client will send the requests as in-band descriptor messages.

The descriptor payload is formatted as follows:

The payload contains the operation being performed.

Page 11 of 26

 6 3 3 2 2 1 1
 3 2 1 4 3 6 5 8 7 0

 +------------------------------+-----+-----+-------+---------+
 | REQ_ID |
 +------------------------------+-----------+-------+---------+
 | STATUS | reserved | SLICE |OPERATION|
 +------------------------------+-----------+-------+---------+
 | OFFSET |
 +--+
 | SIZE |
 +------------------------------+-----------------------------+
 | reserved | NCOOKIES |
 +------------------------------+-----------------------------+
 | LDC_COOKIE * NCOOKIES |
 +--+

310

315

320

325

330

335

LDoms VIO Protocol Specification Revision v8
March 19, 2009

The offset field specifies the relative disk block address when doing a block read or write
operation to the disk. This corresponds to the block offset from the start of the disk, or the
disk slice as appropriate. It is specified in terms of the vdisk_block_size received from the
server.

The size field specifies the number of blocks being read or written when doing a
VD_OP_BREAD or VD_OP_BWRITE operation. In the case where the vdisk_block_size in the
client's attribute request is zero the size is interpreted as being specified in bytes.

For each client request sent to the server, the server will process the descriptor contents
and submit the request to the device. Each virtual disk request is identified by an unique
req_id. The operation field specifies the operation being done on the device. The server will then
return the status of the operation in the same descriptor but with the 'status' field containing
the outcome of the operation. The supported values in version 1.0 of the vdisk protocol are:

VD_OP_BREAD 0x01 /* Block Read */

VD_OP_BWRITE 0x02 /* Block Write */

VD_OP_FLUSH 0x03 /* Flush disk contents */

VD_OP_GET_WCE 0x04 /* Get W$ status */

VD_OP_SET_WCE 0x05 /* Enable/Disable W$ */

VD_OP_GET_VTOC 0x06 /* Get VTOC */

VD_OP_SET_VTOC 0x07 /* Set VTOC */

VD_OP_GET_DISKGEOM 0X08 /* Get disk geometry */

VD_OP_SET_DISKGEOM 0x09 /* Set disk geometry */

VD_OP_GET_DEVID 0x0b /* Get device ID */

VD_OP_GET_EFI 0x0c /* Get EFI */

VD_OP_SET_EFI 0x0d /* Set EFI */

VD_OP_xxx 0x0e - 0xff /* reserved for 1.0 */

In addition, the following values are supported in version 1.1 of the vDisk protocol:

VD_OP_SCSICMD 0x0a /* SCSI control command */

VD_OP_RESET 0x0e /* Reset disk */

VD_OP_GET_ACCESS 0x0f /* Get disk access */

VD_OP_SET_ACCESS 0x10 /* Set disk access */

VD_OP_GET_CAPACITY 0x11 /* Get disk capacity */

VD_OP_xxx 0x12 - 0xff /* reserved for 1.1 */

As mentioned before, the vDisk server at the time of the initial attribute exchange will
specify the bit mask of operations it supports. If the server does not support a required
operation, it is up to the specific client implementation to decide whether it returns an error
or internally implements the operation. All operations can be optionally implemented by a
particular vDisk server implementation. If an operation is supported by the server, the
outcome of the operation will be always available in the descriptor ring entry status field.

The ncookies and ldc_cookie fields refer to the segment of memory from/to which data is

Page 12 of 26

340

345

350

355

360

365

370

LDoms VIO Protocol Specification Revision v8
March 19, 2009

being read/written. See sec 1.1.3.3 for more information about the LDC transport cookie.

1.1.6.3 Disks and slices

A vdisk server may export either an entire disk device, or a simple slice (or partition) of a
disk to a client as configured by the administrator. In the event that an entire disk is exported
to a client, it is client policy as to how it determines the partitioning information or re-
partitions that whole virtual disk.

To enable a server to potentially mount or examine a disk created by a client, the server
may elect to offer the VD_OP_GET/SET_VTOC operations to its client. If the client elects to
use these operations to retrieve partition information, the client when it reads or writes to the
disk must specify the slice being accessed - in this case the offset field for those transactions is
specified relative to the start of the referenced slice (not the start of the disk).

A client is not required to use the VTOC operations, and the server is not required to
support them. In either of these events, if the client wishes to use the disk exported by the
server it must read (and write - if re-partitioning) its own partition table at some client
specific location on the disk.

Attempts to mix reads and writes with get and set VTOC operations to read/manipulate
disk partition information have undefined results, and clients are required (though this may
only be optionally enforced by the server) to use a consistent approach to discovering or
modifying disk partition information.

The slice field is currently only used for VD_OP_BREAD and VD_OP_BWRITE. For all
other operations it is ignored, and should be set to zero. If the disk served is of type
VD_DISK_TYPE_SLICE the slice field is treated as reserved; i.e. must be set to zero, and
ignored by the consumer. For a VD_DISK_TYPE_DISK the slice field refers to the disk slice or
partition on which a specific operation is being done - the field only has meaning for disk
servers that export a GET_VTOC service so that clients know which slice corresponds to
which partition.

If the vDisk client does not use the VTOC service, it must specify a value of 0xff for the
slice field for read and write transactions so that the server knows that the offset specified is
the absolute offset relative to the start of a disk. Mixing read and write transactions to specific
slices together with absolute disk transactions has undefined results, and clients must not do
this. A client must close the disk channel and re-negotiate the vDisk service if it wishes to
switch between using slice based access (explicitly passing the value of the slice being
accessed) and absolute access (where slice is 0xff) when the server offers a disk type of
VD_DISK_TYPE_DISK.

1.1.6.4 VDisk Block Read command (VD_OP_BREAD)

This command performs a basic read of a block from the device service. The decriptor
ring entry for this command contains the offset and number of blocks to read together with
the LDC cookies for the data buffers.

Once completed the status field in the descriptor is updated with the completion status of
the operation.

1.1.6.5 VDisk Block Write command (VD_OP_BWRITE)

This command performs a basic write of a block from the device service. The decriptor

Page 13 of 26

375

380

385

390

395

400

405

410

415

LDoms VIO Protocol Specification Revision v8
March 19, 2009

ring entry for this command contains the offset and number of blocks to write together with
the LDC cookies for the data buffers.

Once completed the status field in the descriptor is updated with the completion status of
the operation.

1.1.6.6 VDisk Flush command (VD_OP_FLUSH)

This command performs a barrier and synchronisation operation with the disk service.
There are no additional parameters in the decriptor entry for this command.

Before completing this command, the disk service will ensure that all previously executed
write operations are flushed to their respective disk devices, and all previously executed
reads are completed and their data returned to the client.

1.1.6.7 VDisk Get Write Cache enablement status (VD_OP_GET_WCE)

This command is used by a virtual disk client to query whether write-caching has been
enabled on the disk being exported by the vDisk server. The payload is a single 32 bit
unsigned integer. A value of 0 means write caching is not enabled, a value of 1 means write-
caching is enabled (a flush operation should be used as a barrier to ensure writes are forced
to non-volatile storage). All other values are reserved and have undefined meaning.

1.1.6.8 VDisk Enable/Disable Write Cache (VD_OP_SET_WCE)

This command is used a virtual disk client to enable or disable the write cache on the disk
being exported by the vDisk server. The payload is a single 32 bit integer. A value of zero
disables write-caching on the server side. A value of 1 enables write caching on the server
side. All other values are reserved and are treated as errors by the vDisk server.

1.1.6.9 VDisk Get Volume Table of Contents (VD_OP_GET_VTOC)

This command is used to return information about the table of contents for the disk
volume a client is attached to. The successful result of this command includes the following
data structure being returned to the client in the buffer described by the LDC cookie(s) in the
descriptor ring.

The returned data structure has the following header format:

The volume name is an 8 character ASCII name for the volume.

The ASCII label is a 128 character ASCII label assigned to this disk volume. This is
distinct from the actual volume name.

The field sector_size is the size in bytes of each sector of the disk volume.

Page 14 of 26

 6 3 3 1 1
 3 2 1 6 5 0
 +--+
 word 0: | Volume name |
 +----------------------------+----------------+--------------+
 word 1: | reserved | num_partitions | sector_size |
 +----------------------------+----------------+--------------+
 word 2: | ASCII Label |
 +--+
 word 3: | ASCII Label continued |
 +--+

420

425

430

435

440

445

LDoms VIO Protocol Specification Revision v8
March 19, 2009

The field num_partitions is the number of partitions on this disk volume. The header
described above is immediately followed by the structure below repeated once for each of the
number of partitions specified by the header:

Reserved fields should be ignored.

1.1.6.10 VDisk Set Volume Table of Contents (VD_OP_SET_VTOC)

This command is used by a virtual disk client to set the table of contents for the disk
volume the client is attached to.

The supplied data structure has the same format as for the get VTOC command
(VD_OP_GET_VTOC). Reserved fields must be set to zero.

1.1.6.11 VDisk Get Disk Geometry (VD_OP_GET_DISKGEOM)

This command is used to return the geometry information about the disk volume a client
is attached to. The successful result of this command includes the following data structure
being returned to the client in the buffer described by the LDC cookie(s) in the descriptor
ring.

The returned data structure has the following format:

Byte offset Size in
bytes

Field name Description

0 2 ncyl Number of data cylinders

2 2 acyl Number of alternate cylinders

4 2 bcyl Cylinder offset for fixed head area

6 2 nhead Number of heads

8 2 nsect Number of sectors

10 2 intrlv Interleave factor

12 2 apc Alternative sectors per cylinder (SCSI only)

14 2 rpm Revolutions per minute

16 2 pcyl Number of physical cylinders

18 2 write_reinstruct Number of sectors to skip for writes

20 2 read_reinstruct Number of sectors to skip for reads

Page 15 of 26

 6 3 3 1 1
 3 2 1 6 5 0

 +----------------------------+----------------+--------------+
 word X+0: | reserved | perm flags |ID tag of part|
 +----------------------------+----------------+--------------+
 word X+1: | start block number of partition |
 +--+
 word X+2: | number of blocks in partition |
 +--+

450

455

460

LDoms VIO Protocol Specification Revision v8
March 19, 2009

1.1.6.12 VDisk Set Disk Geometry (VD_OP_SET_DISKGEOM)

This command is used by a virtual disk client to set the geometry information for the disk
volume the client is attached to.

The supplied data structure has the same format as the get disk geometry command
(VD_OP_GET_DISKGEOM).

1.1.6.13 VDisk SCSI Command (VD_OP_SCSICMD)

This command is used to deliver a SCSI packet to the vDisk server. It is implementation
specific as to whether the server passes the received packet directly to a SCSI drive or
whether it chooses to simulate the SCSI protocol itself. A server must not advertise this
command if it does not support either capability.

 The LDC cookie in the descriptor ring should point to the following data structure which
describes the command arguments. The same buffer is also used to return the result of the
command to the vDisk client.

 The cstat field reports to the vDisk client the SCSI command completion status. SCSI
command completion status are described in the SCSI Architecture Model documents3.

 The sstat field reports to the vDisk client the SCSI command completion status of the
SCSI sense request. SCSI command completion status are described in the SCSI Architecture
Model documents3. The sstat field is defined only if a SCSI sense buffer was provided and if
the SCSI command completion status indicates that sense data should be available.

The tattr field defines the task attribute of the SCSI command to execute. The possible

Page 16 of 26

 6 4 4 4 3 3 3 2 2 1 1 0 0 0
 3 8 7 0 9 2 1 4 3 6 5 8 7 0
 +----------------+--------+--------+--------+--------+--------+--------+
word 0: | TIMEOUT |reserved| CRN | TPRIO | TATTR | SSTAT | CSTAT |
 +----------------+--------+--------+--------+--------+--------+--------+
word 1: | OPTIONS |
 +--+
word 2: | CDB LENGTH |
 +--+
word 3: | SENSE LENGTH |
 +--+
word 4: | DATA-IN SIZE |
 +--+
word 5: | DATA-OUT SIZE |
 +--+
word 6: | CDB DATA |
 : : :
word I: | |
 +--+
word I+1 | SENSE DATA |
 : : :
word J: | |
 +--+
word J+1: | DATA-IN |
 : : :
word K: | |
 +--+
word K+1: | DATA-OUT |
 : : :
word L: | |
 +---+

465

470

475

480

LDoms VIO Protocol Specification Revision v8
March 19, 2009

attributes are:

• 0x00 no task attribute defined

• 0x01 SIMPLE

• 0x02 ORDERED

• 0x03 HEAD OF QUEUE

• 0x04 ACA

 Task attributes are defined in the SCSI Architecture Model documents3. The vDisk server
may ignore the task attribute.

 The tprio field is a 4-bit value defining the task priority assigned to the SCSI command to
execute. The task priority is defined in the SCSI Architecture Model documents3. The vDisk
server may ignore the task priority.

 The crn field is a command reference number (CRN). SCSI command reference numbers
are defined in the SCSI Architecture Model documents3. The vDisk server may ignore the
CRN.

The reserved field is reserved and should not be used.

The timeout field is the time in seconds that the vDisk server should allow for the
completion of the command. If it is set to 0 then no timeout is required.

The options field is a bitmask specifying options for the SCSI command to execute. The
possible bitmask values are:

• 0x01 (CRN)
This bitmask indicates that a command reference number (CRN) is specified in the
request.

• 0x02 (NORETRY)
This bitmask indicates that the vDisk server should not attempt any retry or other
recovery mechanisms if the SCSI command terminates abnormally in any way.

The Command Descriptor Block (CDB) length field is set by the vDisk client and indicates the
number of bytes available in the CDB field.

The sense length field is initially set by the vDisk client and indicates the number of bytes
available in the sense field for storing sense data for SCSI commands returning with a SCSI
command completion status indicating that sense data should be available. After the
execution of the SCSI command, the vDisk server sets the sense length field to the number of
bytes effectively returned in the sense field, or 0 if no sense data were returned.

The data-in size field is initially set by the vDisk client and indicates the number of bytes
available for data transfers to the data-in field. After the execution of the SCSI command, the
vDisk server sets the data-in size field to the number of bytes effectively transfered to the data-
in field, or 0 if no data were transfered.

The data-out size field is initially set by the vDisk client and indicates the number of bytes
available for data transfers from the data-out field. After the execution of the SCSI command,
the vDisk server sets the data-out size field to the number of bytes effectively transfered from
the data-out field, or 0 if no data were transfered.

The CDB field contains the SCSI Command Descriptor Block (CDB) which defines the

Page 17 of 26

485

490

495

500

505

510

515

520

525

LDoms VIO Protocol Specification Revision v8
March 19, 2009

SCSI operation to be performed by the vDisk server. The structure of the CDB is part of the
SCSI Standart Architecture3. The size of the CDB field should be equal to the number of bytes
indicated by the vDisk client in the CDB length field rounded up to a multiple of 8 bytes.

The sense field contains sense data for SCSI commands returning with a SCSI command
completion status indicating that sense data should be available.. The structure of sense data
is described in the SCSI Primary Commands documents3. The size of the sense field should be
equal to the number of bytes indicated by the vDisk client in the sense length field rounded up
to a multiple of 8 bytes.

The data-in field contains command specific information returned by the vDisk server at
the time of command completion. The validity of the returned data depends on the SCSI
command completion status. The size of the data-in field should equal to the number of bytes
indicated by the vDisk client in the data-in size field rounded up to a multiple of 8 bytes.

The data-out field contains command specific information to be sent to the vDisk server.
The size of the data-out field should be equal to the number of bytes indicated by the vDisk
client in the data-out size field rounded up to a multiple of 8 bytes.

1.1.6.14 VDisk Get Device ID (VD_OP_GET_DEVID)

Device IDs1 are persistent unique identifiers for devices in Solaris, and provide a means
for identifying a device, independent of device's current name or instance number.

This command is used to return the device ID of a disk volume backing a virtual disk. A
successful completion of this command will result in the following data structure being
returned to the client in the buffer described by the LDC cookie(s) in the descriptor ring.

The returned data structure has the following format:

The field devid contains the ID of the disk volume. The field length in the request should
be set to the size of the buffer allocated by the vdisk client for storing the device ID. The vdisk
server will then set it to the size of the returned devid in its response. The returned device ID
value will be truncated if the provided space is not large enough to store complete ID. The
field type specifies the type of device ID.

Please refer to PSARC cases 1995/352, 2001/559, 2004/504, for a description of device
IDs along and a list of the device ID type values.

1.1.6.15 VDisk Get EFI Data (VD_OP_GET_EFI)

This command is used to get EFI data for the disk volume a client is attached to. A
successful completion of this command will result in the following data structure with the
EFI data in the data field being returned to the client in the buffer described by the LDC
cookie(s) in the descriptor ring.

 The returned data structure has the following format:

Page 18 of 26

 6 4 4 3 3
 3 8 7 2 1 0

 +-------------+--------------+-------------------------------+
 word 0: | reserved | type | length |
 +----------------------------+-------------------------------+
 word 1-N: | devid |
 +--+

530

535

540

545

550

555

560

LDoms VIO Protocol Specification Revision v8
March 19, 2009

The field LBA is the logical block address of the disk volume to get EFI data. Data
returned in the EFI data field is determined by the value specified in the LBA field:

• If LBA is equal to 1, then the vdisk server should return the GUID Partition Table
Header (GPT).

• If LBA is equal to the PartitionEntryLBA field from the GUID Partition Table Header,
then the vdisk server should return the GUID Partition Entry array (aka GPE).

If the EFI data buffer is not large enough to return the request data then the vdisk server
should return an error. The field length is the maximum number of bytes that can be stored in
the data field of the provided structure.

The format of the GUID Partition Table Header and GUID Partition Entry are beyond the
scope of this document and are defined in the Extensible Firmware Interface Specification2.

1.1.6.16 VDisk Set EFI Data (VD_OP_SET_EFI)

This command is used by a virtual disk client to set EFI data for the disk volume the
client is attached to. The supplied data structure has the same format as for the get EFI
command (VD_OP_GET_EFI).

The value of the LBA field determines the content of the EFI data field and the action
taken by the vdisk server.

• If LBA = 1, then the vdisk server should use the contents of the EFI data field to set
the GUID Partition Table Header (aka GPT).

• If LBA is equal to the PartitionEntryLBA field from the GUID Partition Table Header,
then the vdisk server should the contents of the EFI data field to set the GUID
Partition Entry array (aka GPE).

The format of the GUID Partition Table Header and GUID Partition Entry are beyond the
scope of this document and are defined in the Extensible Firmware Interface Specification2.

1.1.6.17 VDisk Reset (VD_OP_RESET)

This command is used by the vDisk client to request the vDisk server to reset the disk or
device being exported by it. It is implementation independent as to whether the server
physically resets the underlying device or it chooses to only simulate a device reset.

Following a reset, any exclusive access rights or options that might have been set using
the VD_OP_SET_ACCESS operation should be cleared in a way similar to receiving a
VD_OP_SET_ACCESS operation with the CLEAR option.

In the event of a connection loss between the vDisk client and server, the vDisk server
should behave as if it has received a VD_OP_RESET operation. It should clear any exclusive

Page 19 of 26

 6
 3 0

 +--+
 word 0: | LBA |
 +--+
 word 1: | length |
 +--+
 word 2-N: | EFI data |
 +--+

565

570

575

580

585

590

LDoms VIO Protocol Specification Revision v8
March 19, 2009

access rights or options set using the VD_OP_SET_ACCESS operation. A vDisk server
implementing the disk reset is required to complete the operation prior to reestablishing the
connection with the vDisk client.

1.1.6.18 VDisk Get Access (VD_OP_GET_ACCESS)

This command is used by the vDisk client to query whether it has access to the disk being
exported by the vDisk server. The response has a payload of a single 64 bit unsigned integer,
and may contain the following values:

• 0x00 (DENIED)
The access to the disk is not allowed.

• 0x01 (ALLOWED)
The access to the disk is allowed.

1.1.6.19 VDisk Set Access (VD_OP_SET_ACCESS)

 This command is used by the vDisk client to request exclusive access to the disk being
exported by the vDisk server. The payload is a single 64 bit unsigned integer. It can either
contain a value of 0, or a bitmask of the following non-zero values:

• 0x00 (CLEAR)
The vDisk server should clear any exclusive access rights, and restore non-exclusive,
non-preserved access rights. In particular, the vDisk server should relinquish any
exclusive access rights that have been acquired with the EXCLUSIVE flag, and
disable any mechanism to preserve exclusive access rights enabled with the
PRESERVE flag.

• 0x01 (EXCLUSIVE)
The vDisk server should acquire exclusive access rights to the disk. When the vDisk
server has exclusive access rights to the disk then any access to the disk from another
host should fail. If another host already has acquired exclusive access rights to the
disk then the vDisk server should fail to acquire exclusive access rights.

• 0x02 (PREEMPT)
The vDisk server can forcefully acquire exclusive access rights to the disk. If another
host has already acquired exclusive access rights to the disk, then the vDisk server
can preempt the other host and acquire exclusive access rights.

• 0x04 (PRESERVE)
The vDisk server should try to preserve exclusive access rights to the disk. The vDisk
server should try to restore exclusive access rights if exclusive access rights are
broken via random events (for example disk resets). When restoring the exclusive
access rights, the vDisk server should not preempt any other host having exclusive
access rights to the disk.

The PREEMPT and PRESERVE flags are only valid when the EXCLUSIVE flag is set.

In the event of a connection loss between the vDisk client and server, the vDisk server
should perform the equivalent operation to a vDisk Reset Command (VD_OP_RESET)
received from the client, and exclusive access rights and options should be cleared.

 If the vDisk client still requires exclusive access rights following a connection reset, then
it should send a new VD_OP_SET_ACCESS operation to the vDisk server and request

Page 20 of 26

595

600

605

610

615

620

625

630

635

LDoms VIO Protocol Specification Revision v8
March 19, 2009

exclusive access.

1.1.6.20 VDisk Get Capacity (VD_OP_GET_CAPACITY)

This command is used to get information about the capacity of the disk volume export by
the vDisk server. A successful completion of this command will result in the following data
structure being returned to the client in the buffer described by the LDC cookie(s) in the
descriptor ring:

The vdisk_block_size field contains the length in byte of the logical block of the vDisk. The
vdisk_block_size should be the same value as the vdisk_block_size returned during the initial
handshake as part of the attribute exchange.

The vdisk_size field contains the size of the vDisk in blocks specified as a multiple of
vdisk_block_size.

If the vDisk server is unable to obtain the vDisk size, it should set the vdisk_size to -1.
Under these circumtances, the vDisk client can retry the operation later to check if the size is
available.

1.1.7 Virtual network specific data

1.1.7.1 Attribute information

During the initial handshake, as part of the CTRL/INFO/ATTR_INFO message, the
virtual network device will exchange information with the virtual switch and other
vNetwork devices about the transfer protocol, its address and MTU. The format of the
attribute payload is shown below:

The sending client, be it a virtual network device and/or virtual switch will provide its
peer with the transfer mode, acknowledgment frequency, address, address type and MTU it
intends to use for sending network packets. The peer ACKs the attribute message if it agrees
to all the parameters. Currently the only supported address type is:

VNET_ADDR_ETHERMAC 0x1 /* Ethernet MAC Address */

Page 21 of 26

 6 3 3
 3 2 1 0
 +------------------------------+------------------------------+
 word 0: | reserved | VDISK_BLOCK_SIZE |
 +------------------------------+------------------------------+
 word 1: | VDISK_SIZE |
 +---+

 6 4 3 3 3 1 1
 3 0 9 2 1 6 5 8 7 0
 +----------------------------+-----------+---------+---------+
 word 1: | SID | ATTR_INFO | I/A/N |TYPE_CTRL|
 +------------------+---------+-----------+---------+---------+
 word 2: | reserved |PLNK_UPDT| ACK_FREQ |ADDR_TYPE|XFER_MODE|
 +------------------+---------+-----------+---------+---------+
 word 3: | ADDR |
 +--+
 word 4: | MTU |
 +--+

640

645

650

655

660

LDoms VIO Protocol Specification Revision v8
March 19, 2009

The addr field contains the mac address of the client sending the attribute information.

If VIO version 1.3 or lower is negotiated, it is required that the MTU exchanged by either
ends during the attribute exchange matches exactly. If version 1.4 or higher is negotiated, and
the MTU received in the ATTR/INFO doesn't match the receiver's MTU, it ACKs with the
lower of the two MTUs. All subsequent communication between both ends are required to
use the mutually agreed upon MTU.

If VIO version 1.4 or lower is negotiated, bits 32-63 in the word-2 are reserved; i.e., they
must be set to 0 and will be ignored by the peer. If VIO version 1.5 is negotiated, the
PLNK_UPDT field (bits 32-39) is used to indicate any physical link information updates that
a vNet device is interested in. Bits 40-63 are reserved. A vNet device could negotiate with the
vSwitch device to obtain updates about certain physical link properties. Only 'physical link
status' updates are supported for now and only the lower 2 bits of this 8-bit field are defined
and the remaining bits within this field are reserved.

A vNet device that desires to get physical link status updates sets this field to the
appropriate value (see bit definitions below) in its ATTR/INFO message to the vSwitch.
Depending on its capabilities, the vSwitch device either ack's or nack's by updating these bits
in its response message. Note that a vSwitch device must not nack the attribute message itself
simply because it cannot support link status notifications; the physical link update bits only
indicate the desire by the vNet device and it is not guaranteed that the vSwitch device will be
able to provide that information. Thus, if the rest of the information in the ATTR/INFO
message is acceptable to the vSwitch except PLNK_UPDT bits, then only the PLNK_UPDT
field must be nack'd by setting the appropriate bits; and the attribute message itself should be
ack'd by sending ATTR/ACK message. Also, note that these bits are relevant only when the
peers involved in the attribute exchange are a vNet device and a vSwitch. The bits are
reserved and must be ignored during handshake between two vNet peers.

Bit definitions of PLNK_UPDT field:

PHYSLINK_UPDATE_NONE 0x0 /* no plink props desired */

PHYSLINK_UPDATE_STATE 0x1 /* need plink state updates */

PHYSLINK_UPDATE_STATE_ACK 0x2 /* can update plink state */

PHYSLINK_UPDATE_STATE_NACK 0x3 /* can't update plink state */

For further information on the protocol to communicate physical link updates, refer to
section 1.1.7.6.

Page 22 of 26

665

670

675

680

685

690

695

700

LDoms VIO Protocol Specification Revision v8
March 19, 2009

1.1.7.2 Multicast information

Virtual network devices can set/unset the multicast groups they are interested in to a
virtual network switch at any point after a succesful handshake and during normal data
transfer. Each packet sent by a vnet device is of type CTRL/INFO/MCAST_INFO.

VNET_MCAST_INFO 0x101 /* Multicast information */

If the set field is equal to '1', then the corresponding mcast addresses are being set by the
vnet device, or else the switch assumes that the specified address(es) are being removed. The
peer will ACK the info packet if it successfully registered or removed the specified multicast
mac addresses. If the multicast address was already set earlier or if the network device tries to
unset an address that was not set earlier, the virtual switch will NACK the request. The
MCAST_ADDR field can contain a max of VNET_NUM_MCAST=7 multicast addresses, where
each address is ETHERADDRL=6 bytes in length. The count field specifies the actual number
of multicast addresses in the packet.

1.1.7.3 vNet descriptors

Virtual network and switch device clients that use HV shared memory will send /
forward Ethernet frames by specifying the length of the data and the LDC memory cookie(s)
corresponding to the page(s) containing the frame in each descriptor. The descriptor payload
will be of the following format:

The nbytes field specifies the number of bytes being transmitted. The ncookies and
ldc_cookie fields refer to the segment of memory from/to which data is being read/written.
See sec 1.1.3.3 for more information about the LDC transport cookie.

In the current implementation, since each request/payload contained within a descriptor
corresponds to an Ethernet frame being transmitted by either a vNet or vSwitch device, the
vNet and vSwitch will register the descriptor ring as a transmit ring. Future implementations
of the protocol might use the descriptor rings as receive rings.

1.1.7.4 Virtual LAN (VLAN) support

The VIO protocol for virtual network and switch devices will be extended in version 1.3
to include support for virtual LANs (VLANs) as specified by the IEEE 802.1Q4 specification.
A VLAN aware network or switch device will be capable of sending, receiving or switching
ethernet frames that contain a vlan tagged header. If a network/switch device negotiates
version 1.3 or higher with its peer, the MTU size it specifies in the attribute info message (sec

Page 23 of 26

 6 3 3 1 1
 3 2 1 6 5 8 7 0
 +---------------------------+--------------+-------+---------+
 word 1: | SID | MCAST_INFO | I/A/N |TYPE_CTRL|
 +---------------------------+--------------+-------+---------+
 word 2: | MCAST_ADDR[0] | COUNT | SET |
 +--+-------+---------+
word 3-7: | MCAST_ADDR[1-6] |
 +--+

 6 3 3
 3 2 1 0
 +-------------------------------+----------------------------+
 | ncookies | nbytes |
 +--+
 | ldc_cookie * ncookies |
 +--+

705

710

715

720

725

730

LDoms VIO Protocol Specification Revision v8
March 19, 2009

1.1.7.1) should correspond to the size of a tagged ethernet frame. Similarly, if a peer
negotiates version 1.2 or lower, sending/receiving tagged frames can result in undefined
behavior including the frames being dropped.

1.1.7.5 Network Device Resource Sharing via DDS

The VIO DDS control message provides the capability to share device resources between
VIO device peers. The DDS framework will be primarily used by a vSwitch device to share
the underlying physical network device's resources with a vNet device.

All DDS messages for vNet and vSwitch devices will contain a class field that uniquely
identifies the type of device from which the resources are being shared. In version v1.3 of the
VIO protocol, the vNet device will define a new DDS message class DDS_VNET_NIU for
sharing the resources of a Niagara-2 NIU device.

DDS_VNET_NIU 0x10 /* NIU vNet class */

Each DDS message of class VNET_NIU sent by a vSwitch or a vNet will contain a subclass
field that specifies the requested operation. The DDS subclass values for a VNET_NIU class
are:

DDS_VNET_ADD_SHARE 0x1 /* Add a device share */

DDS_VNET_DEL_SHARE 0x2 /* Delete a device share */

DDS_VNET_REL_SHARE 0x3 /* Release a device share */

DDS_VNET_MOD_SHARE 0x4 /* Modify a device share */

The DDS_VNET_(ADD/DEL/REL)_SHARE messages subclasses are used when adding
or deleting a resource to a domain or releasing a resource from a domain.

The ADD_SHARE message is used by the vSwitch device to add a virtual region resource
uniquely identified by its cookie to a vNet device identified by its macaddr. The DEL_SHARE
message is similarly used by the vSwitch to remove a virtual region resource that was
previously added using the ADD_SHARE operation. The REL_SHARE message is used by
the vNet device to inform the vSwitch device that it is no longer using a previously added
shared resource. The vSwitch on receiving a REL_SHARE message can reclaim and reassign
the resource to another vNet. A vNet device should not attempt to use a resource that it had
previously released via the REL_SHARE operation. The message format for the add, delete
and release operations is identical and is shown below:

The resource modification operation allows a vSwitch device to modify the contents of a
shared virtual region. In addition to the macaddr and cookie fields, the message also contains
a updated map of TX and RX resources assigned to the virtual region resource. The format of
the modify message is shown below:

Page 24 of 26

 6 4 4 3 3 1 1
 3 8 7 2 1 6 5 8 7 0
 +--------------+-------------+------------+------------+---------+
 word 1: | SID | DDS_INFO | INFO |TYPE_CTRL|
 +----------------------------+------------+------------+---------+
 word 2: | DDS_REQUEST_ID | reserved |A/D/R_SHARE |VNET_NIU |
 +--------------+-------------+------------+------------+---------+
 word 3: | reserved | MACADDR |
 +--------------+---+
 word 4: | COOKIE |
 +--+

735

740

745

750

755

760

765

LDoms VIO Protocol Specification Revision v8
March 19, 2009

In addition to the different CTRL/INFO/DDS_INFO request messages, the vNet and
vSwitch devices will also ACK and NACK all received DDS requests. The ACK and NACK
responses will contain a STATUS field that specify the outcome of the requested operation.
The format of the ACK/NACK response message is below:

The currently defined ACK and NACK status values are:

DDS_VNET_SUCCESS 0x0 /* Operation was successful */

DDS_VNET_FAIL 0x1 /* Operation failed */

1.1.7.6 Physical Link Information Updates:

The VIO protocol for virtual network and virtual switch devices will be extended in
version 1.5 to include support for physical link property updates. A vNet device will be able
to negotiate for physical link updates, as part of its attribute exchange phase of handshake
with the vSwitch. Currently, physical link state is the only property that can be negotiated for
updates. See section 1.1.7.1 for details on the attribute message.

Once a vNet device successfully negotiates physical link state updates, the vSwitch must
send an initial update about the physical link status right after the handshake is complete.
Further, whenever the physical link status changes, the vSwitch must keep updating it to the
vNet device, until either the connection is terminated by the vNet device or the Channel goes
down or gets reset.

The packet sent by the vSwitch device to a vNet device is of type
CTRL/INFO/VNET_PHYSLINK_INFO. The bits within the 'physlink_info' field indicate the
physical link property and its current value that is being updated to the vNet device.
Currently, the lower 2 bits are defined to indicate the physical link state and the remaining
bits are reserved. The vNet device on receiving this should send a message of type

Page 25 of 26

 6 4 4 3 3 1 1
 3 8 7 2 1 6 5 8 7 0
 +--------------+-------------+------------+------------+---------+
 word 1: | SID | DDS_INFO | INFO |TYPE_CTRL|
 +----------------------------+------------+------------+---------+
 word 2: | DDS_REQUEST_ID | reserved | MOD_SHARE |VNET_NIU |
 +--------------+-------------+------------+------------+---------+
 word 3: | reserved | MACADDR |
 +--------------+---+
 word 4: | COOKIE |
 +--+
 word 5: | TX_RES_MAP |
 +--+
 word 6: | RX_RES_MAP |
 +--+

 6 3 3 1 1
 3 2 1 6 5 8 7 0
 +----------------------------+----------+-------------+---------+
 word 1: | SID | DDS_INFO | A/N |TYPE_CTRL|
 +----------------------------+----------+-------------+---------+
 word 2: | DDS_REQUEST_ID | reserved |A/D/R/M_SHARE|VNET_NIU |
 +----------------------------+----------+-------------+---------+
 word 3: | STATUS |
 +---+

770

775

780

785

790

LDoms VIO Protocol Specification Revision v8
March 19, 2009

CTRL/ACK/VNET_PHYSLINK_INFO back to the vSwitch. The vNet device can choose to
either ignore or nack the message, if it has not negotiated with the vSwitch for physical link
updates or if the message is received while handshake with the vSwitch device is still in
progress.

Message Subtype Env: VNET_PHYSLINK_INFO 0x103 /* Physical Link Information */

The format of physical link information message is as shown below:

Bit definitions of 'physlink_info' field:

VNET_PHYSLINK_STATE_DOWN 0x1 /* Physical Link State: Down */

VNET_PHYSLINK_STATE_UP 0x2 /* Physical Link State: Up */

VNET_PHYSLINK_STATE_UNKNOWN 0x3 /* Physical Link State: Unknown */

1.2 References

1. ARC Cases

• FWARC/2005/633 - Project Q Logical Domaining Umbrella

• FWARC/2006/055 - Domain Services

• FWARC/2006/074 - sun4v interrupt cookies

• FWARC/2006/135 - sun4v channel console packets

• FWARC/2006/140 - sun4v channels transport protocol

• FWARC/2006/072 – sun4v virtual devices machine description data

• PSARC/1995/352 – Disk IDs

2. Extensible Firmware Interface Specification
http://developer.intel.com/technology/efi/main_specification.htm

3. SCSI Standards Architecture
http://www.t10.org/scsi-3.htm

4. 802.1Q – Virtual LANs
http://www.ieee802.org/1/pages/802.1Q.html

Page 26 of 26

 6 3 3 1 1
 3 2 1 6 5 8 7 0
 +----------------------------+------------+------------+---------+
 word 1: | SID | PLINK_INFO | I/A/N |TYPE_CTRL|
 +----------------------------+------------+------------+---------+
 word 2: | reserved | physlink_info |
 +----------------------------+-----------------------------------+
 word 3: | reserved |
 +--+
 word 4: | reserved |
 +--+

795

800

805

810

815

http://developer.intel.com/technology/efi/main_specification.htm
http://www.t10.org/scsi-3.htm
http://www.t10.org/scsi-3.htm

	1.1Virtual IO communication protocol
	1.1.1VIO data transfer
	1.1.2VIO device message tag
	1.1.3VIO device peer-to-peer handshake
	1.1.3.1Version negotiation
	1.1.3.2Attribute exchange
	1.1.3.3Descriptor ring registration
	1.1.3.4Handshake completion

	1.1.4VIO data transfer modes
	1.1.4.1Packet based transfer
	1.1.4.2Descriptor rings

	1.1.5Virtual IO Dynamic Device Service (DDS)
	1.1.6Virtual Disk specific data
	1.1.6.1Attribute information
	1.1.6.2vDisk descriptors
	1.1.6.3Disks and slices
	1.1.6.4VDisk Block Read command (VD_OP_BREAD)
	1.1.6.5VDisk Block Write command (VD_OP_BWRITE)
	1.1.6.6VDisk Flush command (VD_OP_FLUSH)
	1.1.6.7VDisk Get Write Cache enablement status (VD_OP_GET_WCE)
	1.1.6.8VDisk Enable/Disable Write Cache (VD_OP_SET_WCE)
	1.1.6.9VDisk Get Volume Table of Contents (VD_OP_GET_VTOC)
	1.1.6.10VDisk Set Volume Table of Contents (VD_OP_SET_VTOC)
	1.1.6.11VDisk Get Disk Geometry (VD_OP_GET_DISKGEOM)
	1.1.6.12VDisk Set Disk Geometry (VD_OP_SET_DISKGEOM)
	1.1.6.13VDisk SCSI Command (VD_OP_SCSICMD)
	1.1.6.14VDisk Get Device ID (VD_OP_GET_DEVID)
	1.1.6.15VDisk Get EFI Data (VD_OP_GET_EFI)
	1.1.6.16VDisk Set EFI Data (VD_OP_SET_EFI)
	1.1.6.17VDisk Reset (VD_OP_RESET)
	1.1.6.18VDisk Get Access (VD_OP_GET_ACCESS)
	1.1.6.19VDisk Set Access (VD_OP_SET_ACCESS)
	1.1.6.20VDisk Get Capacity (VD_OP_GET_CAPACITY)

	1.1.7Virtual network specific data
	1.1.7.1Attribute information
	1.1.7.2Multicast information
	1.1.7.3vNet descriptors
	1.1.7.4Virtual LAN (VLAN) support
	1.1.7.5Network Device Resource Sharing via DDS
	1.1.7.6Physical Link Information Updates:

	1.2References

