
UltraSPARC Virtual Machine Specification

(The Hypervisor API specification for Logical Domains)

May 2008

A Revision 2.0 Hypervisor API
May 29, 2008

Copyright 2008 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.
Sun Microsystems, Inc. has intellectual property rights relating to technology that is described in this document. In particular, and
without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.
This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written
authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.
Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered
trademark in the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.
Sun, Sun Microsystems, the Sun logo, Java, AnswerBook2, docs.sun.com, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and in other countries.
All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and
in other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.
The OPEN LOOK and Sun? Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the
computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun's
licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license agreements.
U.S. Government Rights-Commercial use. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.
DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.

Copyright 2008 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, Californie 95054, Etats-Unis. Tous droits reserves.
Sun Microsystems, Inc. possede les droits de propriete intellectuels relatifs a la technologie decrite dans ce document. En particulier, et
sans limitation, ces droits de propriete intellectuels peuvent inclure un ou plusieurs des brevets americains listes sur le site
http://www.sun.com/patents, un ou les plusieurs brevets supplementaires ainsi que les demandes de brevet en attente aux les Etats-
Unis et dans d'autres pays.
Ce document et le produit auquel il se rapporte sont proteges par un copyright et distribues sous licences, celles-ci en restreignent
l'utilisation, la copie, la distribution, et la decompilation. Aucune partie de ce produit ou document ne peut etre reproduite sous aucune
forme, par quelque moyen que ce soit, sans l'autorisation prealable et ecrite de Sun et de ses bailleurs de licence, s'il y en a.
Tout logiciel tiers, sa technologie relative aux polices de caracteres, comprise, est protege par un copyright et licencie par des
fournisseurs de Sun.
Des parties de ce produit peuvent deriver des systemes Berkeley BSD licencies par l'Universite de Californie. UNIX est une marque
deposee aux Etats-Unis et dans d'autres pays, licenciee exclusivement par X/Open Company, Ltd.
Sun, Sun Microsystems, le logo Sun, Java, AnswerBook2, docs.sun.com, et Solaris sont des marques de fabrique ou des marques
deposees de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays.
Toutes les marques SPARC sont utilisees sous licence et sont des marques de fabrique ou des marques deposees de SPARC
International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont bases sur une architecture
developpee par Sun Microsystems, Inc.
L'interface utilisateur graphique OPEN LOOK et Sun? a ete developpee par Sun Microsystems, Inc. pour ses utilisateurs et licencies.
Sun reconnait les efforts de pionniers de Xerox dans la recherche et le developpement du concept des interfaces utilisateur visuelles ou
graphiques pour l'industrie informatique. Sun detient une license non exclusive de Xerox sur l'interface utilisateur graphique Xerox,
cette licence couvrant egalement les licencies de Sun implementant les interfaces utilisateur graphiques OPEN LOOK et se conforment
en outre aux licences ecrites de Sun.
LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES
EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES DANS LA LIMITE DE LA LOI APPLICABLE, Y COMPRIS
NOTAMMENT TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION
PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

Page 2 of 293

Hypervisor API Revision 2.0
May 29, 2008

Table of Contents
0 Foreward... 6

0.1 Related specifications...6

0.2 Architect's notes..6

1 Overview... 9

1.1 Architectural requirements..................................... 9

1.2 The hypervisor and sun4v architecture................ 10

1.3 Privilege, isolation and virtualization...................11

1.4 Direct I/O..11

1.5 Logical Domain Channels.................................... 13

1.6 Machine descriptions..14

1.7 Virtual I/O...15

1.8 Hybrid I/O...18

1.9 Logical Domain Manager..................................... 19

1.10 Domain service infrastructure............................ 23

1.11 OpenBoot firmware.. 23

1.12 Error Handling..24

1.13 Advanced LDom features................................... 25

2 Hypervisor call conventions..26

2.1 Hyper-fast traps.. 26

2.2 Fast traps...26

2.3 Post hypervisor trap processing............................27

3 State definitions...28

3.1 Guest states...28

3.2 Initial guest environment...................................... 28

3.3 Privileged registers... 28

3.4 Other initial guest state...30

4 Addressing Models..31

4.1 Background...31

4.2 Address types..31

4.3 Address spaces..31

4.4 Address space identifiers......................................31

4.5 Translation mappings... 33

4.6 MMU Demap support...33

4.7 MMU traps... 34

4.8 MMU fault status area.. 35

5 Trap model.. 36

5.1 Privilege mode trap processing.............................36

5.2 Trap levels.. 36

5.3 Sun4v privilege mode trap table........................... 36

6 Interrupt model..37

6.1 Definitions.. 37

6.2 Interrupt reports..37

6.3 Interrupt queues..37

6.4 Interrupt traps... 38

6.5 Device interrupts.. 39

6.6 Sysinos and cookies..39

7 Error model..41

7.1 Definitions.. 41

7.2 Error classes..41

7.3 Error reports..41

7.4 Error queues..41

7.5 Error traps...42

8 Machine description..44

8.1 Requirements..44

8.2 Sections...44

8.3 Encoding...44

8.4 Header...45

8.5 Name Block.. 46

8.6 Data Block.. 46

8.7 Node Block... 46

8.8 Nodes..48

8.9 Node definitions... 48

8.10 Content versions... 49

8.11 Common data definitions....................................49

8.12 How to use a machine description......................50

8.13 Accelerating string lookups................................ 51

8.14 Directed Acyclic Graph...................................... 52

8.15 DAG construction...53

A Revision 2.0 Hypervisor API
May 29, 2008

8.16 Required nodes... 53

8.17 The vanilla MD...53

8.18 Formation and meaning of a DAG......................54

8.19 Generic nodes... 55

8.20 Memory hierarchy nodes.................................... 65

8.21 Variables...68

8.22 Keystore..69

8.23 Virtual Devices... 70

8.24 Latency nodes...83

9 Logical domain variables.. 91

9.1 Overview.. 91

9.2 LDom variable store... 91

9.3 LDom variables and automatic reboot..................92

10 Security keys... 94

11 API versioning...95

11.1 API call... 95

12 Core services... 99

12.1 API calls..99

13 CPU services... 103

13.1 CPU id and CPU list...103

13.2 API calls..103

14 MMU services...108

14.1 Translation Storage Buffer (TSB) specification.....
108

14.2 MMU flags..110

14.3 Translation table entries................................... 110

14.4 Translation storage buffer (TSB) configuration.....
112

14.5 Permanent and non-permanent mappings........ 112

14.6 MMU Fault status area..................................... 112

14.7 API calls..116

15 Cache and Memory services..................................... 124

15.1 API calls..124

16 Device interrupt services...126

16.1 Definitions.. 126

16.2 API calls..127

16.3 Deprecated API calls.. 131

16.4 Interrupt API version control............................134

17 Time of day services..135

17.1 API calls..135

18 Console services..136

18.1 API calls..136

19 Domain state services..139

19.1 API calls..139

20 Core dump services... 142

20.1 API calls..143

21 Trap trace services.. 144

21.1 Trap trace buffer control structure....................144

21.2 Trap trace buffer entry format.......................... 144

21.3 API calls..145

22 Logical Domain Channel services.............................148

22.1 Endpoints..148

22.2 LDC queues.. 148

22.3 LDC interrupts..149

22.4 API calls..150

23 PCI I/O Services..156

23.1 Introduction.. 156

23.2 IO Data Definitions.. 156

23.3 PCI IO Data Definitions................................... 156

23.4 API calls..158

24 MSI Services... 166

24.1 Message Signaled Interrupt (MSI)....................166

24.2 MSI Event Queue (MSI EQ).............................166

24.3 Definitions.. 169

24.4 API calls..170

25 Cryptographic services..177

25.1 Random Number Generation............................177

25.2 Niagara crypto services.................................... 184

26 UltraSPARC-T2 Network Interface Unit.................. 190

26.1 Introduction.. 190

26.2 Definitions.. 190

26.3 Version 1.0 and version 1.1 APIs..................... 191

26.4 Version 1.0 APIs...192

Page 4 of 293

Hypervisor API Revision 2.0
May 29, 2008

26.5 Version 1.1 APIs...194

26.6 NIU Virtual Region(VR) Specific APIs........... 194

26.7 NIU DMA Channel (DMAC) Specific APIs.... 197

26.8 Virtualized Access to Non-virtualized NIU
registers.. 204

27 Chip and platform specific performance counters.... 206

27.1 UltraSPARC T1 performance counters............ 206

27.2 UltraSPARC-T1 MMU statistics counters....... 208

27.3 Fire performance counter APIs.........................211

27.4 UltraSPARC T2 performance counters............ 213

28 Logical Domain Channel (LDC) infrastructure........ 216

28.1 Overview.. 216

28.2 Hypervisor infrastructure..................................218

28.3 LDC virtual link layer.......................................222

29 Virtual IO device protocols....................................... 231

29.1 Virtual IO communication protocol..................231

29.2 Virtual disk protocol...240

29.3 Virtual network protocol.................................. 250

30 Domain services.. 255

30.1 Overview.. 255

30.2 Domain Services Protocol................................ 257

30.3 DS protocol version 1.0.................................... 259

30.4 DS Capabilities... 262

30.5 MD Update Notification version 1.0................ 264

30.6 Domain Shutdown version 1.0......................... 265

30.7 Domain Panic version 1.0.................................266

30.8 CPU DR Version 1.0.. 267

30.9 VIO DR service version 1.0..............................272

30.10 Crypto DR service version 1.0........................276

30.11 Variable Configuration version 1.0................ 280

30.12 Security key domain service version 1.0........ 282

30.13 SNMP service version 1.0.............................. 284

31 Appendix A: Number Registry..................................286

31.1 Hyper-fast Trap numbers..................................286

31.2 FAST_TRAP Function numbers...................... 286

31.3 CORE_TRAP Function numbers......................286

31.4 Summary of trap and function numbers............286

31.5 Error codes... 291

32 Appendix B: Domain service registry....................... 293

A Revision 2.0 Hypervisor API
May 29, 2008

0 Foreward

This document is the software specification for the UltraSPARC virtual machine
environment. The virtual machine environment is created by a thin layer of firmware software
(the “UltraSPARC Hypervisor”) coupled with hardware extensions providing protection. The
UltraSPARC Hypervisor not only provides system services required by an operating system,
but it also enables the separation of physical resources - this allows multiple virtual machines
to be hosted on a single platform. Each virtual machine is its own self-contained partition (or
“Logical Domain”) capable of supporting an independent operating system image.

This document details the UltraSPARC virtual machine environment together with the
calling conventions and detailed specifications of the virtual machine interfaces provided to a
Logical Domain.

This document is intended for operating system and firmware engineers looking for
detailed information on the UltraSPARC virtual machine environment, as well as the merely
curious.

0.1 Related specifications

The UltraSPARC virtual machine environment consists of a combination of machine
registers described by a programmer's reference manual, and a set of software services
provided via the hypervisor APIs described in this document.

The hardware registers available within a virtual machine environment form the basis of
the hardware architecture. This architecture incorporates the Level-1 SPARC v9 specification.
However, it supersedes and extends the Level-2 SPARC v9 specification in describing the
programming model, register and exception interfaces for privileged mode software. A full
description of available machine registers is given in the UltraSPARC Architecture.

In addition to the UltraSPARC Architecture manual, processor specific details for each
UltraSPARC processor are provided in the supplemental manuals corresponding to each chip.
These manuals provide information on chip specific hardware details, such as performance
counters.

At the time of writing the latest versions of these specifications are available from the
OpenSPARC website (http://www.opensparc.org). The reader is recommended to visit the
OpenSPARC website on a regular basis for the most recent versions of these specifications.

0.2 Architect's notes

0.2.1 History

The UltraSPARC virtual machine project was born as a small skunk works inside Sun at
the end of 2000.

One of the valuable attributes of a virtual machine environment, if designed correctly, is
the decoupling it provides between an operating system and a hardware platform. With
appropriate (and negotiable) software interfaces, old operating systems could be run on new
platform hardware and vice-versa.

Thus it was clear from an early stage any virtual machine environment for UltraSPARC
should be hosted by a Hypervisor with an interface that was primarily a software one rather
than via hardware machine registers cast in stone. This approach would come to be named in
the industry as “para-virtualization”. And, for any given generation of product the choice of
which operating system interfaces to support becomes a software support decision rather than
necessitated by hardware.

Page 6 of 293

Hypervisor API Revision 2.0
May 29, 2008

Looking back, the most valuable component in the Hypervisor interface would prove to be
the flexibility of versioning in its API interface. Older kernels operating systems in the field
could be supported at the same time as newer operating systems expecting newer features - all
running in different logical domains on the same machine. This ability to support multiple
versions of a virtual machine interface enables greater software longevity for customers -
without the inflexibility of fixing register definitions in perpetuity. Simultaneously, it lowers
the release costs and market adoption barriers for new hardware platforms because there is
already a significant volume of tested software deployed in the field.

The opportunity to put this to the test came with the acquisition of Afara Websystems in
2001. This introduced Chip Multithreading Technology (CMT) to SPARC. The Afara design (at
the time), although based on UltraSPARC v9, had significant low-level differences from
existing Sun UltraSPARC designs. To mitigate this disparity, instead of wide-ranging
operating system (Solaris) changes to accommodate this one-off new design, Solaris was
ported to the virtual machine interface and the UltraSPARC Hypervisor implemented. All
future SPARC chips would then support the virtual machine extensions. Thus subsequent
SPARC processors could leverage the same kernel and require only hypervisor changes.

Historically Sun has named it's platform architectures after the machine's system bus; so,
“sun4m” was for the M-bus of the SuperSPARC architecture, and “sun4u” was for the UPA
bus introduced with UltraSPARC. This new virtual machine architecture introduced a
“virtual” bus with the Hypervisor hiding chip specific details, so the virtual machine
architecture was designated “sun4v”.

The Afara design morphed into the UltraSPARC-T1 processor (code named “Niagara-1”)
and was successfully launched in November 2005, by which time development work on its
successor (code named “Niagara-2”) was well under way.

The utility of Hypervisor API versioning was proven during the development of Niagara-
2; systems based on these new chips were able to boot and run the same Solaris images that
ran on Niagara-1 systems.

The original UltraSPARC-T1 hypervisor code base only supported a single virtual
machine as a hardware time-to-market decision, but was quickly replaced to support multiple
virtual machines (Logical Domains).

The new hypervisor supporting multiple logical domains was launched as an upgrade for
all UltraSPARC-T1 based systems, and was incorporated into all UltraSPARC-T2 and
UltraSPARC-T2+ based systems. It was released together with Solaris operating system
support for purely virtual devices for such things as disk storage and networking.

Open source community efforts have yielded Linux and FreeBSD ports allowing
heterogeneous OS environments to be created on a single machine.

At the time of writing, the interfaces described in this specification support virtual
machines implemented on many different platforms in the UltraSPARC family, scaling to
hundreds of virtual processors, with much more to come.

0.2.2 Acknowledgments

While I'm sure there are many flaws to be corrected in future revisions, and many features
yet to come, the virtualization capability delivered with sun4v Logical Domains has already
proved itself to be an important step in the history of SPARC and Sun.

Many many people have devoted a great deal of their time to the development of this
architectural specification, and the products that implement it. It is almost impossible to
mention everyone by name. Sincerely I apologize to anyone I have erroneously neglected.

A Revision 2.0 Hypervisor API
May 29, 2008

Of the engineers who worked on the development and implementation of this
architecture, the following people should be acknowledged for their contributions; Eric
Sharakan, Narayan Venkat, Ryan Maeda, John Pierce, Hitendra Zhangada, Tycho Nightingale,
Wayne Mesard, Arun Rao, Nick Nevin, John Johnson, Greg Onufer, Alexandre Chartre, Liam
Merwick, Jim Quigley, Richard Barnette, Michael Speer, Mike O'Gorman, Kevin Rathbun,
Roman Zajcew, Tayun Kocaoglu, Wesley Shao, David Kahn, Tony Sumpter, Girish Goyal,
David Redman, Quinn Jacobson, Shailender Chaudry, William Bryg, Ariel Hendel, Les Kohn.

Undertaking this magnitude of change to the crown jewels (SPARC and Solaris) of Sun
Microsystems Inc. was no trivial undertaking, and quite simply would not have been possible
with out the support and encouragement of both past and present thought leaders at Sun:
David Yen, Rick Lytel, Subodh Bapat, Les Kohn, Mike Splain, Marc Tremblay, Ricky
Hetherington.

My thanks to you all ...

-- Ashley Saulsbury, Logical Domain and Hypervisor architect

Page 8 of 293

Hypervisor API Revision 2.0
May 29, 2008

1 Overview

This document provides the detailed interface specifications for the UltraSPARC virtual
machine environment. However, before the deep dive into the technical details, this section
aims to provide an overview of the entire architecture - the intentions behind much of the
design, and the individual components and how they operate.

1.1 Architectural requirements

We start with the foundation stone for the UltraSPARC virtual machine environment; the
UltraSPARC Hypervisor.

The fundamental need to support multiple concurrently running operating systems on the
same platform was the goal. However, the UltraSPARC Hypervisor had to meet four
architectural requirements in achieving this; security, heterogeneity, availability, and of course
high performance.

One of the significant value propositions of a virtualization solution is the ability to
consolidate multiple workloads onto a single platform and thereby increase the overall
efficiency of a datacenter. Achieving this efficiency is however a non-trivial problem - afterall
operating systems have been able to run multiple applications concurrently for decades, and
yet datacenter administrators have traditionally avoided doing so. Why?

In practice deploying an application in a datacenter often involves the careful selection
and testing of a specific operating system together with its requsite patches and tuning
parameters. Once selected, upgrades to that application or even the underlying OS often occur
on a timetable related to the application vendors releases. Consequently, in an environment
with multiple applications it is difficult to find OS versions, patches etc. that work well for all
applications, and for the same reasons upgrades have to be carefully coordinated. So, it's
usually just easier from an administrative perspective to assign a unique machine to a specific
application / task.

To deploy a OS virtualization solution into a typical data center environment for use as a
consolidation tool, the Hypervisor must be capable of supporting multiple different
(heterogeneous) operating systems.

Often it is the case that different applications are owned and run by different departments
within a corporation, or even different external customers. Consider a buggy or even
malicious OS patch installed in an operating system - while that could spell disaster for that
specific virtual machine it should still be effectively isolated from other virtual machines on
the same platform. This means that an effective virtual machine solution must provide strong
security between virtual machines. Weak security (e.g. a poorly chosen password) within one
virtual machine should not leave the rest of the machine vulnerable to attack either directly or
by denial of service.

Similarly, placing so many eggs in one basket raises the need for improved fault tolerance,
and increased availability in the event of a failure. No matter what the capability for fault
handling of an individual OS, it is only as effective as the underlying Hypervisor's ability to
report and manage faults upwards. For example, if a failing CPU can take out the entire
hypervisor, the fault is not limited simply to the virtual machine using that resource but is now
expanded to the entire machine. Clearly then an effective availability capability is required
from a Hypervisor in the event of system component failures.

Quite simply; the goal for a hypervisor is to create virtual machines that have the
attributes of classic independent machines, but consolidated onto a single platform where
resources can be shared - and for that sharing to be as efficient as possible so that the
overheads do not overwhelm the overall benefit of consolidation.

A Revision 2.0 Hypervisor API
May 29, 2008

The complete Logical Domaining solution is designed to behave as much like a collection
of independent machines as possible, even to the extent of all of the virtual machines being
able to boot, shutdown, crash and reboot independently of each other.

The remainder of this section describes the final architectural implementation to meet
these requirements.

1.2 The hypervisor and sun4v architecture

Unlike other hypervisor solutions, the UltraSPARC Hypervisor is not booted from disk
like a traditional operating system. Instead the UltraSPARC Hypervisor is architected to be
integrated into the firmware PROM of each hardware platform, and starts up immediately
after system initialization. This approach enables chip-set specific code to be delivered directly
with each platform as it is released. No careful patching or tuning is required because each
Hypervisor is delivered with, and is specific to, a particular platform.

The traditional firmware boot loader for SPARC, (OpenBoot), is completely virtualized
and each logical domain uses its own independent copy for booting.

Key to high performance, as well as minimizing bugs and problems in the field, is keeping
the Hypervisor as simple as possible. The overall Logical Domain architecture reflects the
desire to keep features out of the Hypervisor and seat them within the virtual machines
themselves. Quite simply, fewer lines of hypervisor code mean fewer bugs, and a greater test
coverage before each platform release.

The result then is a hypervisor that provides support functions to guest operating systems
via a well defined and stable software interface. Coupled with hardware support for
protection and isolation the resultant virtual machine environment is called the “sun4v”
architecture.

The figure above illustrates the sun4v interface provided by the UltraSPARC Hypervisor,
and its relationship to the virtualized clients that run within a logical domain.

Page 10 of 293

SPARC hardware

Hypervisor

Solaris

User

App

sun4v virtual machine

stable

interface

“sun4v”

User

App

OpenBoot

User

App

Hypervisor API Revision 2.0
May 29, 2008

1.3 Privilege, isolation and virtualization

In order to provide isolation and protection the UltraSPARC execution model is extended
with a hyper-privileged mode. This additional privilege level is for the hypervisor alone -
leaving guest operating systems and their applications running in more restrictive modes that
deny access to sensitive control registers and memory. The Hypervisor in turn abstracts
underlying hardware resources and exposes a subset to each virtual machine or “Logical
Domain”.

Consequently, guest operating systems within Logical Domains can only access or control
platform resources explicitly made available by the Hypervisor. Typically that access is
provided via Hypervisor API calls made by a guest operating system, where the parameters
can be checked and approved by the Hypervisor prior to being acted upon (or rejected). In a
few cases where higher performance is required (such as interrupt or timer handling)
hardware support provides specific registers accessible from within a virtual machine.

All sun4v architected registers are defined to be idempotent, and hypervisor API
interfaces set or clear state explicitly rather than by side effect. These critera enable the
complete state of a virtual machine to be unloaded from machine resources, encapsulated, and
then later resurrected on different hardware resources - even on a different physical machine.
This fundamental capability allows a Hypervisor to support a range of useful feature. For
example, simple capabilities such as the time-multiplexing of multiple virtual CPUs onto a
single physical CPU, or more complex functionality such as the live-migration of a running
virtual machine from one physical platform to another.

With hardware support the Hypervisor also virtualizes memory. Physical memory is
subdivided and allocated to different domains. A unique address space is created for each
virtual machine and supported by the Hypervisor.

By not being able to address anything outside its own domain a virtual machine is
rigorously isolated from memory and memory mapped devices it does not own. Hardware
tags in the CPU translation look aside buffers (TLBs) strictly enforce the separation of these
address spaces allowing multiple virtual CPUs to be efficiently time multiplexed onto a single
physical CPU.

1.4 Direct I/O

While the hypervisor provides APIs for basic system components such as virtual CPUs,
more complex I/O devices are handled differently.

Most modern I/O devices designed for performance have fairly sophisticated device
drivers to handle multiple functions, concurrency, complex bug work-arounds and even to
upload device specific firmware. Moreover, these I/O devices are often provided by 3rd party
vendors that have developed their own closed-source device drivers.

Consequently, the UltraSPARC Hypervisor makes no attempt to virtualize hardware I/O
devices. Instead I/O devices are directly mapped into Logical Domains.

This approach is enormously beneficial on three levels;

Firstly, by avoiding a loadable device driver model, there are no possible security holes by
which a guest OS or an operator can insert buggy or malicious code into the hypervisor.

Secondly, no device specific patching or tuning of the hypervisor is required. This better
matches the stability model expected of system firmware. This is particularly important given
that many I/O devices are plug in cards from 3rd party vendors and true testing can therefore
only be achieved in the field.

A Revision 2.0 Hypervisor API
May 29, 2008

Thirdly, no loadable device driver capability means no need for a device driver
framework. This significantly reduces the size of the hypervisor and therefore the number and
range of possible bugs. For example, at the time of writing, the Solaris device driver interface
(DDI) framework contains more lines of code than the entire hypervisor source base for either
the UltraSPARC-T1 or UltraSPARC-T2 processors.

Depending on the platform hardware capabilities, devices can be mapped into individual
domains at the system bus level, the device level, or even down to functions within devices.
(The latter requires capable multi-function devices such as the UltraSPARC-T2's network
interface unit, or PCI-IOV devices). To achieve this the hypervisor relies on the capabilities of
the processor's memory management unit (MMU) to control CPU access to device registers.
Similarly, it requires the use of an I/O MMU to map and control device access to system
memory. Specifically, the I/O MMU is used to prevent one domain being able to DMA to or
from memory belonging to other domains sharing the same system.

The result is performance I/O devices being exclusively assigned to specific logical
domains. The guest operating systems running in those domains have direct access to the
device registers and can configure device operations such as DMA activity. DMA mappings
for the I/O MMU are configured using hypervisor APIs so that addresses specified can be
validated by the hypervisor.

Page 12 of 293

Hypervisor

I/O
Bridge

Nexus Driver

Device Driver

PCI
Root

I/O MMU

Logical Domain

Virtual Nexus I/FHyper Privileged
Mode

Privileged Mode

Hardware

PCI-Express

Logical Domain owns
PCI root and tree

Device driver has direct
access to device

registers
Device driver calls into
Nexus driver to control
I/O MMU mappings for

DMA activities

App

App

App

Hypervisor API Revision 2.0
May 29, 2008

Device interrupts and system bus errors are directed from I/O devices via the hypervisor
to virtual CPUs in a virtualized form. This enables the hypervisor to remap, suspend or
context switch virtual CPUs on physical CPUs without risk of device interrupts being lost.

Thus domains with I/O devices can have direct control over those devices when
performance is required. Furthermore, guest operating systems do not require special device
drivers to run in logical domains and can continue to use the device driver frameworks they
already have. This even allows legacy devices and drivers from non virtualized systems to be
used. And finally, system administrators do not have to change their procedures when testing
and patching of their operating systems to deal with 3rd party devices.

This model is the basic building block for all I/O in a Logical Domain system. However, it
is insufficient when there are more logical domains than physical I/O devices available for
use. To overcome this restriction, the architecture requires that some of the logical domains
that are assigned physical I/O devices act as proxies on behalf of the other domains. For this to
work the domains need to be able to communicate.

1.5 Logical Domain Channels

A logical domain channel (LDC) is a point-to-point, full-duplex virtual link created
between domains by the hypervisor. LDCs provide a data path, a means to share memory and
a mechanism to deliver asynchronous interrupts between domains.

The most basic communication mechanism is the delivery of short (64byte) datagrams
along a logical domain channel. Guest operating system code can build higher level protocols
for larger packet and reliable communication. Thus the complexity for sophisticated domain-
to-domain protocols remains with each guest operating system, leaving the hypervisor to
implement only the most basic transport mechanism.

In addition to the short message delivery capability, one domain can export memory to
another directly for sharing. With a direct shared memory interface both domains can then
communicate as fast as the implemented protocol and memory subsystem bandwidth will
allow. Direct I/O devices can be configured to DMA directly to/from memory imported from
or exported to another domain. Either domain can revoke the shared memory mapping at any
time, and domains can only access the memory of another domain that has been explicitly
exported to them.

1.5.1 Stateless connections

Logical Domain Channels may be closed by either domain, or by the hypervisor at any
time. It is expected that guest operating systems utilizing LDCs are able to handle the arbitrary
closure and re-connection of an LDC. After an LDC closes, if the connection comes up again, a
guest operating system must re-negotiate the communication protocol without assumptions
about the domain on the other side of the link.

This requirement is by convention and not enforced by the hypervisor, however it is
specified in order to support the dynamic re-configuration of system services wherein a
domain's LDC may be disconnected from one service and re-connected to a different service.
A prime example of this is in the case of live-migration, where a domain is moved from one
box to another and subsequently connected to new support domains on the new box.

Therefore domains utilizing LDC connections must be able to recover from a reset (closed
and opened) connection by re-negotiating protocol interfaces and be able to re-submit any
pending transactions.

A Revision 2.0 Hypervisor API
May 29, 2008

1.5.2 LDC security

Security is a paramount concern with any communication mechanism. In particular, the
problems traditionally associated with networks of machines have been architected out -
namely; information leakage, authentication, faked credentials and denial of service attacks.

Unlike more general purpose communication mechanisms such as the Internet Protocol
(IP), the hypervisor Logical Domain Channel APIs provide no capability for a domain to open
a connection to another domain. LDCs can only be created by the system “Domain manager”
(which we discuss later). Without a means to establish their own connections, domains do not
have to deal with problems of addressing, connection management and authentication. A
rogue domain cannot randomly connect to another domain. There is no mechanism by which
to undertake activities like port scanning.

If a LDC exists between two domains it had to have been created by the administrator for
a specific named purpose (for example a virtual disk interface), and both sides of that
connection are clearly informed of the role they are expected to play. As LDCs are simple
point-to-point connections there is no risk of information leakage to other domains via
snooping techniques. Denial of service attacks ars easily closed off by a recipient domain by
simply ignoring the rogue LDC - traffic from other domains cannot be blocked since it arrives
by separate point-to-point LDCs.

This unconventional approach to interconnecting domains is made possible because the
virtual machines all execute on the same shared memory system. Higher level protocols such
as TCP/IP are expected for use between applications in different domains or for in and out of
box communication.

1.6 Machine descriptions

Operating system code running within a virtual machine environment needs a means to
discover the resources that are available within that environment. On traditional non-virtual
machines hardware resources are typically probed for, which is an exhaustive process of
testing hardware registers and waiting for lack of response or bus errors to indicate that
suspected hardware is not in fact present.

In a para-virtualized world, there is no need to go through this arcane process to discover
available resources. A simple hyprvisor API provides a detailed description of the resources
within the virtual machine. This description is called a “Machine Description” (or “MD”) and
is a one-stop catalog of every resource a guest operating system has available.

Asside from the basics such as CPU and memory map details, a domain's MD also
contains detailed relational information about resources, such as NUMA latencies and the
sharing between caches in the memory system heirarchy.

Some of the information provided in the MD is mandatory, and the rest is typically
advisory to be used for performance optimizations.

The key advantage of storing this information with the hypervisor is that it is always
retrievable by a domain. This avoids any bottle-necking on a “master” domain to disseminate
the information. This allows for a simultaneous parallel boot after power-on of all logical
domains in a system without the single-point-of-failure that a master domain would introduce
into the boot process.

Page 14 of 293

Hypervisor API Revision 2.0
May 29, 2008

1.7 Virtual I/O

Direct I/O is the foundation model for I/O access in a Logical Domain system. However,
it is possible to create more domains than there are physical I/O devices. In order to support
sharing of I/O devices for virtualization, we enable some domains with direct I/O access to
act as proxies on behalf of other domains.

Communication between client and proxy domains is achieved using a high level
negotiated protocol over a dedicated LDC between domains. This document details the
protocols currently in use between domains for proxy services such as disk and networking
I/O. These protocols are not in anyway enforced by the hypervisor, and are a convention
between domains.

As illustrated below a domain acting as a proxy for I/O is assigned a physical I/O device
for direct access. For this reason it is defined as an “IO domain”. The domain runs the
appropriate device driver for the specific hardware device.

The domain also runs a proxy service responsible for exporting an abstracted form of the
device to other client domains. For this reason it is also designated as a “Service domain”.

Note: There is no requirement for a “service domain” to also be an “IO domain”. For
example, a service domain may provide a virtual network switch to other clients without
requiring a physical connection outside of the box - thus the domain may have no IO domain
capability. (We will cover domain roles later in this section).

The proxy service run by the service domain receives I/O requests from each of its client
domains, and is responsible for servicing those requests on behalf of its client. For example, a
disk read request is sent to the service domain from its client. The LDC framework delivers the
request to the service proxy in the service domain, the proxy is then responsible for

Logical Domain A

Hypervisor

I/O
Bridge

Nexus Driver

Device Driver

PCI
Root

I/O MMU

Service Domain

Virtual Nexus I/F
Domain Channel

App

Virtual Device
Driver

App
App

App

Virtual Device
Service

PCI-Express

A Revision 2.0 Hypervisor API
May 29, 2008

deciphering the request and utilizing an IO device driver to schedule the request as
appropriate. Once complete the proxy service then acknowledges completion back to the client
domain.

1.7.1 Abstraction

Typically the communication protocol for a given service is highly abstracted and agnostic
with regard to the physical device in the actual IO domain. For example, the disk server
deployed with Solaris 10 uses internal Solaris interfaces to access an underlying storage
medium on behalf of its clients. This enables storage bits to be provide by many different
sources such as a disk, or a file or a RAIDed volume - all of which is abstracted and invisble to
the client at the other end of the LDC channel. The client instead sees is a disk service capable
of reading and writing disk blocks according to the abstracted protocol.

This abstraction has enormous advantages when deploying multiple domains on a single
system. For example, instead of a dedicated boot disk for each virtual machine, a simple file on
a RAID protected filesystem can be used on the IO domain to store the boot disk images of
each of the client domains. Backup of the domains then becomes a simple matter of backing
up the files on the IO domain.

1.7.2 Stateless connections & multi-pathed I/O

Following the requirements of the underlying LDC infrastructure, all virtual device
protocols should be designed to be stateless or transactional. This allows for a LDC channel to
be arbitrarily broken and reconnected (possibly to a different IO service). This functionality is
expected by the domain manager, and is relied upon to support resiliency, live migration and
dynamic fail-over of system services.

For example, in the basic proxy configuration illustrated above, if the service were a
virtual disk service, and the service domain were to panic, (perhaps due to a hardware fault or
buggy driver), the client domain would observe the LDC being reset and wait until the
channel came back up again. Once the service has reestablished itself on the LDC, the client
could re-negotiate the service capabilities and re-submit any uncompleted transactions.

The subtlety here is that the client domain was unaffected by the failure and rebooting of
its service domain. This mirrors how the client and server model would function if provided
on two physically separate machines. Another way to view this is as a means to harden IO
devices and drivers that are prone to catastrophic failure by restricting them to their own
domain.

In a more complex configuration, a multi-path arrangement of I/O domains could be
provided as illustrated below;

Page 16 of 293

Hypervisor API Revision 2.0
May 29, 2008

In this example, a client domain (2) has access to an external network via two service IO
domains. Assuming the client domain's operating system can support this kind of multi-
pathed I/O, the configuration allows for the failure of almost any part of the system up to the
client domain itself. Traffic can be easily diverted via the service domain on the right if the
hardware (or operating system) in the service domain on the left should fail. In addition,
because the protocol is designed as stateless, a service action (e.g. card swap or reboot) could
bring the domain on the left back on line again - after which traffic from the redundantly
connected client can be load balanced back.

It is easy to see with this infrastructure, how even scheduled outages can be avoided. For
example, because the protocols are re-negotiated, a rolling service domain upgrade could be
implemented first by upgrading and rebooting first the left and then the right service domain
without loss of external connectivity.

This simple set of requirements, implemented by the virtual device protocols, allows for
some very ingenious and robust virtual I/O infrastructures to be created. Thus not only can
physical I/O devices be shared by multiple domains, but greater robustness and flexibility can
be achieved using this kind of virtualization.

1.7.3 Virtual disk services

The virtual disk protocol defined in this specification assumes the stateless behavior
described above. A straightforward LDC is created between the service domain and the client
domain by the domain manager. The disk proxy service then slavishly responds to requests
from the client.

In the same way that a service domain can support multiple client domains, a client
domain can be configured to utilize multiple service domains. If supported by the client
domain's operating system, this multi-pathed configuration can be used for redundant access
to storage as described above.

Logical Domain 2

V-Ether
Driver

I/O Bridge

V-Ether
Switch

Service Domain

Virtual LAN 1: 192.168.0/24

Virtual LAN 1b: 192.168.0/24

Device-
Driver

I/O B idge

Service Domain

V-Ether
Switch

Device-
Driver

V-Ether
Driver

Gb
Ethernet

I/F

Gb
Ethernet

I/F

A Revision 2.0 Hypervisor API
May 29, 2008

1.7.4 Scalable virtual networking services

The virtual networking protocol defined in this specification allows for a full layer-2
ethernet network switch to be created in a service domain. This switch can also be configured
with multiple upstream ports (utilizing direct IO interfaces), or be configured to communicate
with the local kernel for higher level routing or firewalling functionality.

Each of the client domains of the networking switch has a LDC to the service domain. In
the most basic incarnation, network packets are sent by a client domain to its virtual network
switch, that then forwards those packets to the appropriate destination. The destination may
be upstream or simply another domain in the same machine.

The switch service protocol also provides broadcast and multi-cast functionality, as well as
VLAN tagging support.

For larger machines, where many domains may be consolidated1, it is possible that most of
the communication occurs between domains on the same machine. In this scenario simply
forwarding packets back and forth via the service domain is remarkably inefficient. The switch
must inspect each packet it receives to determine its destination. Without hardware
acceleration this uses CPU resources in the service domain for packets remaining within the
physical box.

To improve on latency and lower this overhead expenditure, the virtual networking
protocol supports the creation of a distributed switching capability. Where possible, LDCs are
created to fully connect all domains that are associated with the same switch. In this way most
of the switching burden is moved to the client domain sending the packet. If the destination
MAC address of a packet is to a domain with which the guest has a direct LDC link the packet
is sent over that link rather than via the switch.

This fully connected distributed switching capability is only possible because the domains
are running on a shared memory platform where LDCs are essentially a software creation
rather than a scarce hardware resource.

With this capability, the service domain hosting a virtual network switch typically only
requires resources to handle broadcast, multi-cast or upstream packets.

1.7.5 Virtual IO Limits

There are no architectural limits on the number of services a domain can provide, or on
the number of clients that can be serviced. In reality, system resources typically limit practical
implementation. Service domains should be sized to accommodate required load and
responsiveness. As the virtualized IO is operating by proxy sufficient CPU and memory
resources will be required by a service domain to accommodate the load generated by its
clients.

This provisioning does not have to be static; if the guest OS in a service domain supports
dynamic reconfiguration (“DR”) (see later) then resources can be dynamically added or
removed in response to changing loads. It is recommended that operating systems supporting
DR are utilized for service domains to provide flexibility in resource assignment and to avoid
having to over-provision service domains to accommodate worst-case scenarios.

1.8 Hybrid I/O

For certain I/O devices, for example the in-built network interface unit (NIU) of the
UltraSPARC-T2, the underlying hardware consists of multiple functions. In these NIU case
these functions are DMA engines for networking traffic. The intention behind multiple

1 A UltraSPARC-T2 machine may have 256 CPUs supporting many 10s of logical domains

Page 18 of 293

Hypervisor API Revision 2.0
May 29, 2008

functions is to enable spreading the packet processing load between multiple CPUs - this is
important for a unit providing two 10GB/s Ethernet ports.

The direct I/O model allows control of the NIU from a single logical domain where it can
be exported as a virtual network interface to other client domains using the virtual I/O model
described earlier.

To improve performance the hypervisor also supports a coupled capability, where the
device is managed like the virtual I/O model, but with some registers of each device function
exported to client domains for higher performance direct I/O access. The combination of a
Virtual I/O model with a Direct I/O model for a device is called Hybrid I/O.

The Hybrid I/O model uses the virtual I/O model for device management; in particular
the receipt and handling of errors in common device infrastructure. However in addition,
direct I/O access is allowed by each client domain to its own subset of the physical device
registers. This provides for a higher performance I/O capability without having to use a proxy
service.

Physical I/O functions are typically limited to fewer than the possible number of client
domains. Therefore, the Hybrid infrastructure is designed to allow a dynamically configurable
fall-back to a purely virtual I/O model when hardware functions are needed by other
domains. In this way the service domain in a Hybrid I/O model acts as a scheduler for I/O
resources switching its client domains between the Virtual and Hybrid modes of device
interaction depending on service needs and resource availability. For example, initially 8 DMA
engines may be split evenly between 7 client domains and the service domain itself. If another
client domain suddenly experiences a high traffic load, all the 7 client DMA engines may be
withdrawn and re-assigned to the high load domain.

1.9 Logical Domain Manager

As discussed earlier the hypervisor was architected to be as simple as possible - it provides
the machine specific core virtualization functionality and acts as the strict security enforcer
between domains.

Management of logical domains requires a set of administrative interfaces (both user and
machine) as well as code to ensure correct reconfiguration of the system when domains are
created, changed or removed.

To avoid complexity in the hypervisor, this administrative functionality was consigned to
an application called the Logical Domain Manager capable of being run on any POSIX
compliant guest OS.

The Logical Domain Manager controls the hypervisor and all of the supported logical
domains. It provides control interfaces for CLI or automated management interfaces. And,
most importantly, it is responsible for the assignment of physical resources to logical domains.

The Logical Domain (LDom) Manager communicates with the hypervisor via a special
LDC endpoint called the hypervisor control (“hvctl”) channel. The LDC endpoint is exposed
to the user-level Domain Manager via a kernel driver. This LDC endpoint is only accessible
from a domain that has been assigned the privilege to control the hypervisor. This is
designated the Control Domain.

Other than the Control Domain, no other domain has access to a hypervisor control
interface. Since there is no access to a Logical Domain Manager either, other domains in the
system are not able to reconfigure the virtual environment or potentially disrupt the machine.

A Revision 2.0 Hypervisor API
May 29, 2008

This ensures the strictest possible security for the virtualization control point. Security
weaknesses can only be introduced by the system administrator by poor configuration choices.
These issues are no different than with any conventional non-virtualized network(s) of
machines, and should be familiar to experienced administrators.

1.9.1 Domain roles

From the hypervisor's perspective all domains are the same. We introduce terms
describing roles and capabilities only to aid descriptive text. Each and every domain can have
one or more of the following roles;

1.9.1.1 IO domain

An IO domain has been granted direct access to one or more I/O devices. Typically this
provides a limitation on this domain that curtails live-migration to another box unless the
guest OS software also supports the ability to dynamically remove the I/O device(s) in
support of migration. The LDom Manager should automatically detect and sequence this as
required.

1.9.1.2 Service domain

A service domain provides a virtualized (virtual or hybrid I/O) service to other domains
in the system. This may be for disk storage or networking, or other future services. A service
domain can also be the client of another service domain. Indeed two service domains can even
be each other's client and service respectively. The designation of service domain merely
indicates that there is a dependency relationship on this domain by another client domain.

A service domain is often also an IO domain - to provide access to external I/O resources -
this is not a requirement. A domain can provide services purely to other clients within the
system. For example, a service domain can provide a virtual network (switch) for a number of
client domains entirely within the box. For this, no external network interfaces are required,
and no need to assign an IO capability.

A service domain can also be the client of another domain's service. For example, a
firewall domain may provide a virtual network switch to it clients and at the same time
employ a virtual network interface as its upstream link.

1.9.1.3 Control domain

In concrete terms a Control Domain has been granted access to the hypervisor's control
interface. If capable of running the Logical Domain Manager it may control and reconfigure
the hypervisor and effectively the entire system.

1.9.2 Domain dependencies

A system administrator can define domains to be as dependent or independent of each
other as desired within the constraints of available hardware resources.

For example, a very simple configuration of two domains each with direct IO access to its
own devices effectively behaves as two entirely separate machines. Essentially these domains
can be considered as sharing only the system chassis, power supply and are susceptible only to
the most catastrophic of system errors.

At the other end of the spectrum, it is possible to configure all guest domains to have a
dependency on a single domain that functions as a combined IO, service and control domain.
Even in this extreme single point of failure scenario, this single domain should not crash any of

Page 20 of 293

Hypervisor API Revision 2.0
May 29, 2008

the other client domains if it fails,. Moreover, if it can be rebooted and brought back online the
dependent clients should be able to recover.

Key to this is the lack of dependency other domains have on the control domain. The
control domain is not required for other guest domains to (re)boot, and can itself be rebooted
without affecting any other domains in the system. However, if configuration changes to the
hypervisor are required this must be done using the control domain.

From the hypervisor's perspective, there is no special quality or differentiated
functionality a role imbibes a domain. Thus, any and all domains can be shutdown,
reconfigured or restarted at any time.

The only system dependencies that exist are created by the system administrator in the
configuration of client and service domains. As described earlier the failure of a service
domain will exhibit only a temporary outage to a client domain if that service domain can be
brought back online. In other words the client does not have to be rebooted with the server.
And, if resilience against even temporary outages is sought, mutli-pathed configurations can
be created with a single client utilizing two or more service domains.

1.9.3 Domain manager operation

A full description of the internal workings of the Logical Domain Manager is worthy of its
own document, and certainly beyond the scope of this one. However it is useful to briefly
discuss how the domain manager functions, and how it interacts with each of the logical
domains it manages.

A high-level view of the LDom manager is illustrated below.

The LDom manager is a user level application responsible for coordinating and allocating
the physical resources of its platform and reconfiguring the hypervisor's internal security
rules.

Logical Domain A

Hypervisor

Control Domain

HV Control Point

Domain
Services

Stack

 DB Module

LDom
Sequencer

Control

LDom
controller

HV
backend

Guest
backend

CLI
component

Reset & config

LDom
Manager

Domain Channel

A Revision 2.0 Hypervisor API
May 29, 2008

There are two core components to the LDom manager; the LDom controller responsible
for domain management and resource assignment decisions, and the the LDom sequencer
responsible for sequencing the steps necessary to effect any changes to the overall system.

Typically a system administrator will use a command line or higher level control
application to instruct the LDom manager to make configuration changes or to query the state
of the virtual machine environment. This is done using a simple TCP/IP socket connection
with the control protocol being encapsulated within an XML schema.

The LDom controller receives instructions from its control interfaces and acts upon them
using an internal database of resources and domain configuration requirements. The database
module itself contains the complete physical resource inventory (“PRI”) of the machine. This
inventory is determined by the reset and configuration code run while the system is powering
up and retrieved either from the external system controller (or possibly the hypervisor) over a
LDC. The PRI itself is in the same binary form as a guest machine description. Although it
contains only physical resource information it forms the basis template used to construct the
virtual machine descriptions provided to each of the guest domains.

1.9.3.1 Constraint engine

At the heart of the the LDom controller is a constraint engine that assigns resources to
domains based upon configuration requirements provided by the administrator. Typically
constraints are provided at a high level, such as “5 cpus” and “1GB of memory”, leaving the
constraint engine to pick the most suitable resources using default heuristics appropriate to the
platform.

For example, cache sharing information from the PRI can serve to guide the constraint
manager in selecting available CPUs that share the same cache for a domain. At the same time
it will try to select CPUs that do not share caches with other domains so as to minimise cache
interference effects between domains.

If allowed to, by configured constraint rules, the constraint engine may also reconfigure
other existing domains to better balance resources in the system.

New configurations are described by new machine descriptions generated by the LDom
manager. Each affected domain receives an updated machine description, and the hypervisor
is given an update to its hypervisor machine description.

1.9.3.2 Transactional updates

All machine descriptions are downloaded to the hypervisor from the domain manager in a
transactional fashion, ensuring that the end state of any reconfiguration operation is either the
complete resultant state, or the previous stable state in the case of a configuration error.

By enforcing this transactional model with the LDom manager, the Hypervisor can protect
itself from unstable or incomplete reconfiguration operations.

Moreover, should the Control Domain fail (crash) part way through a reconfiguration
operation, the hypervisor will be left in the previously defined stable state - as if the failed
reconfiguration operation had never been attempted.

In the event that the Control Domain or LDom manager do fail, once restarted the LDom
manager can retrieve the complete current running state of the virtual machines and available
resources from the hypervisor. This key feature enables the control domain to be rebooted
arbitrarily without killing or affecting any of the other running domains in the system.

Page 22 of 293

Hypervisor API Revision 2.0
May 29, 2008

1.9.3.3 Sequencer

After resources are allocated, the LDom controller binds them to the configured domains.
Once this step is completed the domain manager proceeds to notify the hypervisor and
(appropriate) domains of the change in configuration to the system.

These notifications are delivered via back-end drivers that communicate via LDC to the
hypervisor and to live guest domains. Care has to be taken to notify the different parties in the
correct order and to ensure correct completion of the transactional model described above.

To achieve this a sequencer in the LDom manager controls the update steps taken during
the reconfiguration operation.

For example, adding a CPU to a domain requires first notifying the hypervisor to make the
new CPU resource available. Upon completion the domain manager notifies the guest OS in
that domain of the availability of the new resource.

A more complex example is the creation of a domain; again the hypervisor is notified first
to ensure that the domain is created and resources correctly assigned. Then, any service or
other client domains have to be notified to ensure they are aware of the new domain's
existence.

Removing resources typically occurs in reverse order, first notifying domains that
resources are going away, and when safe notifying the hypervisor to complete the resource
reconfiguration.

1.10 Domain service infrastructure

Aside from fundamental services like virtual IO devices, LDCs are also used to connect
domains to the domain manager and to other system services.

These channels operate using a “domain services” protocol described later in this
document. This protocol enables a domain to advertise its capabilities to the domain manager
and to provide non virtual IO services to other domains.

For example, most operating systems cannot easily recover from the unexpected loss of a
CPU. So if an operating system is capable of supporting dynamic reconfiguration of CPUs it
can announce this capability to the domain manager using the domain services protocol. This
serves two purposes; firstly to notify the domain manager that dynamic CPU reconfigurations
can be undertaken on this domain while it is running, and secondly to provide a request
protocol from the domain manager to the guest to cleanly stop using a CPU resource prior to
its removal.

Domain services are negotiated using a common versioned registration protocol, allowing
domains to dynamically advertise any reconfiguration operations they are capable of
supporting. If a service is not advertised by a domain, the LDom manager infers that it is not
safe to undertake the corresponding reconfiguration operation while the guest is running.

Similarly, domain services provide additional proxy capabilities to the domain manager.
Thus the domain manager can remotely query domain performance statistics, request reboots
or shutdowns. Also, the domain can request changes to its environment variables.

1.11 OpenBoot firmware

Unless otherwise configured for a domain, a virtualized OpenBoot firmware image is
provided to each logical domain as it starts. This enables initial loading and execution of an
operating system, diagnostic programs, and the ability to configure boot time parameters.

A Revision 2.0 Hypervisor API
May 29, 2008

The retention of the OpenBoot command line interface is to maintain compatibility with
existing non-virtualized systems. However, for most administrators boot parameter
configuration is more easily done when configuring a domain using the LDom manager rather
than starting and then logging into the domain's console.

1.12 Error Handling

Handling errors in a virtualized environment poses a number of interesting problems.

Typically errors are delivered via platform specific hardware registers, and correspond to
specific hardware resources.

Only the hypervisor can capture these errors, decipher them, and direct them to the
affected domain (or worse-case domains) for further recovery.

Ignoring errors often leads to deeper problems such as data corruption. Simply crashing
or panicing is not acceptable for a hypervisor that supports multiple virtual machine
environments.

The UltraSPARC Hypervisor typically performs the first stage of triage on received errors,
collecting the error information (recording for later analysis on the system controller) and then
converting this into a virtualized form for delivery to affected domains.

Errors corrected by hardware are typically not reported to affected guest domains. Instead
they are recorded for chronic analysis on the system controller. Abnormal correctable error
rates can result in the domain manager taking corrective action to avoid using a system
resource. For example, CPUs or memory can be pro-actively offlined before they fail.

Uncorrectable errors typically result in some form of data damage. This may be in critical
data, (e.g. a kernel data structure), or unused data (e.g. a free page pool) for a guest operating
system. The hypervisor does not know which errors are critical and which are irrelevant, so it
reports all uncorrectable errors to the affected domains in a virtualized form.

Use of virtualized error reporting serves two purposes;

Firstly, a guest OS only knows about its virtual resources, not the underlying physical
ones. So when reporting a memory error, the hypervisor simply identifies the region of the
guest domain's address space that has become corrupted.

Secondly a guest OS may very well be older than the hardware it is running on. Supplying
hardware specific data such as ECC syndromes to a guest operating system is pointless as that
OS most likely will not know what to do with the information. Consider a message of the
form: “warning temperature 72 degrees”. Without knowledge of the physical hardware, is this
a warning of something being too hot or too cold? To avoid these problems error messages
have a more precisely defined semantic meaning. For example; “warning: too hot”, or “data
corrupted between address X and address Y”.

The information provided to a guest OS is designed to enable the quarantining of affected
resources. For example, the off-lining of a corrupted memory page, or at least the (semi)
graceful shutdown of the guest OS itself.

Errors can occur as a direct result of a domain action (e.g. a CPU write to memory), or be
detected in the background (e.g. via a memory scrubber).

For this reason the hypervisor further categorizes errors into “resumable” and “non-
resumable” forms; meaning “after receipt of this error message you can resume what you
were doing”, or “you cannot complete what you were doing respectively”.

Page 24 of 293

Hypervisor API Revision 2.0
May 29, 2008

1.13 Advanced LDom features

The architectural design of logical domains technology translates into unique capabilities
beyond platform virtualization. Logical domains include advanced features that help
enterprises ease software migration, simplify reconfiguration of hardware resources, and
improve application isolation.

1.13.1 Dynamic reconfiguration

Spikes in demand and changing business needs cause individual IT services to use varying
amounts of compute capacity over time. The Logical Domains Manager enables
administrators to optimize use of compute resources by modifying the number and type of
virtual resources, including CPU, memory, and I/O devices assigned to a logical domain.

The ability to do this is a function of a guest OS's capabilities. However, the domain
services mechanism, described earlier, provides an extensible mechanism for a guest to
describe those capabilities to the domain manager.

Where the guest OS itself cannot support a dynamic reconfiguration operation, the LDom
manager can still support reconfiguring the domain during a reboot of that guest OS. This
does not impact any of the other virtual machines in the system. This technique is called
“delayed reconfiguration”, and hypervisor updates to a domain's configuration are delayed
until the guest OS in that domain shuts down its virtual machine.

1.13.2 Logical domain migration

As mentioned earlier in this section the virtual machine architecture and interfaces have
been designed to allow the complete capture of a virtual machine state. This enables a running
guest operating system to be frozen and then saved, to be thawed later, or migrated while still
running to a different physical machine.

The emphasis on state-less transactional interfaces enables guest domains to be re-bound
to new resources arbitrarily. This mechanism is leveraged when moving or saving logical
domains.

It falls to the domain manager(s) to ensure that appropriate resources are available at the
destination prior to live-migrating a logical domain, but once that determination has been
made the operation can proceed until completion.

Snapshots of running domains can be taken to support rapid roll-back or rapid reboot in
scenarios where high-availability is paramount. Even for basic domain deployment, a pre-
booted snapshot of a domain can be brought online rapidly without having to wait for a guest
OS to boot. Dynamic technologies like DHCP can be leveraged to ensure that unique domain
characteristics such as host names or IP addresses are dynamically assigned once a “vanilla”
snapshot image is started.

A Revision 2.0 Hypervisor API
May 29, 2008

2 Hypervisor call conventions

Hypervisor API calls are made through the use of a trap (Tcc) instruction using
sw_trap_numbers 0x80 and above. The calling convention has two forms; fast-trap and hyper-
fast-trap. The principle difference between these two forms is whether the function number is
passed in a register or is encoded in the trap instruction itself. The latter is the faster form, but
has a limited number of possible functions, and is therefore reserved for performance critical
operations only.

2.1 Hyper-fast traps

This trap mechanism encodes the API function number (0x80 + a 7bit value) in the Tcc
instruction's sw_trap_number itself, and therefore provides the fastest possible method of
reaching the actual function implementation. The calling convention is as follows:

Register Input Output

%o0 argument 0 return status

%o1 argument 1 return value1

%o2 argument 2 return value2

%o3 argument 3 return value3

%o4 argument 4 return value4

All arguments and return values are 64-bits unless explicitly stated by the description of a
specific API service. Further arguments may be passed in memory, as defined on a per
function basis.

2.2 Fast traps

Fast traps are the preferred mechanism for hypervisor API calls. Fast trap API calls
primarily use sw_trap_number 0x80 in the Tcc instruction, with the required function number
provided as a 64bit value in register %o5. The calling convention is as follows:

Register Input Output

%o5 function number undefined

%o0 argument 0 return status

%o1 argument 1 return value 1

%o2 argument 2 return value 2

%o3 argument 3 return value 3

%o4 argument 4 return value 4

All arguments and return values are 64-bits unless explicitly stated by the description of a
specific API service. Further arguments may be passed in memory, as defined on a per
function call basis.

Page 26 of 293

Hypervisor API Revision 2.0
May 29, 2008

2.3 Post hypervisor trap processing

The following convention is used, unless explicitly described for a particular API service:

• All API services resume executing at the next logical instruction after the service trap as
with a done instruction.

• All sun4v defined registers are preserved across an API service except as explicitly stated
below;

• Registers providing arguments to an API service (including the function number
%o5 for fast traps) should be considered volatile, and their values upon return are
undefined unless they are explicitly specified on a per-service basis. Registers not
used for passing arguments or returning values are preserved across the API
service.

• Upon return from the API service, the returned status is given in register %o0. A
value of zero in %o0 indicates successful execution of the API service, all other
values indicate an error status (as defined in section 31.5).

• If an invalid sw_trap_number is issued, or if an invalid function number is specified, the
hypervisor will return with EBADTRAP (as defined in section 31.5) in %o0.

• All 64 bits of the argument or return values are significant.

A Revision 2.0 Hypervisor API
May 29, 2008

3 State definitions

3.1 Guest states

Each virtual CPU can have one of three different states:

Stopped CPU is stopped, not executing code, and may be started via the cpu_start API service

Running CPU is executing

Error CPU is in error, and no longer executing code

The relationship of these CPU states and hypervisor services may be summarized with the
state diagram below:

3.2 Initial guest environment

The initial state of each sun4v virtual CPU is defined in the Sun4v Architecture
Specification. Initial register state is duplicated here together with initial register configuration
performed by the hypervisor for completeness.

3.3 Privileged registers

Register(s) Initial Value

%cwp 0

%cansave NWIN-2

%cleanwin NWIN-2

%canrestore 0

%otherwin 0

%wstate 0

%pstate all 0 except pstate.priv=1, pstate.mm=tso

%tl MAXPTL (2)

%gl MAXPGL (2)

%pil MAXPIL (0xf)

%tba current rtba

%tt POR

Page 28 of 293

error
indication

cpu_stop

Running

reset
mach_exit
mach_sir

cpu_yield

cpu_start

Error

Stopped

Hypervisor API Revision 2.0
May 29, 2008

3.3.1 Non-Privileged Registers

Register(s) Initial Value

%g1-%g7 0

%i0[%cwp] real address of startup memory segment

%i1[%cwp] size of startup memory segment

%i2-%i7[%cwp] 0

%i0-%i7[all other windows] 0

%l0-%l7[all windows] 0

%d0-%d62 Binary 0

%fsr 0

3.3.2 Ancillary State Registers

Register(s) Initial Value

asr0 (%y) 0

asr2 (%ccr) 0

asr3 (%asi) ASI_REAL

asr4 (%tick) >0, npt=0

asr5 (%pc) current pc

asr6 (%fprs) 0

asr19 (%gsr) 0

asr22 (%softint) 0

asr24 (%stick) >0, npt=0

asr25 (%stick_cmpr) 0 with interrupts disabled (bit 63=1)

3.3.3 Internal memory-mapped registers

Register(s) Initial Value

ASI_SCRATCHPAD, VA=0x00 0

ASI_SCRATCHPAD, VA=0x08 0

ASI_SCRATCHPAD, VA=0x10 0

ASI_SCRATCHPAD, VA=0x18 0

ASI_SCRATCHPAD, VA=0x20 0 if implemented

ASI_SCRATCHPAD, VA=0x28 0 if implemented

ASI_SCRATCHPAD, VA=0x30 0

ASI_SCRATCHPAD, VA=0x38 0

ASI_MMU, VA=0x08 (primary ctx) 0

ASI_MMU, VA=0x10 (secondary ctx) 0

ASI_MMU, VA=0xn08 (for valid {n} > 0) 0

ASI_MMU, VA=0xn10 (for valid {n} > 0) 0

ASI_QUEUE, VA=0x3c0 (cpu mondo head) 0

ASI_QUEUE, VA=0x3c8 (cpu mondo tail) 0

ASI_QUEUE, VA=0x3d0 (dev mondo head) 0

A Revision 2.0 Hypervisor API
May 29, 2008

Register(s) Initial Value

ASI_QUEUE, VA=0x3d8 (dev mondo tail) 0

ASI_QUEUE, VA=0x3e0 (res. error head) 0

ASI_QUEUE, VA=0x3e8 (res. error tail) 0

ASI_QUEUE, VA=0x3f0 (nres. error head) 0

ASI_QUEUE, VA=0x3f8 (nres. error tail) 0

3.3.4 CPU-specific Registers

Platform specific performance counters will be configured such that exceptions/interrupts
are disabled.

3.4 Other initial guest state

MMU state is disabled.

MMU fault status area location is undefined.

TSB info is undefined.

All queue base addresses and sizes are undefined.

One CPU is placed into the running state, all other CPUs are in the stopped state.

Initial guest soft state is set to SS_TRANSITION, with an empty (NUL) description string.

Page 30 of 293

Hypervisor API Revision 2.0
May 29, 2008

4 Addressing Models

4.1 Background

This section defines the sun4v memory management architecture. The intent is to provide
a memory addressing capability for a virtualized architecture at the same time removing the
explicit dependence on hardware mechanisms for virtual memory management. Mechanisms
are provided to privileged mode to manipulate the memory made available, and in turn to
virtualize and make that memory available to non-privileged mode processes.

4.2 Address types

The sun4v architecture has two address types, as in legacy architectures. The main
difference is that virtual adresses are translated to real addresses, as opposed to being translated
to physical addresses. This change is made in order to enable the segregation of physical
memory into multiple partitions.

Virtual addresses are translated by an MMU in order to locate data in physical memory.
This definition is unchanged from current systems for nonprivileged and
privileged mode addresses.

Real addresses are provided to privileged mode code to describe the underlying physical
memory allocated to it. Translation storage buffers (TSBs) maintained by
privileged mode code are used to translate privileged or nonprivileged
mode virtual addresses into real addresses. MMU bypass addresses in
privileged mode are also real addresses.

4.3 Address spaces

Address spaces are unchanged from UltraSPARC-1. Primary and secondary virtual
addresses are associated with context identifiers that are used by privileged code to create
multiple address spaces.

4.4 Address space identifiers

Instructions can explicitly specify an address space via address space identifiers. All the
SPARC v9 ASI definitions are unchanged for sun4v, and a number of new ASIs are also
defined. ASIs related to memory management are described below:

ASI # ASI Name

0x14 REAL_MEM

0x15 REAL_IO

0x1c REAL_MEM_LITTLE

0x1d REAL_IO_LITTLE

0x21 MMU

4.4.1 ASI 0x14 & 0x1c : REAL_MEM{_LITTLE}

This ASI provides privileged mode access to cached memory using a real rather than
virtual address. For this access the context id is unused. A nonresumable_error trap occurs if the
access cannot be completed.

A Revision 2.0 Hypervisor API
May 29, 2008

4.4.2 ASI 0x15 & 0x1d : REAL_IO{_LITTLE}

This ASI provides privileged mode access to uncached memory addresses using a real
rather than virtual address. For this access the context id is unused. A nonresumable_error trap
occurs if the access cannot be completed.

4.4.3 ASI 0x26 & 0x2E : REAL_QUAD{_LITTLE}

This ASI provides atomic access to 16 bytes of data using real addresses. A
mem_address_not_aligned trap is taken if the address is not 16 byte aligned.

4.4.4 ASI 0x21 : MMU

The sun4v MMU interface consists of the following registers:

Register Address

PRIMARY_CONTEXTn 0xn08

SECONDARY_CONTEXTn 0xn10

These registers are used for the primary and secondary context values utilized by the
processor TLB for distinguishing address space contexts. The number of primary and
secondary context registers provided is implementation dependent subject to the following
rules:

1. The number of primary context registers must be the same as the number of secondary
context registers.

2. The context registers must start with n=0, and be arranged sequentially without gaps. So,
for example with 4 registers, n=0,1,2,3.

3. The number of bits provided must be the same for all context registers.

4. For ease of programming, a write to PRIMARY_CONTEXT0 causes the same context value
to be written to all other PRIMARY_CONTEXT registers. Similarly, a write to
SECONDARY_CONTEXT0 causes the same context value to be written to all other
SECONDARY_CONTEXT registers.

Sun4v provides a minimum of 13 bits of context (bits 0 through 12). Further bits (from 13
and up) may be provided as an implementation dependent feature. The maximum number of
bits for a given hardware platform are given as a property in the guest's machine description.
Privileged code is responsible for honoring the number of bits supported by hardware.

4.4.4.1 Programming note

The policy of how privileged code chooses to use the primary and secondary context
registers is beyond the scope of this document. However, because sun4v only guarantees the
existence of PRIMARY_CONTEXT0 and SECONDARY_CONTEXT0 it is recommended that
these be used as process private context registers, while any remaining context registers be
used for possibly shared context address spaces.

4.4.4.2 Translation conflicts

For sun4v platforms that implement more than one primary and more than one secondary
context register privileged code must ensure that no more than one page translation is allowed
to match at any time.

Page 32 of 293

Hypervisor API Revision 2.0
May 29, 2008

An illustration of erroneous behavior is as follows: an operating system constructs a
mapping for virtual address A valid for context P, it then constructs a mapping for address A
for context Q. By setting PRIMARY_CONTEXT0 to P and PRIMARY_CONTEXT1 to Q both
mappings would be active simultaneously - potentially with conflicting translations for
address A.

Care must be taken not to construct such scenarios.

To prevent errors/data corruption sun4v processors will detect such conflicts, flush the
TLB, and issue a {data/instruction}_access_exception.

4.4.4.3 Barrier rules

By definition changing either the primary or secondary context registers has side effects on
processor behavior. The following table describes the behavior of a stxa to these registers.

@ TL = 0 @ TL > 0

PRIMARY_CONTEXT undefined; privileged code should not
change PRIMARY_CONTEXT at

TL=0

membar #Sync, DONE or RETRY are
required for effects to be guaranteed

observable, otherwise results are
undefined.

SECONDARY_CONTEXT membar #Sync is required for effects
to be guaranteed observable,

otherwise results are undefined

membar #Sync, DONE or RETRY are
required for effects to be guaranteed

observable, otherwise results are
undefined.

4.5 Translation mappings

Privileged code describes virtual to real address mappings to manage its virtual address
spaces. These mappings are declared either as translation table entries (TTEs) in a translation
storage buffer (TSB) described in section 14.1, or can be established directly by the use of the
hypervisor API call mmu_map_perm_addr (§14.7.7). This call can also be used to establish a
limited number of “locked” mappings for which privileged code cannot tolerate an MMU miss
trap.

4.6 MMU Demap support

Privileged mode demap operations become hypervisor API calls.

It is important to note that sun4v provides a coherent demap capability for the privileged
mode. The demap API call takes a list of virtual CPUs for which the demap operation is to be
applied.

The following three demap operations are required for sun4v:

Demap Page The translations demapped match the virtual address and context id
designated.

Demap Context the translations demapped match the context id designated.

Demap All this demaps all translations.

A Revision 2.0 Hypervisor API
May 29, 2008

4.7 MMU traps

MMU privilege mode traps are a subset of the MMU traps described in the SPARC v9
specification:

{instruction,data}_access_mmu_miss

shall be generated when a nonprivileged or privileged mode access does
not have a translation in any of the TSBs.

data_access_protection

shall be generated when a nonprivileged or privileged mode access
matches a translation that does not allow the requested action, i.e. store
when TTE write enable field is clear. This also enables software simulation
of a TLB entry modified bit, as well as fast copy-on-write page processing.

To speed processing of a copy-on-write or modified-bit usage, the faulting
TLB entry is guaranteed flushed from the local CPU's TLB upon entry of
this exception. Thus, in the common case, no flush operation needs to be
generated before enabling write permission in the faulting TTE.

{instruction,data}_access_exception

shall be generated as the result of a nonprivileged mode access when TTE
privilege field is set, or as the result of an instruction fetch when the TTE
execute permission bit is not set, or as the result of two conflicting
translation matches for the same virtual address.

fast_{instruction,data}_access_MMU_miss

shall be generated when a nonprivileged or privileged mode access does
not have a translation in any TLB and no TSB is specified for the virtual
cpu.

fast_data_access_protection

shall be generated when no TSB is specified for the virtual cpu and a
nonprivileged or privileged mode access matches a TLB translation that
does not allow the requested action, i.e. store when TTE write enable field
is clear. This also enables software simulation of a TLB entry modified bit,
as well as fast copy-on-write page processing.

To speed processing of a copy-on-write or modified-bit usage, the faulting
TLB entry is guaranteed flushed from the local CPU's TLB upon entry of
this exception. Thus, in the common case, no flush operation needs to be
generated before enabling write permission in the faulting TTE.

Page 34 of 293

Hypervisor API Revision 2.0
May 29, 2008

4.8 MMU fault status area

MMU related faults have their status and fault address information placed into a memory
region made available by privileged code. Like the TSBs above, the fault status area for each
virtual processor is declared via a hypervisor API call.

The MMU fault area is arranged on an aligned address boundary with instruction and
data fault fields arranged into distinct 64byte blocks. The contents and layout of the MMU
fault status area are currently specified in section 14.6 of this specification.

A Revision 2.0 Hypervisor API
May 29, 2008

5 Trap model

For sun4v, two of the three SPARC v9 trap types: precise and disrupting, behave
according to the SPARC v9 specification. The third, deferred, may behave according to the
UltraSPARC-I specification. The key difference is that UltraSPARC-I deferred traps do not
provide additional information so that uncompleted instructions older than TPC can be
emulated.

In the case of a CPU that implements SPARC v9 deferred traps, the hypervisor will
present a deferred trap to privileged mode, but will also make available enough information
so that privileged code can attempt to emulate any uncompleted instructions. In the case of a
non-resumable error trap, the emulation information will appear in the error report. This is
also the rationale for not including the SPARC v9 FQ register in sun4v, since it is used for
emulation of deferred floating point traps.

A more precise description of the MMU, interrupt and error traps is made below to clarify
behaviors left unspecified by SPARC v9.

5.1 Privilege mode trap processing

As with the SPARC v9 specification, the processor's action during trap processing depends
on the trap type, the current trap level (TL register), and the processor state.

For trap processing from non-privileged or privileged mode to privileged mode the steps
taken are the same as the SPARC v9 specification. Note that if a privileged code lowers the
value of TL, there is no guarantee that the values of TSTATE, TPC, TNPC and TT will remain
consistent for larger values of TL.

5.2 Trap levels

The maximum trap level available to privileged software in sun4v is defined to be 2
(MAXPTL).

5.2.1 Privilege mode TL overflow

When TL = MAXPTL, an additional privileged mode trap results in the delivery of a
watchdog_reset trap to privileged mode with TT set to the type of trap that caused the error. TL
remains at MAXPTL.

5.3 Sun4v privilege mode trap table

The privileged mode trap table is defined in the programmers reference manual for each
specific processor.

Page 36 of 293

Hypervisor API Revision 2.0
May 29, 2008

6 Interrupt model

This chapter describes the sun4v architecture for sending and receiving interrupts.

6.1 Definitions

CPU mondo CPU to CPU interrupt message.

Device mondo interrupt sent by an I/O device.

Interrupt report a message describing an interrupt

Interrupt queue a FIFO list of interrupt reports

6.2 Interrupt reports

Interrupts are described by interrupt reports. Each interrupt report is 64 bytes long and
consists of eight 64-bit words. If a report contains less than eight meaningful words it will be
padded with zeros.

6.3 Interrupt queues

Interrupts are indicated to privileged mode via interrupt queues each with its own
associated trap vector. There are 2 interrupt queues, one for device mondos and one other for
CPU mondos. New interrupts are appended to the tail of a queue, and privileged code reads
them from the head of the queue.

Privileged code is responsible for allocating real memory regions for these queues. Each
queue region must be a power of 2 multiple of 64 bytes in size. The base real address must be
aligned to the size of the region. For example, a queue of 128 entries is 8K bytes in size and
must be aligned on an 8K byte real memory address boundary.

The queue configuration is described via hypervisor API calls when the queue region is
created or modified (see section 13.2.6).

6.3.1 Queue support registers

The contents of each queue is described by a head and tail pointer. The head and tail
pointer for each queue are held in registers as offsets from the base of their respective queue
region. These interrupt queue registers are accessed with the QUEUE ASI (0x25). Each of the
registers are addressable and accessible as 64bit quantities. The ASI addresses are as follows:

Register Address Access

CPU_MONDO_QUEUE_HEAD 0c3c0 rw

CPU_MONDO_QUEUE_TAIL 0x3c8 ro

DEV_MONDO_QUEUE_HEAD 0x3d0 rw

DEV_MONDO_QUEUE_TAIL 0x3d8 ro

In privileged mode, the head offset registers are read and write accessible, the tail offset
registers are only readable. Attempting to write the tail register from privileged mode results
in a data_access_exception trap.

6.3.1.1 *_QUEUE_HEAD and *_QUEUE_TAIL

The status of each queue is reflected by its head and tail pointers:

*_QUEUE_HEAD holds the offset to the oldest interrupt report in the queue.

A Revision 2.0 Hypervisor API
May 29, 2008

*_QUEUE_TAIL holds the offset to the area where the next interrupt report will be stored.

An event that results in the insertion of a queue entry causes the tail of that queue to be
incremented by 64 bytes. Privileged code is responsible for similarly incrementing the head
pointer to remove an entry from the queue. The queue pointers are updated using modulo
arithmetic based on the size of a queue. A queue is empty when the head is equal to the tail. A
queue is full when the insertion of one more entry would cause the tail pointer to equal the
head pointer.

The format of each of the QUEUE_HEAD and QUEUE_TAIL register is shown in Figure 1.
Bits 0 through 5 always read as 0, and attempts to write them are ignored.

The minimum head and tail register size is provided as a property value in the machine
description given to a guest.

6.4 Interrupt traps

The sun4v architecture has an interrupt trap for each of the two interrupt queues:

cpu_mondo this trap informs privileged mode that an interrupt report has been
appended to the CPU mondo queue.

dev_mondo this trap informs privileged mode that an interrupt report has been
appended to the dev mondo queue.

Both traps are disrupting, meaning that the current instruction stream can be restarted
with a retry instruction, and that they can be blocked by setting pstate.ie = 0.

6.4.1 CPU mondo interrupts

CPU to CPU messages are are sent via CPU mondo interrupts. The term mondo refers to
the original UltraSPARC-1 bus transaction where they were first introduced.

6.4.1.1 Sending CPU mondos

CPU mondos are sent via hypervisor API calls. The API allows 64 bytes of data to be sent
to the targeted CPUs. The API call also includes the ability to send mondos to multiple CPUs
in a single call to improve efficiency.

6.4.1.2 Receiving CPU mondos

CPU mondos are received via the CPU mondo queue.. When this queue is non-empty, a
cpu_mondo disrupting trap is pended to the target CPU. The mondo data received is stored as
the interrupt report.

6.4.2 Device mondo interrupts

Device mondo interrupts are received via the device mondo queue. When this queue is
non-empty, a dev_mondo disrupting trap is pended to the target CPU. The interrupt report
contents are device-specific, although a hypervisor API call does exist to allow privileged code
to target device interrupts to specific CPUs.

Page 38 of 293

head/tail 0

63 6 5 0

Figure 1 : Head and Tail register formats

Hypervisor API Revision 2.0
May 29, 2008

6.5 Device interrupts

Every device (both virtual and physical) has differing interrupt needs. The device mondo
payload was defined to provide a modest amount of information in support of an interruptso
as to minimise the number of additional hypervisor calls required to service an interrupt.

With the device mondo queue registers being implemented by hardware, and directly
accessible by the virtual machine's Operating System, no hypervisor API calls are required to
identify the source of an interrupt, dispatch the appropriate interrupt handler and
subsequently clear the pending interrupt status. Only the device driver itself may need API
calls to access the specific device concerned.

6.5.1 Device handles and devinos

To manage devices and their interrupts each device is identified by a device handle. A
device handle is unique for a specific device within a virtual machine. The device handle for a
device is typically provided to the guest OS running in a virtual machine via the Machine
Description (see section 8) obtainable from the hypervisor. A device handle (or “dev_handle”)
should be treated as an opaque cookie value. No semantic information can be derived from
the value itself, it is merely a handle by which a guest operating system can identify a device
instance to the hypervisor when using an API call.

Devices often have more than one interrupt source. For example, a simple serial device
may have separate transmit and receive interrupts. Consequently to identify interrupt sources
within a device a second parameter - a device interrupt number or “devino” - is used to
disambiguate interrupts belonging to a specific dev_handle.

6.6 Sysinos and cookies

As described above, the sun4v virtual machine architecture delivers interrupt notifications
to a virtual cpu by means of a "device mondo" queue. Each interrupt entry in the device
mondo queue is a fixed 64 Bytes in size and is used to hold a modest amount of additional
information regarding the interrupt it represents.

The first 64-bit word of each dev-mondo packet holds an identifier for the interrupt
source, and the remaining 7 words are defined to be interrupt source specific.

Hypervisor APIs that relate to interrupt handling typically require the passing of a
devhandle and the devino to uniquely identify a specific interrupt within the virtual machine.

6.6.1 Legacy use (the sysino)

The initial UltraSPARC T1 hypervisor supplied a “sysino” in word 0 of each dev-mondo
to identify the source of an interrupt. This hypervisor's sysino was derived from the actual
device handle and devino of the interrupt source. For the devices in use by a guest operating
system the sysinos to be generated by the hypervisor in device mondos could be determined
using the Hypervisor's INTR_DEVINO2SYSINO API call.

The sysino API was intended for the Hypervisor to return a 64-bit value of it's choosing to
represent an interrupt source. The arbitrary sysino value was intended such that any
algorithm might be employed in generating a sysino for the corresponding device handle and
interrupt number. In practice the implementation was simply to concatenate the devhandle
and ino values into a single 64-bit sysino number.

Solaris 10 uses this sysino value as an index into a linear table programmed with
information relevent to the specific interrupt source. The size of this table fixed at Solaris
compile time as a function of the number of cpus.

A Revision 2.0 Hypervisor API
May 29, 2008

The above assumption made by Solaris requires that the sysinos supplied in each dev-
mondo lie in the range 0-2047 - the size of the table when Solaris is compiled for 64 cpus.

There is no mechanism to enforce this contract between guest OS and hypervisor. The
result is simply that the sysinos generated by the hypervisor that are out of range of the table
are silently dropped (interrupts are lost), and worse, the upper end of the Solaris table is used
for software induced timer interrupts, so unfortunate generation of Hypervisor sysinos can in
fact be interpreted as interrupts other than those for the device they represent.

The additional hurdle of dynamic assignment of sysinos presents itself for Logical
Domaining and Live Migration. Both features require the ability to dynamically assign and
delete interrupt sources for a guest OS, and furthermore transfer those assignments between
machines.

Given these and a number of other problems, the sysino interface is being deprecated, and
is unlikely to be supported in future hypervisors. New guest operating system code should not
use interrupt APIs requiring sysinos unless compatibility with old UltraSPARC-T1
hypervisors is required.

The hypervisor API versioning interfaces can be used to identify the availability of old and
new interrupt interfaces when necessary.

As described below the interrupt cookie mechanism that replaces sysinos may be used in a
backwards compatible manner to avoid significant re-writes of legacy OS interrupt handling
code.

6.6.2 Interrupt cookies

To solve the aforementioned problems with sysinos, Guest OSs and Hypervisor a cookie
based mechanism has been implemented.

Instead of a sysino provided by the hypervisor to identify an interrupt source, a guest OS
will be able to set a 64-bit cookie value of its choice for a specific devhandle + devino pair. This
cookie is returned as word 0 in a dev-mondo entry when the interrupt occurs. The cookie may
be defined and interpreted in anyway by the guest - for example as a pointer to an internal
data structure for the interrupt.

Though legacy interrupt sources (for example the existing PCI-E infrastructure on
Ontario/Erie) may have cookie support in the Hypervisor, the corresponding guest OS nexus
drivers must continue to provide support for existing hypervisor defined sysinos so as to
continue to function on legacy firmware implementations.

Similarly, new firmware implementations should continue to provide support for sysino
based interrupt APIs, in order to support legacy guest OS nexus drivers.

Section 16 of this document defines the APIs used to set and get interrupt cookies in
addition to APIs to manipulate the interrupt state machine using by dev_handle and ino - thus
removing the need for the sysino and the problems of its dynamic allocation and migration
between machines.

Page 40 of 293

Hypervisor API Revision 2.0
May 29, 2008

7 Error model

This section describes the sun4v error handling and reporting architecture. To allow for a
degree of future proofing, this component of sun4v has to be flexible, and robust enough to
gracefully cope with error situations yet to be envisioned by system designers. In particular it
is a design goal of sun4v that an older sun4v OS be able to handle reports from new hardware
- if only via a set of default actions.

7.1 Definitions

Error class a group of errors with common attributes that are handled in a similar
manner.

Error report a message describing an error sent to privileged mode.

Error queue a FIFO list of error reports of the same class.

7.2 Error classes

The sun4v architecture defines two classes of errors: resumable and non-resumable errors.

7.2.1 Resumable error

A resumable error indicates the delivery of an error notification that leaves the current
instruction stream in a consistent state so that execution can be resumed after the error is
handled. A resumable error does not require any specific action by privileged code; the error
may even be ignored. More sophisticated privileged code may record the error and/or
forward it to a diagnosis agent. While all corrected errors are resumable, it is important to
note that some uncorrectable errors are also resumable, e.g., an uncorrectable writeback error
is resumable since the current instruction stream is not affected, but if the corrupted data is
later fetched, a nonresumable error would occur. Whether or not the error was corrected is
indicated in the error header.

7.2.2 Non-resumable error

A non-resumable error indicates the delivery of an error notification that leaves the
current instruction stream in an inconsistent state. The instruction stream (nonprivileged or
privileged) interrupted by this error cannot be resumed without explicit software intervention.
In addition to possibly recording the error and/or forwarding it to a diagnosis agent,
privileged code must either abort the current instruction stream, or attempt to recover from
the error. The instruction stream may only be repaired if the error caused a precise trap. If the
error caused a deferred trap, it cannot be repaired. The error's trap type is indicated in the
error header.

7.3 Error reports

The sun4v architecture presents error information to privileged mode via error reports. An
error report consists of a common 64 byte header, followed by error-specific data. The error-
specific data will also be a multiple of 64 bytes in length, so the entire length of an error
message will always be a multiple of 64 bytes.

7.4 Error queues

Errors are reported to privileged mode via error reports. Error reports are appended to a
FIFO error queue. There are two error queues, one for each error class (resumable and non-
resumable). Privileged code removes errors from the front of the error queue as it handles

A Revision 2.0 Hypervisor API
May 29, 2008

them.

The contents of each queue is described by a head and tail pointer. The head and tail
pointer for each queue are held in registers as offsets from the base of their respective queue
region. These interrupt queue registers are accessed with the QUEUE ASI (0x25). Each of the
registers are addressable and accessible as 64bit quantities. The ASI addresses are as follows:

Register Address Access

RESUMABLE_ERROR_QUEUE_HEAD 0x3e0 read & write

RESUMABLE_ERROR_QUEUE_TAIL 0x3e8 read only

NONRESUMABLE_ERROR_QUEUE_HEAD 0x3f0 read and write

NONRESUMABLE_ERROR_QUEUE_TAIL 0x3f8 read only

In privileged mode, the head offset registers are read and write accessible, the tail offset
registers are only readable. Attempting to write the tail register from privileged mode results
in a data_access_exception trap.

7.4.1 *_QUEUE_HEAD and *_QUEUE_TAIL

The status of each queue is reflected by its head and tail pointers:

*_QUEUE_HEAD holds the offset to the oldest error report in the queue.

*_QUEUE_TAIL holds the offset to the area where the next error report will be stored.

An event that results in the insertion of a queue entry causes the tail of that queue to be
incremented by 64 bytes. Privileged code is responsible for similarly incrementing the head
pointer to remove an entry from the queue. The queue pointers are updated using modulo
arithmetic based on the size of a queue. A queue is empty when the head is equal to the tail. A
queue is full when the insertion of one more entry would cause the tail pointer to equal the
head pointer.

The format of each of the QUEUE_HEAD and QUEUE_TAIL register is shown in Figure .
Bits 0 through 5 always read as 0, and attempts to write them are ignored.

The minimum head and tail register size is 16 bits (bits 6 though 21). Unimplemented bits
must read as zero, and be ignored when written.

7.5 Error traps

The sun4v architecture has two error traps:

resumable_error this trap informs privileged code that an error report has been appended
to the resumable error queue. This trap is a disrupting trap, meaning that
the current instruction stream can be restarted with a retry instruction,
and that resumable_error traps can be blocked by setting pstate.ie = 0.

nonresumable_error this trap informs privileged code that an error report has been appended
to the nonresumable error queue. This trap may be precise or deferred, as
indicated in the error header. A precise trap may be restartable if the
corruption can be repaired, but a deferred trap cannot be restarted even if
the corruption is repaired. Non-resumable errors cannot be blocked, or

Page 42 of 293

head/tail 0

63 6 5 0

Figure 2 : Head and Tail register formats

Hypervisor API Revision 2.0
May 29, 2008

nest. Privileged code must update the nonresumable queue head as
quickly as possible to indicate when it is prepared to take another
nonresumable_error trap. If the nonresumable_error queue is not empty
when another nonresumable_error trap occurs, the hypervisor will stop the
current CPU, and send a resumable error to another CPU in the same
partition. If only one CPU has been configured in the partition, the
hypervisor will inform the service processor.

At entry of the trap handler, the processor caches will be enabled and cleared of any faults.
System memory, however, may have uncorrectable errors. If the real address of a memory
error can be determined, this information will appear in the error header.

A Revision 2.0 Hypervisor API
May 29, 2008

8 Machine description

To describe the resources within a virtual machine (or logical domain), a data structure
called a machine description (MD) is made available to the guest running in each logical
domain / virtual machine environment.

This section describes the transport format for the machine description (MD).

This format is provided for the contract between the producer of the MD (typically the
Service Entity) and the consumers in the logical domains (for example, OBP boot firmware
and the Solaris OS.)

8.1 Requirements

The format of the machine description is designed so that any consumer may either elect
to read and transform it into an internal representation, or merely use it in place. For the latter,
the encoding needs to be easily readable with an efficient decoder. Similarly a simple encoding
requirement also exists for the system software responsible for generating a particular
machine description.

A hypervisor will provide a machine description as a whole to a guest operating system
upon request in response to an API call. The machine description is written into a buffer
owned by the guest, and not shared with any other guest or with the hypervisor. Once
provided it is truly private to the guest. Therefore, there is no requirement that the encoding
format support any form of dynamic update or extension. Updates to a machine description
are indicated by providing a complete new machine description.

8.2 Sections

The machine description is provided in four sections as illustrated below and described
below.

These sections are linearly concatenated together to provide a single machine description.

8.3 Encoding

Unless otherwise specified, all fields described herein are encoded in network byte order
(big-endian).

Unless otherwise specified, all fields are packed without intervening padding, and have no
required byte alignment.

Where alignment is specified, it is defined in relation to the first byte of the machine
description header.

Page 44 of 293

Figure 3Machine Description sections

Node Block

Data Block

Name Block

Header

Hypervisor API Revision 2.0
May 29, 2008

8.4 Header

The format for the machine description header is defined below:

Byte offset Size in bytes Field name Description

0 4 transport_version Transport version number

4 4 node_blk_sz Size in bytes of node block

8 4 name_blk_sz Size in bytes of name block

12 4 data_blk_sz Size in bytes of data block

The header is easily described by the following packed C structure for a big-endian
machine:

struct MD_HEADER {
uint32_t transport_version;
uint32_t node_blk_sz;
uint32_t name_blk_sz;
uint32_t data_blk_sz;

};

The transport_version specifies the version encoding that applies to this MD. The
transport version is a 32bit integer value. The upper 16bits correspond to a major version
number, the lower 16bits correspond to a minor version number change.

8.4.1 Version numbering

The transport_version number for this specification is 0x10000, namely version 1.0.

An increase in the minor number of the transport version corresponds to the compatible
addition or removal of information encoded in the machine description. This includes, but is
not limited to, the removal of certain property types, or the addition of new property types.
Guests can expect to be able to decode some, but not all of the Machine Description, and must
handle this expectation accordingly by ignoring unknown types.

Future specification revisions defining new element types found outside a node
encapsulation (e.g. between NODE_END and NODE) are considered incompatible and
require an increase in the major version number of the MD transport header.

8.4.2 Size fields

• Each size field describes the size in bytes of the remaining three blocks in the machine
description.

• The node block follows immediately after the section header.

• The name block starts at byte offset: 16+ node_blk_sz.

• The data block starts at byte offset: 16 + node_blk_sz + name_blk_sz.

• All sizes are multiples of 16 bytes.

• The total size of the MD is 16 + node_blk_sz + name_blk_sz + data_blk_sz.

• Each section (sizes; node_blk_sz, name_blk_sz, data_blk_sz) may be a maximum of 232-16
bytes in length.

Note: The name block and data block sections are described below first, to assist in understanding
of the subsequent node block description.

A Revision 2.0 Hypervisor API
May 29, 2008

8.5 Name Block

The name block provides name strings to be used for node entry naming. Legal name
strings are defined as follows:

A name string is a human readable string comprised of an unaligned linear array of bytes
(characters) terminated by a zero byte (nul '\0' character). Null termination enables the use of
C functions such as strcmp(3) for comparison.

Character encoding consists of all human readable letters and symbols from ISO standard
8859-1 not including: blanks, “/”, “\”, “;”, “[“, “]”, “@”.

Each name string is referenced by its starting byte offset within the name block.

Name string lengths are stored along with the byte offset in the node elements, limiting
name length to 255 bytes, not including the terminating null character.

There may not be duplicate strings in the name block; a given name string may appear
only once in the name block. Thus the offset within the name block becomes a unique
identifier for a given name string within a machine description.

A single name string may be referenced from more than one node element.

The name block is padded with zero bytes to ensure that the subsequent data block is
aligned on a 16 byte boundary relative to the start of the machine description. These pad bytes
are included in the name block size.

Note: The name block contains name strings that are held independently from the data block
section in order to assist with accelerated string lookups. This technique is described later in section
8.13.

8.6 Data Block

The data block provides raw data that may be referenced by nodes in the node block.

Raw data associated with node block elements is simply a linear concatenation of the raw
data itself and has no further intrinsic structure. The size, location and content of each data
element is identified by the referring element in the node block.

Data block contents are unaligned unless specified as part of the referring property's
requirements. When alignment is required it is considered relative to the first byte of the
overall machine description. Alignment is achieved by preceeding a data element with zero
bytes in the data block.

The producer of a machine description is required to arrange that data requiring a specific
alignement in the MD is placed on an appropriate alignment boundary relative to the start of
the MD. The consumer of an MD is required to read the machine description into a buffer
aligned correctly for the largest alignment requirement the consumer may have, or be
prepared to handle unaligned data references correctly.

8.7 Node Block

The node block is comprised of a linear array of 16 byte elements aligned on a 16byte
boundary relative to the first byte of the entire machine description.

The node block elements have specific types and are grouped as defined below so as to
form “nodes” of data. Each element is of fixed length, and each element may be uniquely
identified by its index within the node block array.

Page 46 of 293

Hypervisor API Revision 2.0
May 29, 2008

Any element A may refer to another element B simply by using the array index for the
location of element B. For example, the first element of the node block has index value 0, the
second has index 1, and so on.

8.7.1 Element format

Elements within the node block have a fixed 16byte length format comprised of big-endian
fields described below:

Byte offset Size in bytes Field name Description

0 1 tag Type of element

1 1
name_len Length in bytes of element name. Element name is

located in the name block.

2 2 _reserved_field reserved field (contains bytes of value 0)

4 4
name_offset Location offset of name associated with this element

relative to start of name block.

8 8
val 64 bit value for elements of tag type “NODE”,

“PROP_VAL” or “PROP_ARC”

8 4
data_len Length in bytes of data in data block for elements of

type “PROP_STR” and of type “PROP_DATA”

12 4

data_offset Location offset of data associated with this element
relative to start of data block for elements of tag type

“PROP_STR” and “PROP_DATA”

For a big-endian machine this is illustrated by the packed C structure below:
struct MD_ELEMENT {

uint8_t tag;
uint8_t name_len;
uint16_t _reserved_field;
uint32_t name_offset;
union {

struct {
uint32_t data_len;
uint32_t data_offset;

} y;
uint64_t val;

} d;
};

The tag field defines how each element should be interpreted.

The name associated with this element is given by the name_offset and name_len fields
giving the offset within the name block and length of the node name not including the
terminating null character.

The remainder of the node element has two formats depending upon the node tag field.
The node element either contains a 64bit immediate data value, or (for elements requiring an
extended data or string) it consists of two 32bit values providing the size and offset of the
relevant data within the data block.

8.7.2 Tag definitions

Note: Element tag enumerations are chosen so that an ASCII dump of the node section will reveal
each element type thus aiding debugging.

The following element tag types are defined:

A Revision 2.0 Hypervisor API
May 29, 2008

Tag Value ASCII equiv Name Description Value field

0x0 \0 LIST_END End of element list -

0x4e 'N' NODE Start of node definition 64bit index to next node
in list of nodes

0x45 'E' NODE_END End of node definition -

0x20 ' ' NOOP NOOP list element - to be ignored 0

0x61 'a' PROP_ARC Node property arc'ing to another node 64bit index of node
referenced

0x76 'v' PROP_VAL Node property with an integer value 64bit integer value for
property

0x73 's' PROP_STR Node property with a string value offset and length of
string within data block

0x64 'd' PROP_DATA Node property with a block of data offset and length of
property data with in

the data block

8.8 Nodes

The array of elements in the node block form a sequence of “nodes” terminated by a single
LIST_END element.

• A node is a linear sequence of two or more elements whose first element is NODE and
whose last element is NODE_END.

• Between NODE and NODE_END there are zero or more elements that define properties for
that node. These are PROP_* elements. The ordering of these elements (between NODE and
NODE_END) does not confer meaning.

• The name given to a NODE element is non-unique and defines the binding of property
elements that may be encapsulated within that node.

• The NOOP element is provided so that an entire node may be removed by overwriting all
of its constituent elements with NOOP. A NODE link that arrives at a NOOP element is
equivalent to the next NODE or LIST_END element after the sequence of NOOP elements.

• The PROP_ARC element is used to denote an arc in a DAG, therefore a PROP_ARC
element may only reference a NODE element.

• Note: A node referenced by any PROP_ARC element cannot be removed by use of NOOP
element unless all the referring PROP_ARC elements are removed. PROP_ARC elements may
be removed by conversion to a NOOP element.

• The element index of a “NODE” element is serves as a unique identification of a complete
node and its encapsulated properties.

• The value field associated with a “NODE” element (elem_ptr->d.val) holds the element
index to the next “NODE” element within the MD.

• A reader may skip from one node to the next without having to scan within each node for the
“NODE_END” by using this index value to locate the next NODE element in the node block.

8.9 Node definitions

The type of a node is defined by the name string associated with the NODE element
designating the start of the node in the machine description node block. Nodes can be found
by linear search matching on type or by following the PROP_ARCs of a DAG.

Page 48 of 293

Hypervisor API Revision 2.0
May 29, 2008

8.9.1 Node categories

Nodes in a machine description serve one or two purposes; to provide information about a
virtual machine resource they represent and, optionally to function as a construction node
within a DAG formed within the machine description. A construction node may contain
properties about certain resources, however its primary function is as a container for the arc
links (PROP_ARC properties) that connect to other descriptive nodes.

Nodes belong to one of four categories that determine what walkers must handle within
the MD. A node's category determines whether nodes of that type can be expected to found
within the MD, or whether nodes of that type are optional. The categories are defined below:

core Nodes of this type are always required to be present in the MD.

resource required If the resource described by the node is available within the virtual
machine, an associated node of this type is required to be present in the
MD in order to describe the resource.

required by X If a node of type X is present in the MD, then one (or more) nodes of this
type will be present in the MD and associated with X.

optional A node of this type need not appear as part of the MD, it is entirely
optional, and guest OS code should have a default policy to continue
functioning despite this absence.

8.10 Content versions

The “root” node (section 8.19.1) is unique in the entire machine description. It is; the one
node from which all other nodes can be reached, guaranteed to be the first node defined in the
node block, and is required to be present in a properly formed machine description.

The root node is primarily a construction node, with arc properties connecting to other
nodes in the description. The root node carries a string property “content-version” that defines
the version number of the content of the machine description”.

Content versioning is defined independently of the machine description transport version.
The content version identifies the rules surrounding construction of the DAG describing the
machine.

This specification is for content version “1”.

Minor changes such as the addition of new node types, properties or arc names, or the
removal of optional nodes or properties, do not require a content version number change.

Incompatible changes to the node definitions such that any possible earlier machine
description consumer will encounter problems with the newer content cause a version change.

8.11 Common data definitions

As defined by the machine description transport, data values for string and data property
elements (PROP_STR and PROP_DATA) are placed in the data block of the machine
description. This section defines commonly used formats of data placed in the data block of a
machine description and referred to using elements with the PROP_DATA tag.

Additional data formats may also be defined explicitly with a specific node definition.

A Revision 2.0 Hypervisor API
May 29, 2008

8.11.1 String array

A string array is a commonly used data property that defines a concatenated list of nul
character terminated strings. The PROP_DATA element that refers to this structure carries an
offset (within the MD data block) to the start of the first string. The size field corresponds to a
count of all the string bytes comprising the compound string list.

In this format strings are concatenated one immediately after the next. Thus if p is a
pointer to the first string, then p+strlen(p)+1 is a pointer to the second. The overall size of this
data field is used to determine the last string in the list. Every string in the list must terminate
with the nul character. The string pointed to by p is the last string in the array if p+strlen(p)+1
equals the address of the property data plus its length. A string array of zero elements is not
possible since the data length of a PROP_DATA element cannot be zero. Consumers should
interpret the absence of the property as indicating an array of zero elements.

For example; the string list { “data”,”load”,”store” } would be encoded as a PROP_DATA
pointing to a 16byte block of the data section of the MD with the byte values: 0x64 0x61 0x74 0x61
0x00 0x6c 0x6f 0x61 0x64 0x00 0x73 0x74 0x6f 0x72 0x65 0x00.

8.12 How to use a machine description

A machine description (“MD”) contains both explicit information about resources within a
machine - detailed by specific nodes within the MD, and implicit information about the
relationship of those resources - detailed by how nodes are interconnected into a relationship
graph. We detail the relationship properties later in this section.

8.12.1 Using the MD as a list

For the simplest of sun4v guest operating environments, details of memory system
hierarchy or even cache sizes are of little to no importance. Rather, basic information such as
available memory regions and numbers of virtual CPUs are sufficient for the environment to
function.

Therefore the MD is designed to enable the extraction of basic information without the
need to parse any of the inter-relational information also provided.

For example, a simple guest may wish to simply determine the number of CPUs available
in the machine. Within the MD each CPU is represented by a node of type “cpu” (please see
section 8.9 for the definition of node types).

A guest may then, starting at the first node in the MD, simply linearly walk the list of
nodes from one to the next in the list looking for nodes of a specific type. As each specific node
is found properties may then be read from within that node. Pseudo code for this is illustrated
in figure 4 below.

Page 50 of 293

Hypervisor API Revision 2.0
May 29, 2008

8.13 Accelerating string lookups

To search for specific nodes or properties within a node, list element names need to be
matched against known strings. The name for each list element is indirectly referenced in the
name block of the machine description.

The basic method of searching for nodes or properties implies that for each tagged
element in the machine description list, the name string must be found (using the offset in the
element) and then the string compared against the desired string value.

While providing correct results these numerous string compares slow searching of the
machine description.

The string match process may be short circuited due to the property of uniqueness of
strings in the name block. The name block is constructed to guarantee that each string appears
only once in the name block regardless of the number of times it is referenced by different
elements. Since a desired string (e.g. “cpu”) can appear at most once in the name block, the
index to that string in the name block becomes as unique as the string itself.

With this knowledge a more trivial method of searching the MD, is to first find the strings
of interest in the name block - thus identifying the unique index for each string name. Then
the MD itself can be seached by trivially matching the first 64 bytes of each element.

For example, suppose we wish to count the number of cpus represented in the MD. We
first identify the string “cpu” in the name block; for our example it might appear at index
0x123. Thus any element uniquely identify the start of a cpu node will have the tag value 'N',
name length of 4 (3 plus the nul string terminator) and name offset of 0x123. So then in the
binary image of our example MD the first 64bits of any “cpu” node element will have the
unique value of 0x4e0300000123.

A trivial linear search of the MD for this pattern enables nodes of type “cpu” to be
counted;

int find_node_idx(uint_t *bufferp, char *namep)
{

struct MD_HEADER *hdrp;
struct MD_ELEMENT * nodep;
int i, nelems;
char *strp;

hdrp = (void*)bufferp;
nodep = (void*) (bufferp+16);
nelems = hdrp->node_blk_sz / 16;
strp = buffer + 16 + hdrp->node_blk_sz;

for (i=0; i<nelems; i=nodep[i].d.val) {
char *sp;
if (strcmp(strp+node[i].name_offset,

namep)==0) return i;
}

return (-1); /* failed */
}

Figure 4Pseduo C-code for walking the list of nodes

A Revision 2.0 Hypervisor API
May 29, 2008

Similarly, sought elements within a node can be matched using the same method of testing
the first 64bits of the element structure.

Elements describing the start of a node have the specific property that the value field
(elem_ptr->d.val) holds the index of the element for the next node in the machine description.
So when searching specifically for node elements, other elements in the MD are trivially
skipped thus speeding the search;

It is recommended that guests using the MD initially search and cache the indices of
desired strings from the MD name block to avoid even the cost of finding the matching string
index for each new MD search.

It should noted however, that the name block is unique to a particular MD. If the guest
requests a new copy of a MD from the hypervisor, there is no guarantee that strings will have
the same indices in the name block of the new MD as they have in the name block of the old
MD.

8.14 Directed Acyclic Graph

The intrinsic Machine Description (MD) is a collection of directed acyclic graphs (DAGs)
of nodes describing resources or information available within a machine. This information is
provided upon request to a guest operating system via the machine description request API.

8.14.1 Graph nodes

The DAG nodes are defined by the “NODE” element within the element list, and contain
all the properties and arcs described until the subsequent NODE_END element. DAG node
names form a well defined name space such that a particular name describes the type of a well
defined entity. A different type of entity must be described by a node of a different name. For
example, a CPU may be described by of type “cpu”, while a cache is described by a node of
type “cache”.

Each node is a specific instance of the entity it describes. Properties or named values held
within that node provide relevant details of the corresponding entity. For example, a cache
node will hold a list of properties describing attributes of that cache.

As a node is defined by a specific “NODE” element within the element list, then for a
specific MD, we can uniquely refer to that node by the index of its starting node element
withing the element list. Thus if a “cpu” node starts at list element number 27, then a unique
reference to that “cpu” node is the index value 27.

Using these index values for node start list elements, we can now provide pointers or
“arcs” to point to other nodes. In the construction of the MD element list, we define the 64bit
data payload of a “NODE” element to contain the index to the next “NODE” element in the
element list. Thus a simple linear list of nodes is formed within the MD element list that
enables searching for nodes of specific types without having to scan every list element looking
for “NODE” and “NODE_END” tags.

Simlarly, using the PROP_ARC, type we can build a link or arc from one node to another.
The value field of a PROP_ARC element is the 64bit element index of the “NODE” element
pointed to. It is illegal for a PROP_ARC element to point to anything other than a NODE
element, or a NOOP element (outside a node).

Page 52 of 293

Hypervisor API Revision 2.0
May 29, 2008

8.15 DAG construction

A DAG is constructed as described above by named arcs that link the nodes together. The
interconnection of these arcs explicitly defines the relationship between the nodes. For
example, if node A has an arc to node C and node B has an arc to node C then the relationship
exposed is that within the graph both nodes A and B share node C and any nodes that C arcs
to. In the example illustration shown in the figure below we can see an instruction cache that is
shared by two cpu nodes. The sharing is indicated by the existence of arcs from each cpu node
to the same cache node.

The default DAG described within the MD is defined by arcs (element type PROP_ARC)
with a name of “fwd”. For convenience in walking this DAG, arcs named “back” are also
provided that define the inverse DAG. Thus for every node A that has a “fwd” arc pointing to
another node B, there is a corresponding “back” arc for node B pointing back to A.

The use of named arcs enables other DAGs to be built and contained within the same MD,
however none other than the DAGs defined by the “fwd” and “back” arcs are currently
defined.

8.16 Required nodes

The MD DAG will vary according to the resources available within a machine, and certain
nodes may be present in a machine on one machine architecture, but not on a different
machine architecture.

The MD concept is designed to allow for certain nodes to be “optional”, however, to allow
for the MD to be useable at all certain nodes must be defined and present in the description.
These are “required” nodes and are guaranteed to be present if the resource they describe is
present within the machine.

Nodes not defined in this specification must be ignored by system software.

8.17 The vanilla MD

Normally a MD is a full description of the resources available to specific logical domain.
However, it is a requirement for any sun4v guest operating system that it be able to handle
any machine description capable of being defined by this document and its subsequent
revisions. To this end, a Guest operating system must be able to ignore / skip over nodes
whose type and definitions the OS has never seen before, and most importantly that same
Guest must follow some default fall-back behavior when information is not available.

To test the requirement for a default fall-back behavior, we define a “vanilla” description
that contains only the core and required nodes for a given platform. This guarantees that a
Guest OS is given no information about the platform upon which it is running, and to test that
it continues to boot and execute - though optimal performance is no longer required.

Figure 5Sharing relationship between nodes

cache
level=1

cpu B
id = 1

cpu A
id = 0

A Revision 2.0 Hypervisor API
May 29, 2008

The nodes in the vanilla MD are therefore required and sufficient to describe a guest
environment for a basic sun4v compatible Operating System.

8.18 Formation and meaning of a DAG

As mentioned above a machine description currently contains only one DAG, and this is
defined by all arcs with the name “fwd”. As a courtesy, in order to speed certain searches, the
MD also contains the inverse of this DAG built using arcs of name “back”. Clearly the “back”
DAG could be built by a guest from the “fwd” DAG, however the basic MD contains both to
help lower the burden on the Guest.

Future revisions of this spec. may include new nodes, and importantly new DAGs within
the same MD. Current software should be designed to ignore arcs with names other than
“fwd” and “back” in order to remain future proof. Future MD will be implemented so as not
to have conflicts with the vanilla fwd and back DAGs.

To understand how to use the DAGs in a MD consider the DAG built using the “fwd”
arcs.

The root of the “fwd” DAG is a node of type “root”. This is by definition the very first
node in the MD. It can be found very simply by scanning the MD element list for the first
NODE definition (though unfortunately, due to the existence of NOOP elements, this need not
be at element index 0).

From the root node, “fwd” arcs lead to nodes describing the various components within
the logical domain a guest is using.

The root node in turn contains “fwd” arcs to collective nodes for cpus, memory and various forms
of I/O, as well as nodes targeted to specific consumers such as OpenBoot.

Page 54 of 293

Hypervisor API Revision 2.0
May 29, 2008

8.19 Generic nodes

8.19.1 Root node

Name: root

Category: core

Required subordinates: cpus (§8.19.2), memory (§8.19.4), platform (§8.19.6)

Optional subordinates: -

8.19.1.1 Description

A node of this type must always be the first node in a machine description.

Only one node in the machine description may be named “root”.

This root node must be the first node defined in the node block of the machine description.

All other nodes in the forward graph can be reached starting at the root node.

8.19.1.2 Properties

Name Tag Required Description

content-version PROP_STR yes Version string for the content of this machine description.
Currently defined version is “1”

md-generation# PROP_VAL no A 64-bit unsigned integer that monotonically increases if
the machine description is updated while the domain
remains bound, that is, configured within the Hypervisor.

 A value of zero is to be assumed if this property is absent.

8.19.1.3 Programming note

The purpose of the md-generation# number is assist guests that attempt to respond to
dynamic updates of their machine descriptions. With the number monotonically increasing a
guest is easily able to resolve the temporal ordering of multiple updates of its machine
description.

The md-generation# values will not to be re-used during the lifetime of the guest domain

A Revision 2.0 Hypervisor API
May 29, 2008

8.19.2 Cpus node

Name: cpus

Category: required by root

Required subordinates: -

Optional subordinates: cpu(§8.19.3)

8.19.2.1 Description

This construction node leads directly to all the virtual CPUs supported within this virtual
machine. The number of cpus is expected to be derived by counting the number of subordinate
cpu nodes.

8.19.2.2 Properties

None defined

Page 56 of 293

Hypervisor API Revision 2.0
May 29, 2008

8.19.3 Cpu node

Name: cpu

Category: resource required

Required subordinates: -

Optional subordinates: exec_unit (§8.20.2), cache (§8.20.1), tlb (§8.20.3)

8.19.3.1 Properties

Name Tag Required Description

clock-frequency PROP_VAL yes A 64-bit unsigned integer giving the frequency of the sun4v
virtual CPU in Hertz and thereby the frequency of the
processor s %tick register

compatible PROP_DATA* yes String array of cpu types this virtual cpu is compatible with.
The most specific cpu type must be placed first in the list,
finishing with the least specific.

id PROP_VAL yes A unique 64-bit unsigned integer identifier for the virtual
CPU. This identifier is the one to use for all hypervisor CPU
services for the CPU represented by this node.

isalist PROP_DATA* yes List of the instruction set architectures supported by this
virtual CPU.

mmu-#context-bits PROP_VAL no A 64-bit unsigned integer giving the number of bits forming
a valid context for use in a sun4v TTE and the MMU context
registers for this virtual CPU.
sun4v defines the minimum default value to be 13 if this
property is not specified in a cpu node.

mmu-#shared-contexts PROP_VAL no A 64-bit unsigned integer giving the number of primary and
secondary shared context registers supported by this virtual
CPU s MMU. If not present the default value is assumed to
be 0

mmu-#va-bits PROP_VAL no A 64-bit unsigned integer giving the number of virtual
address bits supported by this virtual CPU. If not present a
default value of 64 is assumed.
Note: It is legal for there to be fewer VA bits than real
address bits.

mmu-compatible PROP_DATA* no String array listing alternate mmu-type values that this
virtual CPU s MMU interface is also compatible with

mmu-max-#tsbs PROP_VAL no A 64-bit unsigned integer giving the maximum number of
TSBs this virtual CPU can simultaneously support. If not
present the default value is assumed to be 1.
Note: sun4v Solaris assumes at least 2 are available.

mmu-page-size-list PROP_VAL no A 64-bit unsigned integer treated as a bit field describing
the page sizes that may be used on this virtual CPU. Page
size encodings are defined according to the sun4v TTE
format (see §14.3.2). A bit N in this field, if set , indicates
that sun4v defined page size with encoding N is available
for use. For example bit 0 corresponds to the availability of
8K pages.
If not present, a default value of 0x9 is assumed, indicating
the sun4v default availability of 8K and 4M pages.

A Revision 2.0 Hypervisor API
May 29, 2008

Name Tag Required Description

mmu-type PROP_STR yes Name for the kind of MMU in use by this cpu
Currently defined names are: “sun4v”

nwins PROP_VAL yes A 64-bit unsigned integer giving the number of SPARCv9
register windows available on this virtual CPU

q-cpu-mondo-#bits PROP_VAL yes A 64-bit unsigned integer the maximum size (in bits) of the
cpu mondo queue head and tail registers

q-dev-mondo-#bits PROP_VAL yes A 64-bit unsigned integer giving the maximum size (in bits)
of the device mondo queue head and tail registers

q-resumable-#bits PROP_VAL yes A 64-bit unsigned integer giving the maximum size (in bits)
of the resumable error queue head and tail registers

q-nonresumable-#bits PROP_VAL yes A 64-bit unsigned integer giving the maximum size (in bits)
of the non-resumable queue head and tail registers

hwcap-list PROP_DATA no A list of strings identifying which ISA extensions are
implemented in this processor. The currently defined values
for constructing an hwcap-list are:
"ima","fjfmau","trans","random","hpc",
"vis3","fmau","fmaf","ASIBlkInit",
"vis2","vis","popc","v8plus", "fsmuld", "div32","mul32".

memory-model-list PROP_DATA no A list of strings identifying which memory models are
supported, as per UA-2009 (or future revisions of same)
Appendix D (Formal Specification of the Memory Models).
Currently defined values are: "tso", "rmo" and "wc". These
are, respectively, “Total Store Order", "Relaxed Memory
Order", and "Weak Consistency".

Note: The 'compatible' will have “SUNW,sun4v” as the last element for systems of the sun4v
machine class.

Note: Currently defined ISAs for constructing an 'islist' are: "sparcv9", "sparcv8plus",
"sparcv8", "sparcv8-fsmuld", "sparcv7", "sparc".

Note: Details on the list of currently defined extensions to the SPARC ISA are given in the
UltraSPARC Architecture specification.

Page 58 of 293

Hypervisor API Revision 2.0
May 29, 2008

8.19.4 Memory node

Name: memory

Category: required by root

Required subordinates: -

Optional subordinates: mblock(§8.19.5)

8.19.4.1 Description

This construction node leads directly to all the blocks of real address space backed by
memory within this virtual machine.

8.19.4.2 Properties

None defined

A Revision 2.0 Hypervisor API
May 29, 2008

8.19.5 Mblock node

Name: mblock

Category: required

Required subordinates: -

Optional subordinates: -

8.19.5.1 Description

This node represents a single contiguous range of a virtual machine's real address space
that is associated with real memory.

8.19.5.2 Properties

Name Tag Required Description

base PROP_VAL yes A 64-bit unsigned integer giving the base real address of the
memory block represented bythis node

size PROP_VAL yes A 64-bit unsigned integer giving the size in bytes of the
memory block represented by this node

address-
congruence-offset

PROP_VAL no A 64-bit unsigned integer such that; address-congruence-
offset = (PA_base - RA_base) mod M. Where M is a power

of 2 strictly greater than all values of address-mask and
index-mask for all the cache and latency group nodes in the

MD. See §8.24.2.3.

Page 60 of 293

Hypervisor API Revision 2.0
May 29, 2008

8.19.6 Platform node

Name: platform

Category: core

Required subordinates: -

Optional subordinates: -

8.19.6.1 Description

This node holds general properties describing the platform a guest operating system is
running on.

8.19.6.2 Properties

Name Tag Required Description

banner-name PROP_STR yes The banner name of the system.

hostid PROP_VAL no A 64-bit unsigned integer in which the lower 32 bits hold
the host id assigned to the virtual machine. The upper
32bits must be zero.

mac-address PROP_VAL no A 64-bit unsigned integer in which the lower 48bits holds
the mac address assigned to the virtual machine. The upper
16bits must be zero.

name PROP_STR yes The platform binding name of the system. May not contain
white space characters.

serial# PROP_VAL no A 64-bit unsigned integer in which the lower 32 bits hold
the serial number assigned to the virtual machine. The
upper 32bits must be zero.

stick-frequency PROP_VAL yes A 64-bit unsigned integer giving the frequency in Hertz of
the system (%stick) clock for the virtual machine.

watchdog-
resolution

PROP_VAL no The resolution, in milliseconds, of the watchdog API
service. This property is present if the watchdog timer is
service is available, but is otherwise not required.

watchdog-max-
timeout

PROP_VAL no The largest number of milliseconds that is valid as a
parameter to the watchdog timer service API. This property
is present if the watchdog timer is service is available, but is
otherwise not required.

cons-read-buffer-
size

PROP_VAL no Provides a hint as to the size of the console device s internal
input buffering - suitable for the cons_read API call

cons-write-buffer-
size

PROP_VAL no Provides a hint as to the size of the console device s internal
output buffering - suitable for the cons_write API call

max-cpus PROP_VAL no The theoretical maximum number of virtual cpus a guest
OS may be assigned
If present, the guest software can assume that it will not see
more virtual CPUs than specified by this property
If not present, there is no theoretical limit to the number of
virtual CPUs the guest may be assigned. Consequently the
guest will have to make a determination for itself as to how
many and which of its virtual CPUs it activates

inter-cpu-latency PROP_VAL no This property defines tha maimum number of nanoseconds

A Revision 2.0 Hypervisor API
May 29, 2008

Name Tag Required Description

of delay the guest might encounter when two processors
attempt to rendezvous (inter-processor communication
using interrupts, shared memory, etc.).

domaining-enabled PROP_VAL no A 64 bit value indicating the availability of domaining on
this platform. Valid values are 0 or 1.

8.19.6.3 Programming notes

Note: A platform's banner-name is cosmetic only, typically of the form “Sun Fire T100”, but the
name is part of the platform binding, typically of the form “SUNW,Sun-Fire-T100”.

Note: The presence of the max-cpus property does not place any requirement on the guest to
support the number of virtual CPUs specified. The guest is always free to further constrain the
number of virtual CPUs that it will support.

Note: The inter-cpu-latency property is intended to bound the amount of time privileged software
should consider when calculating timeouts to be used for detecting non-responsive virtual CPUs. This
value does not account for additional time required due to the implementation of the privileged code
itself, such as executing for prolonged periods with interrupts disabled (pstate.ie==0). The total
amount of time imposed by the system added to the amount of time imposed by the guest should be
used as the basis for calculating timeout values. More specific latency information may be provided via
latency groups in the same machine description see section 8.24.

Note: Platform node properties may be added, removed, or changed at any time, with notification
provided by the MD update domain service. Guest software is expected to take notice and
accommodate changes when they occur.

Note: The absence of the domaining-enabled flag indicates that the platform firmware is not
capable of supporting multiple domains. The domaining-enabled flag, if present and set to 0, indicates
that the platform firmware is capable of multiple domains, however the domain manager has not been
used to configure the platform. The domaining-enabled flag, if present and set to 1, indicates that the
platform firmware is capable of multiple domains and the domain manager may have configured
multiple domains on this platform.

Page 62 of 293

Hypervisor API Revision 2.0
May 29, 2008

8.19.7 Domain services node

Name: domain-services

Category: optional, under root

Required subordinates: -

Optional subordinates: domain-services-port

8.19.7.1 Description

This construction node leads directly to all the domain services ports supported within
this virtual machine. There is only one domain-services node per virtual machine.

A Revision 2.0 Hypervisor API
May 29, 2008

8.19.8 Domain services port node

Name: domain-services-port

Category: optionally required by domain-services or openboot

Required subordinates: -

Optional subordinates: channel-endpoint

8.19.8.1 Description

This node uniquely represents an instance of a domain services port. The domain-services
node or openboot node will have zero or more domain-services-port nodes.

A domain-services-port under an openboot node is intended exclusively for use by
OpenBoot firmware.

8.19.8.2 Properties

Name Tag Required Description

id PROP_VAL yes A 64-bit unsigned integer uniquely identifying this domain
service port within the domain-services node or openboot
node.

Page 64 of 293

Hypervisor API Revision 2.0
May 29, 2008

8.20 Memory hierarchy nodes

The following nodes are used to convey information about the host memory system
heirarchy to a guest.

8.20.1 Cache node

Name: cache

Category: optional

Required subordinates: -

Optional subordinates: cache (§8.20.1)

8.20.1.1 Description

This node describes a cache in the memory system hierarchy.

8.20.1.2 Properties

Name Tag Required Description

associativity PROP_VAL yes A 64-bit unsigned integer giving the associativity of the
cache (number of ways in each set). A value of 0 indicates
fully associative, a value of 1 indicates direct-mapped, a
value of 2 indicates 2-way and so on.

compatible-type PROP_DATA no Holds a string array of “type” field values. In the event that
a precise type match cannot be made using the “type”
property this property may be searched for compatible
types.

level PROP_VAL yes A 64-bit unsigned integer giving the notional level of this
cache in the memory hierarchy.

line-size PROP_VAL yes A 64-bit unsigned integer giving the number of bytes
comprising a single cache line. This is the size of the caches
allocation unit that is matched by a single cache tag

sub-block-size PROP_VAL no A 64-bit unsigned integer giving the number of bytes
comprising a single cache sub-block. This is the size of the
cache s coherence unit size that is matched by a single state
entry. This property may be omitted if it would have the
same value as the line-size property.

size PROP_VAL yes A 64-bit unsigned integer giving the capacity (size) in bytes
of the cache.

type PROP_DATA yes String array listing what may be held in this cache. Generic
types are “instruction” and “data”.

index-mask PROP_VAL no A 64-bit unsigned integer. A bit in index-mask is set if that
bit in a PA influences the cache index at which a memory is
stored when cache resident. This propery is discussed later
with regard to page coloring in (§8.24.2.4).

A Revision 2.0 Hypervisor API
May 29, 2008

8.20.2 Exec-unit node

Name: exec-unit

Category: optional

Required subordinates: -

Optional subordinates: cache (§8.20.1), tlb (§8.20.3)

8.20.2.1 Description

This node is describes an execution unit associated with a virtual CPU. Each execution
unit may perform multiple functions/operations, and properties are defined appropriate not
just to the whole execution unit, but also to individual function capabilities.

8.20.2.2 Properties

Name Tag Required Description

compatible-type PROP_DATA no If defined holds a string array of “type” field values. In the
event that a precise type match cannot be made using the

“type” property this property may be searched for
compatible types.

type PROP_DATA yes String array listing functional capabilities of this execution
unit. Generic types are:
“ifetch” - instruction fetcher
“integer” - integer instruction execution
“fp” - floating point instruction execution
“vis” - vis instruction execution
“integer-load” - integer load operations
“integer-store” - integer store operations
“fp-load” - floating point load operations
“fp-store” - floating point store operations

Niagara specific types are:
 “n1-crypto” - Niagara 1.0 crypto unit
Niagara-2 and Victoria-Falls specific types are:
 “rng” - Random number generator

8.20.2.3 Programming Note

Some very early releases of Hypervisor firmware included nodes erroneously named
“exec_unit”. Software should ignore these nodes and their contents as in a few cases the
information provided was in fact incorrect. Software correctly written to this specification
should automatically ignore these false nodes anyway since they are not named “exec-unit”.

Page 66 of 293

Hypervisor API Revision 2.0
May 29, 2008

8.20.3 TLB node

Name: tlb

Category: optional

Required subordiantes: -

Optional subordinates: tlb (§8.20.3)

8.20.3.1 Description

A TLB node describes a Translation Lookaside Buffer (MMU translation cache) in the
memory system hierarchy.

8.20.3.2 Properties

Name Tag Required Description

associativity PROP_VAL yes A 64-bit unsigned integer giving the associativity of the TLB
(number of ways in each set). A value of 0 indicates fully

associative, a value of 1 indicates direct-mapped, a value of
2 indicates 2-way and so on.

compatible-type PROP_DATA no If defined holds a string array of “type” field values. In the
event that a precise type match cannot be made using the

“type” property this property may be searched for
compatible types.

entries PROP_VAL yes A 64-bit unsigned integer giving the number of translation
entries

level PROP_VAL yes A 64-bit unsigned integer giving the notional level of this
translation buffer in the overall page translation hierarchy

page-size-list PROP_VAL yes A 64-bit unsigned integer treated as a bit field describing
the page sizes that may be used in this TLB. Page size

encodings are defined according to the sun4v Architecture
Specification. A bit N in this field, if set , indicates that

sun4v defined page size with encoding N is available for
use. For example bit 0 corresponds to the availability of 8K

pages.

type PROP_DATA yes String array listing functional capabilities of this execution
unit. Currently defined types are:

“instruction” - translate instruction fetches

“data” - translates data accesses

A Revision 2.0 Hypervisor API
May 29, 2008

8.21 Variables

Name: variables

Category: optionally required by root

Required subordinates: -

Optional subordinates: -

8.21.1 Description

This machine description node is used to supply variable values to the guest operating
system of the virtual machine. These variables are part of the operating environment of the
virtual machine and being present in the machine description may be preserved accross
reboots and power-cycles of the virtual machine and overall system.

Each property in the node consitutes a variable and its value. Variables can be retrieved by
name or by retrieving each of the properties of the variables node.

8.21.1.1 Properties

Name Tag Required Description

“variable name” PROP_STR yes The variable s value. A NULL terminated string.

Page 68 of 293

Hypervisor API Revision 2.0
May 29, 2008

8.22 Keystore

Name: keystore

Category: optionally required by root

Required subordinates: -

Optional subordinates: -

8.22.1 Description

This node contains a list of security keys used for WAN Boot support. See section 30.12.

The node consists of a list of security keys formatted as name and value string pairs. The
key names are chosen by the user.

8.22.1.1 Properties

Name Tag Required Description

“key name” PROP_STR yes The security key s value. A NULL terminated string.

The “key name” can be up to 64 characters long and the value for each key can be up to
32 characters long.

The “key name” represents the name of the security key.

A Revision 2.0 Hypervisor API
May 29, 2008

8.23 Virtual Devices

Virtual devices implemented as part of the Virtual IO (VIO) infrastructure are represented
in the guest's machine description as nodes together with their properties. This section
provides description of these virtual device nodes, the device hierarchy and their properties.

8.23.1 Descriptions for virtual devices

All virtual devices are represented as a node in the guest MD along with its sub-nodes as
children of the virtual-devices node. All virtual devices nodes are of type virtual-device. The
name and compatible properties identify the the specific device and the driver associated with
the device.

There are two types of virtual device nodes and these are grouped into two separate
classes. The first class of device nodes are ones that do not use Logical Domain Channels
(LDC) like console, and the existing platform service nodes. These appear as children of the
virtual-devices node in the MD. All virtual-device nodes that use LDCs belong to a class called
channel devices and are grouped under a node called channel-devices.

An example node heirarchy for virtual device MD nodes is illustrated above using the
“fwd” DAG.

The channel-devices node is a child of the the virtual-devices node. Some of the virtual-
device nodes under the channel-devices node have one or more child port nodes of type
virtual-device-port. A port for a virtual device represents a communication path to and/or
from that virtual device and can be comprised of one or more logical domain channels. Each
virtual-device-port node can point to one or more channel-endpoint nodes corresponding to the
logical domain channels within that port.

Page 70 of 293

root

virtual-devices

channel-devices virtual-device

virtual-device virtual-device

virtual-device-port
0

virtual-device-port
1

virtual-device-port
0

channel-endpoint
0

channel-endpoint
1

channel-endpoint
2

channel-endpoints

Hypervisor API Revision 2.0
May 29, 2008

8.23.2 Virtual devices node

Name: virtual-devices

Category: core

Required subordinates: -

Optional subordinates: virtual-device (§8.23.4) and channel-devices (§8.23.3)

8.23.2.1 Description

This construction node leads directly to all the virtual devices supported within this
virtual machine. The number of instances for each device can be derived by counting the
number of nodes for each device.

8.23.2.2 Properties

Name Tag Required Description

name PROP_STR yes A string name for this node. This value is currently defined
as “virtual-devices”.

device-type PROP_STR yes A string type for this node. This value is currently defined
as “virtual-devices”.

compatible PROP_DATA yes An array of string names for this node. This value is
currently defined as “SUNW, sun4v-virtual-devices”.

cfg-handle PROP_VAL yes A 64-bit unsigned integer identifying this device uniquely.

A Revision 2.0 Hypervisor API
May 29, 2008

8.23.3 Channel devices node

Name: channel-devices

Category: optionally required by virtual-devices

Required subordinates: -

Optional subordinates: virtual-device (§8.23.4)

8.23.3.1 Description

This construction node leads directly to all the channel based virtual devices supported
within this virtual machine. The number of instances for each device can be derived by
counting the number of nodes for each device.

8.23.3.2 Properties

Name Tag Required Description

name PROP_STR yes A string name for this node. This value is currently defined
as “channel-devices”.

device-type PROP_STR yes A string type for this node. This value is currently defined
as “channel-devices”.

compatible PROP_DATA yes An array of string names for this node. This value is
currently defined as “SUNW, sun4v-channel-devices”.

cfg-handle PROP_VAL yes A 64-bit unsigned integer identifying this device uniquely.

Page 72 of 293

Hypervisor API Revision 2.0
May 29, 2008

8.23.4 Virtual device node

Name: virtual-device

Category: optionally required by virtual-devices and channel-devices

Required subordinates: -

Optional subordinates: virtual-device-port (§8.23.5)

8.23.4.1 Description

This node uniquely represents an instance of a virtual device. The properties listed here
applicable to all virtual devices. Each of the virtual devices may specify additional properties
that are device class specific.

8.23.4.2 Common properties

Name Tag Required Description

name PROP_STR yes Standard property name defining the type of device. See
virtual-device class table below

type PROP_STR yes Standard proprty type for this node. See virtual-device class
table below

cfg-handle PROP_VAL yes A 64-bit unsigned integer identifying this device uniquely.

compatible PROP_DATA yes An array of strings containing compatible device names for
this node. See virtual-device class table below

8.23.4.3 Virtual device classes

service
group

class compatible name device-type name

Console Client SUNW,sun4v-console serial console

Channel devices

service
group

class compatible name device-type name

Network Client SUNW,sun4v-network network network

Network Server SUNW,sun4v-network-switch vsw virtual-network-switch

Block Client SUNW,sun4v-disk block disk

Block Server SUNW,sun4v-disk-server vds virtual-disk-server

Console Server SUNW,sun4v-console-concentrator vcc virtual-console-concentrator

Serial Server SUNW,sun4v-channel serial virtual-channel

Serial Client SUNW,sun4v-channel serial virtual-channel-client

Serial Server SUNW,sun4v-data-plane-channel serial virtual-data-plane-channel

Serial Client SUNW,sun4v-data-plane-channel serial virtual-data-plane-channel-
client

A Revision 2.0 Hypervisor API
May 29, 2008

8.23.4.4 Device class specific properties

Name Tag Required Description

vsw-phys-dev PROP_DATA no An array of string names identifying the physical network
devices available locally for use by a virtual switch device

vsw-switch-mode PROP_DATA no An array of string names identifying the order of the
preferred swithcing mode(s) for this switch device. Currnt
valid values are “switched”, “promiscuous” and “routed”.

local-mac-address PROP_VAL no A 64-bit unsigned integer in which the lower 48bits hold the
mac address assigned to a virtual network or switch device.
The upper 16bits must be zero.

default-vlan-id PROP_VAL no A 64-bit unsigned integer, where the lower 12-bits hold the
vlan-id used to designate untagged ethernet frames set or
received by a virtual network or switch device. The upper
52-bits must be zero.

port-vlan-id PROP_VAL no A 64-bit unsigned integer, where the lower 12-bits hold the
implicit port vlan-id assigned to this virtual network or
switch device. The upper 52-bits must be zero.

vlan-id PROP_DATA no An array of 64-bit unsigned integers, where the lower 12-
bits of each element holds the vlan-id(s) assigned to this
virtual network or switch device. The upper 52-bits of each
element must be zero.

priority-ether-types PROP_DATA no An array of 64-bit unsigned integers, where the lower 16-
bits of each element holds a high priority ethernet type. The
upper 48bits of each element must be zero. The ethernet
type corresponds to the Type field in a ethernet frame as
defined by the Ethernet v2/DIX standard.
The virtual network and switch devices should prioritize
frames with these types over all other frames, and ensure
that these frames are not dropped under congestion.

Page 74 of 293

Hypervisor API Revision 2.0
May 29, 2008

8.23.5 Virtual device port node

Name: virtual-device-port

Category: optionally required by virtual-device node (§8.23.4)

Required subordinates: -

Optional subordinates: channel-endpoint (§8.23.8)

8.23.5.1 Description

This node uniquely represents an instance of a virtual device port. All virtual-device
channels connected to the same client are grouped under a single port device. Every virtual-
device has zero or more virtual-device-port nodes.

8.23.5.2 Common properties

Name Tag Required Description

name PROP_STR yes A string name for the device. See virtual-device-port class
table.

id PROP_VAL yes A 64-bit unsigned integer identifying this port uniquely
within the virtual-device.

8.23.5.3 Device class specific port properties

Name Tag Required Description

vds-block-device PROP_STR no A string name identifying the block device used by a port in
a SUNW,sun4v-disk-server device.

vds-block-device-
ops

PROP_DATA no An array of string names identifying the options for the
device used by a vds-port in SUNW,sun4v-disk-server
device. Current valid options are:

“ro” - The device is used and exported by vds as a read-only
device

“slice” - The device is exported by vds as a disk slice.

“exclusive” - The device is opened for exclusive use by this
vds instance only. The device cannot be used by another
client or vds instance on the guest.

“shared” - The device is exported by the virtual disk server
instance to one or more clients connected to it.

vdc-timeout PROP_VAL no A 64-bit integer identifying a block device s connection
timeout. The value specified in seconds determines the
period after which a SUNW,sun4v-disk device will timeout
submitting requests if it cannot establish a connection with
the virtual disk server. If the property is either not specified
or set to 0, the block device will wait indefinitely to establish
a connection with the virtual disk server.

vcc-tcp-port PROP_VAL no A 64-bit unsigned integer identifying the TCP port assigned
to a console group. Provided to vnts daemon via the vcc
driver.

A Revision 2.0 Hypervisor API
May 29, 2008

Name Tag Required Description

vcc-group-name PROP_STR no A string name identifying the console group for a domain.
Provided to the vnts daemon via the vcc driver.

vcc-domain-name PROP_STR no A string name identifying the a domain s console uniquely.
Provided to the vnts daemon via the vcc driver.

remote-mac-
address

PROP_DATA no Array of 64-bit unsigned integers where the
lower 48-bits of each element holds the
mac address assigned to the virtual
network or switch device. The upper 16-
bits of each element must be zero.
This array is a list of mac addreses that are
known to be accessible via this port. This is
not a complete and comprehensive list.

remote-port-vlan-id PROP_VAL no A 64-bit unsigned integer, where the lower
12-bits holds the implicit port vlan-id
assigned to the peer virtual network or
switch device. The upper 52-bits must be
zero.

remote-vlan-id PROP_DATA no An array of 64-bit unsigned integers, where
the lower 12-bits of each element holds the
vlan-id(s) assigned to the peer virtual
network or switch device. The upper 52-
bits of each element must be zero.

switch-port PROP_VAL no Identifies this port as being associated with a
SUNW,network-switch device. Property value must be zero.
Other values are reserved.
Progamming note: When using a distributed switch model,
this property assists a simple guest in finding a switch port
rather than querying every port directly.

vldc-svc-name PROP_STR no A string name identifying the service a SUNW,sun4v
channel device is providing over this port.

vdpc-svc-name PROP_STR no A string name specifying the service a SUNW,sun4v-data-
plane-channel device is providing over this port

8.23.5.4 Virtual-device-port class table

Service group Class name name of parent virtual-device node

Network Client vnet-port network

Network Server vsw-port virtual-network-switch

Block Client vdc-port disk

Block Server vds-port virtual-disk-server

Console Client vcc-port virtual-console-concentrator

Serial Server vldc-port virtual-channel

Serial Client vldc-port virtual-channel-client

Serial Server vldc-port virtual-data-plane-channel

Serial Client vdpc-port virtual-data-plane-channel-client

Page 76 of 293

Hypervisor API Revision 2.0
May 29, 2008

8.23.6 Channel endpoints node

Name: channel-endpoints

Category: optionally required by root node

Required subordinates: -

Optional subordinates: channel-endpoint (§8.23.8)

8.23.7 Description

This node uniquely represents a collection of channel endpoint nodes being used by this
guest. There should be only one channel-endpoints node. The single channel-endpoints node
will have zero or more channel-endpoint nodes as subordinates.

A Revision 2.0 Hypervisor API
May 29, 2008

8.23.8 Channel endpoint node

Name: channel-endpoint

Category: optionally required by channel-endpoints node (§8.23.6) and
optionally required by virtual-device-port nodes (§)

Required subordinates: -

Optional subordinates: -

8.23.8.1 Description

This node uniquely represents an instance of a channel endpoint available to this guest.
Every virtual-device-port node will have zero or more channel-endpoint nodes.

8.23.8.2 Properties

Name Tag Required Description

id PROP_VAL yes A 64-bit unsigned integer identifying this endpoint
uniquely within the virtual machine.

tx-ino PROP_VAL yes A 64-bit unsigned integer identifying the interrupt number
assigned to the transmit interrupt for this endpoint.

rx-ino PROP_VAL yes A 64-bit unsigned integer identifying the interrupt number
assigned to the receive interrupt for this endpoint.

Page 78 of 293

Hypervisor API Revision 2.0
May 29, 2008

8.23.9 RNG virtual-device node

The RNG hardware support on the UltraSPARC-T2 chip is represented as a single virtual
device and is represented in the Machine Description (MD) a virtual-device node.

8.23.9.1 Properties

Name Tag Required Description

name PROP_STR yes “random-number-generator”

cfg-handle PROP_VAL yes A 64-bit unsigned integer identifying this device uniquely.

compatible-type PROP_DATA no An array of string names for this node. This value is
currently defined as one of "SUNW,n2-rng", or "SUNW,vf-

rng".

A Revision 2.0 Hypervisor API
May 29, 2008

8.23.10 Crypto virtual-device node

The crypto hardware support on the Niagara chip is represented as a single virtual device
and is represented in the Machine Description (MD) graph for a Guest as a virtual-device node
with the following properties:

8.23.10.1 Properties

Name Tag Required Description

name PROP_STR yes The string name for this node is defined as “ncp” or
“crypto” for UltraSPARC-T1, as “n2cp” for UltraSPARC-T2.

device-type PROP_STR yes A string type for this node. The value is currently defined as
“crypto”, as “n2cp” for UltraSPARC-T2..

intr PROP_DATA yes List of interrupt numbers. One number per core per type of
crypto unit.

ino PROP_VAL yes List of virtual inos generated.

cfg-handle PROP_VAL yes A 64-bit unsigned integer identifying this device uniquely.

compatible PROP_DATA no An array of string names for this node. This value is
currently defined as one of "SUNW,sun4v-ncp", or
"SUNW,n2-cwq".

Page 80 of 293

Hypervisor API Revision 2.0
May 29, 2008

8.23.11 MAC-addresses node

Name: mac-addresses

Category: optional

Required subordinates: -

Optional subordinates: mac-address (§8.23.12)

8.23.11.1 Description

This node is used to identify fixed mac address resources available to a guest virtual
machine. There will be a single 'mac-addresses' node that describes all MAC address to device
path mappings that a guest OpenBoot can use to allocate MAC address resources. Each
forward link of this node will correspond to a mac-address MD node that contains a single
device tree pathname and an array of MAC addresses that have been allocated to that device.
Each of these 'mac-address' nodes may also be a child of any 'iodevice', this allows IO
partitioning by associating an MAC addresses with a particular IO subtree.

8.23.11.2 Properties

This node has no properties but contains forward links to nodes that describe an instance
of an MAC address resource in the guest.

A Revision 2.0 Hypervisor API
May 29, 2008

8.23.12 MAC-address node

Name: mac-address

Category: optional

Required subordinates: -

Optional subordinates: -

8.23.12.1 Description

This node contains a device tree path and an array of MAC addresses that have been
allocated to that device. See mac-addresses node (§8.23.11)

8.23.12.2 Properties

Name Tag Required Description

dev PROP_STR yes A string that describes the pathname of a device tree node.
This device is being allocated MAC addresses as described

by the 'mac-addresses' property.

mac-addresses PROP_DATA yes A consecutive array of six byte elements, each six byte
element specifies an 48-bit IEEE 802.3-style MAC address.

Page 82 of 293

Hypervisor API Revision 2.0
May 29, 2008

8.24 Latency nodes

The following nodes are used to convey latency information to a guest.

Latency information may be used by a guest operating system to perform various
optimizations within the virtual machine. For example, a guest might optimize the allocation
of memory so as to minimize the average access latency for programs running on a particular
virtual CPU.

Latency information is provided in the form of latency groups. A latency group node
defines the relationship between the MD nodes that lead to it and/or that it leads to.

Four types of latency are defined by this specification:

1. The latency between a virtual CPU and a memory block for load and store operations,

2. The latency between a virtual CPU and a I/O device for load and store operations,

3. The latency between an I/O device and memory for DMA operations, and

4. The latency between an I/O device and a virtual CPU for interrupt delivery.

Physical latency information is provided in each latency group node (defined below) with
the latency property. Each latency property value is specified in pico-seconds (ps). The actual
latency observed in each circumstance may be moderated by the effects of caches and other
system components.

Latency group nodes are optional in a machine description. However, for any given type
the latency relationships must be full and complete. Thus, if a latency group node describing
the load/store latency between one virtual cpu and a memory block exists, then all such
latency relationships between all cpus and all memory blocks must be present.

It is recommended, for robustness, that in the event of only partial latency information for
a given type being available, a guest should behave as if no latency information of that type is
available.

8.24.1 Programming notes and accuracy

Latency information for the types defined above is optional and is not necessarily
provided by every virtual platform.

In the event that one of the above types of latency node information is not present in a
machine description, a guest operating system must assume a default policy of uniform
latency.

A dynamic update to a machine description may add or remove some or all of the latency
information. This behavior is to be expected by the guest, which in turn must assume a default
uniform latency policy in the event that latency information is not present.

For short transitory periods latency group information presented in a machine description
may not reflect the actual relationships of components available to a virtual machine. This can
happen, for example, as a result of lag between the reconfiguration of virtual resources and the
subsequent machine description update. For this reason, latency group information should
only be used for performance optimizations, where inaccuracies may result in sub-optimal
performance, but not incorrect behavior.

A Revision 2.0 Hypervisor API
May 29, 2008

8.24.2 Memory latency group node

Name: memory-latency-group

Category: optional

Required subordinates: mblock (§8.19.5)

Optional subordinates: -

8.24.2.1 Description

This node describes the load and store latency relationship between a virtual CPU and a region of
memory. The memory-latency-group node is defined to be a optional subordinate of a cpu node, and in
turn a mblock node is defined to be a subordinate of the mem-lg node.

Thus a search of the “fwd” DAG - starting from a “cpu” node will reveal all the mem_lg
nodes representing that cpu. A search “fwd” from each memory-latency-group node will in
turn reveal each mblock with the described memory latency. So, for example, in the machine
description illustrated below we see that CPU 1 can observe mblock A with a latency of 100ns,
and can observe mblock B with a latency of 150ns.

It is common in microprocessor memory system designs to support striped memory
addressing, where a number of address bits are used to selected a particular memory bank or
chip. Each of these stripes may present a different latency of access for a specific CPU. Often
the size of each stripe unit may be quite small, therefore it is not practicable to provide a
mblock for each small stripe so as to connect each to a distinct memory lgroup node.

To resolve the memory striping problem, each memory latency group node holds two
additional properties, an address mask (“address-mask”), and an address match (“address-
match”) value to be used in conjunction with the real address ranges of the mblocks the
latency group nodes connect to.

So, for example, if bit 22 is used to select between two memory banks for a specific cpu -
providing a latency strip of 4 M bytes - then two memory-latency-group nodes may connect
the cpu node to the appropriate mblock node. Both memory-latency-group nodes will have a
address-mask property with value 0x400000, with one memory-latency-group node having a
address-match property value of 0, and the other memory-latency-group node having a
address-match property of 0x400000. Thus the latency information applies to a mblock only
for those real addresses where the equation ((address + address-congruence-offset) & address-
mask) == address-match holds true. The value address-congruence-offset is a property
specified in the mblock corresponding to the specified address, and transforms the address
into pseudo address suitable for the mask and match combination.

If address-mask and address-match properties are not present in a memory-latency-group
node, then no address striping is in effect, and the described memory latency applies between
all mblocks and cpus connected to this memory-latency-group node.

The address-mask and address-match properties, while optional, must be provided
together. If one property is present without the other a guest must treat the memory-latency-
group node as erroneous and ignore it altogether.

8.24.2.2 Properties

Name Tag Required Description

latency PROP_VAL yes A 64-bit unsigned integer giving the approximate latency of
access in pico-seconds.

address-mask PROP_VAL no A 64-bit unsigned integer providing a mask value for a

Page 84 of 293

Hypervisor API Revision 2.0
May 29, 2008

Name Tag Required Description

memory stripe.

address-match PROP_VAL no A 64-bit unsigned integer providing a match value for a
memory stripe.

8.24.2.3 Programming note on RA and physical address congruence

The real address space used within a virtual machine is a remapping of portions of a
system's underlying physical memory. A guest running within a virtual machine is not
provided the physical addresses of its memory blocks. This abstraction of memory addresses
enables guests to be moved in memory without changing their real address space layout.

 However, to support NUMA and page-coloring algorithms for a guest operating
system further information is required that describes the congruency relationship between a
real address and the underlying physical address to which it is mapped.

To do this, the optional property address-congruence-offset may be optionally added to
each mblock node. The property is computed such that:

address-congruence-offset = (PA_base - RA_base) mod M.

Where; M is a power of 2 strictly greater than all values of address-mask and index-mask
in the MD.

A guest operating system must add address-congruence-offset to any real address before
applying masks to determine a latency group match, such as address-mask and index-mask.

If this property is not present in the mblock, then its value must be assumed 0.

This property is typically provided when the congruency between the real and underlying
physical address of a mblock is less than the size needed for lgroup or page color masking.

For example; Consider a NUMA machine where memory is striped on 1GB boundaries
between 4 different memory controllers. Each cpu may see different access latencies to each of
the memory controllers - each latency is represented by a lgroup node described above.

Now consider a 1GB memory segment that starts at real address 0x400000000 and is
bound to physical address 0x10000000.

To identify 4 different memory controllers with a 1GB stripe the address-mask property of
one of the lgroups might have the value 0xc0000000.

In this legitimate scenario to correctly apply the lgroup information, the guest OS needs
enough correctly congruent bits from the actual physical address to be able to meaningfully
apply the lgroup address mask.

So for our example, real address 0x400000000 corresponds tophysical address 0x10000000,
and real address 0x430000000 corresponds to physical address 0x40000000.

If we apply the lgroup mask to 0x10000000 we get 0x0.

If we apply the lgroup mask to 0x40000000 we get 0x40000000 as the result. Therefore we
see that these different address pages reside on different memory controllers with different
access latencies.

Note: if we had applied the lgroup mask to the corresponding real addresses the result is
always 0x0 implying the same memory controller - which would be incorrect.

A Revision 2.0 Hypervisor API
May 29, 2008

Thus a means to recover the relevant bits of the physical address are required so that the
address mask can be correctly applied.

The address-congruence-offset property in an mblock provides this information. As
described above the property is derived from the difference between real and their
corresponding physical addresses for a mblock. However, to retain ambiguity for actual
physical address bindings, this property is not the actual difference, but simply enough bits
from the RA/PA difference that an addr mask can be correctly applied. This abiguity is strictly
enforced to prevent guest operating systems being able to bind themselves to specific physical
addresses for anti-social activites such as denial of service attacks on specific memory banks or
memory controllers on a shared domain platform.

Thus the value provided for address-congruence-offset is sufficient that the equality:
(RA + address-congruence-offset) & address-mask == address-match

holds correctly for all the provided address-mask and address-match values within the
MD in order to correctly match lgroups.

If the address-mask 0xc0000000 is the largest mask provided, then the address-
congruence-offset for example above would be:

(0x10000000 - 0x400000000) & 0xffffffff = 0x10000000

The address matches for the real addresses above will be,
(0x400000000 + 0x10000000) & 0xc0000000 = 0x0
(0x430000000 + 0x10000000) & 0xc0000000 = 0x40000000

As defined above the address-congruence-offset is an optional property in an mblock
node. If not present, a value of 0 can be assumed, thus the equality for matching lgroups
reduces to:

RA & address-mask == address-match

8.24.2.4 Page coloring

Page coloring for large caches exhibits a similar set of problems to identifying lgroups.

To assist, a cache node is extended with an optional property index-mask to compute a
matching set within the corresponding cache.

The actual cache index employed by hardware is a function of multiple bits from the
physical address of the memory reference. To compute a page coloring value the index-mask
field identifies the relevant bits from a physical address. Thus the index-bits for page coloring
can be derived as:

index-bits = (RA + address-congruence-offset) & index-mask

Where the address-congruence-offset is the property from the mblock (corresponding to the
given RA) as described above.

Similarly to lgroup matching, if the address-congruence-offset property is not provided for a
mblock its value can be assumed as zero reducing the equation to:

index-bits = RA & index-mask

Page 86 of 293

Hypervisor API Revision 2.0
May 29, 2008

8.24.3 Programmed I/O latency group

Name: pio-latency-group

Category: optional

Required subordinates: -

Optional subordinates: -

8.24.3.1 Description

This node describes the access latency of load or store instructions from one or more cpu
nodes to one or more i/o devices. This node requires at least one subordinate node whose type
represents an I/O device, the valid types of these subordinates are listed above in the optional
subordinate section.

 The pio-latency-group node is defined to be a optional subordinate of a cpu node, and in
turn each I/O device node is defined to be a subordinate of the pio-latency-group node.

The latency information defined by this node may be used to better schedule guest OS
functions such as interrupt handlers to virtual cpus with lower latency access to the target
devices.

8.24.3.2 Properties

Name Tag Required Description

latency PROP_VAL yes A 64-bit unsigned integer giving the approximate latency of
access in pico-seconds.

A Revision 2.0 Hypervisor API
May 29, 2008

8.24.4 I/O DMA latency group

Name: dma-latency-group

Category: optional

Required subordinates: mblock (§8.19.5)

Optional subordinates: -

8.24.4.1 Description

This node describes the access latency of DMA operations from one or more I/O device
nodes to one or more mblocks. This latency information may be used to better allocate
memory local to I/O devices where latency of access may be important - for example in the
allocation of device descriptor rings or lookup tables.

The properties describing memory latency and striping are defined as per the memory-
latency-group node (see §8.24.2.1).

8.24.4.2 Properties

Name Tag Required Description

latency PROP_VAL yes A 64-bit unsigned integer giving the approximate latency of
access in pico-seconds.

address-mask PROP_VAL no A 64-bit unsigned integer providing a mask value for a
memory stripe.

address-match PROP_VAL no A 64-bit unsigned integer providing a match value for a
memory stripe.

Page 88 of 293

Hypervisor API Revision 2.0
May 29, 2008

8.24.5 I/O Interrupt latency group node

Name: interrupt-latency-group

Category: optional

Required subordinates: -

Optional subordinates: -

8.24.5.1 Description

This node describes the latency of interrupt delivery from one or more I/O device nodes
to one or more cpu nodes. This latency information may be used to better assign virtual cpus
to interrupt sources in such cases where low interrupt latency is required. This node is
subordinate to cpu nodes and to I/O nodes such as vpci-bus nodes.

8.24.5.2 Properties

Name Tag Required Description

latency PROP_VAL yes A 64-bit unsigned integer giving the approximate latency of
access in pico-seconds.

A Revision 2.0 Hypervisor API
May 29, 2008

8.24.6 Latency groups node

Name: latency-groups

Category: optional

Required subordinates: -

Optional subordinates: memory-latency-group (§8.24.2),

pio-latency-group (§8.24.3),

dma-latency-group (§8.24.4),

interrupt-latency-group (§8.24.5)

8.24.6.1 Description

This collective node leads to all of the latency group nodes in a guest MD. If any of the
mem-lg, pio-lg, dma-lg and/or irq-lg nodes exist in a machine description, then the latency-
groups node must exist with each of the individual latency group nodes as its subbordinates.

8.24.6.2 Properties

None

Page 90 of 293

Hypervisor API Revision 2.0
May 29, 2008

9 Logical domain variables

9.1 Overview

 LDom variables control and provide information to the guest's environment. These
variables are known as an environmental variables or NVRAM variables on legacy platforms.
These variables are created and consumed by guest software such as OpenBoot. These
variables can be modified by guest software CLIs and by LDom manager CLIs. The guest
software can create these variables in any data types it chooses. The data types are private to
the guest SW itself. Thus, in case of OpenBoot, the formats of the variables are determined by
OpenBoot.

The sun4v architecture currently has no pre-defined variables or values. However
OpenBoot software (used by most guest operating environments as their boot loader) does
provide a number of environmental variable values.

Rather then push OpenBoot's variable definitions up-stream into the sun4v architecture,
OpenBoot (as a layered piece of software) provides default values for these variables itself.
Only when a default value needs to be over-ridden, then the administrator can set a LDom
variable of the same name to over-ride the OpenBoot default value.

9.2 LDom variable store

 All LDom variables with non-default settings are stored in the LDom variable store
and are available to its consumer through machine description (MD). The variable store is
managed directly by the LDom manager, and/or indirectly from each guest virtual machine
via the variable domain service described in section XXX.

If a variable is changed to its non-default value then such change is communicated to
LDom manager or to service processor software. The change is reflected in the guest specific
machine description (MD). Since only non-default settings are stored in the LDom store, only
non-default settings are available in the machine description. All variables not in the machine
description are assumed to be set to their default values. The list full list of variables defined
by a client and their default values are only known to the client which defines the variables.
Typically this client is the OpenBoot firmware.

If the format of the LDom variable in the machine description is not known to its
consumer such as OpenBoot then a default value for that variable should be assumed. For
example, if OpenBoot does not recognize the value for a variable then the variable will be
restored to its default setting.

The non-default settings of all of the LDom variables is communicated using name value
string pairs encoded as properties in the variables machine description node.

Even though the values are stored and communicated as name value string pairs, the
creators of these variables can create them in any format desired. It is then the responsibility of
the consumer of these variables to convert to and from a string encoding for the variable store.
For example, if an integer variable is set to 0x0abb0823 then it could be stored in a sting format
as, "0abb0823". When the consumer reads the value from the machine description, it should
convert the string value back to an integer format. Boolean variables should be converted to
either "TRUE" or "FALSE" strings, so that the strings will look exactly the same as user might
type at the keyboard. (Though this is convention only and not enforced).

A Revision 2.0 Hypervisor API
May 29, 2008

9.3 LDom variables and automatic reboot

Historically there were two ways by which OpenBoot would automatically boot a guest
OS. One of the way is by setting the LDom variable auto-boot? to TRUE. The second way was
valid settings in the in-memory reboot buffer. For security reasons in LDoms, the concept of
the reboot buffer was removed. Three new variables are defined in its place for use with
OpenBoot.

OpenBoot's decision to automatic boot a logical domain will be made by first looking at
the “reboot-command” variable and then by looking at the “auto-boot?” variable. If the
“reboot-command” contains a valid boot string then OpenBoot will execute that boot string
command. If the string is NULL or non-existent then OpenBoot will look for the “auto-boot?”
variable. If “auto-boot?” is set to TRUE then OpenBoot will boot the guest OS using the boot
device specified by boot related LDom variables (these are boot-device and boot-file).

Note : The “diag-device” and “diag-file” variables do not exist on sun4v class platforms.

The following 3 variables are introduced to support automatic reboot of a guest domain.
These variables replace the legacy reboot parameter buffer on non-sun4v platforms.

reboot-line-number

This is an optional variable used by Frame buffer console. The value is a 32bit
integer value describing line number. The default value is 0.

reboot-column-number

This is an optional variable used by Frame buffer console. The value is a 32bit
integer value describing column number. The default value is 0.

reboot-command

This is a required NULL terminated string variable which describes reboot string
which includes the boot command, "boot", optional device path or a device alias and
optional file arguments. A NULL string indicates that the reboot string is not valid.
The maximum string length of this variable is 256 characters. The default value of this
variable is NULL. See below for details on the format.

The string in reboot-command is interpreted by OpenBoot as is. The contents of
this variable are valid only for one reset. The reboot-command string is invalidated by
setting it to the NULL string after OpenBoot has read the variable. If the user wants to
set a permanent reboot path and arguments then “auto-boot?” should be set to TRUE
together with “boot-path” and “boot-file” being set to the proper device path and boot
arguments respectively.

Implementation Note : This variable can be set by using OpenBoot CLIs, guest OS CLIs
and also by LDom manager CLIs. It will be updated by the SW responsible for a guest reboot.
If OpenBoot is responsible for a guest reboot then it will set the “reboot-command" variable
with an appropriate boot string. On legacy platforms, the boot string is stored in a reboot
parameters buffer which is part of NVRAM device. If Solaris is responsible for guest reboot
then Solaris is responsible for updating this variable directly. In either cases, OpenBoot is the
sole consumer of this variable.

9.3.1 Format of reboot-command variable

The format of the string in the reboot-command consists of the following parameters.
<boot_command>
<optional device path or an alias>
<optional boot arguments> <NULL>

Page 92 of 293

Hypervisor API Revision 2.0
May 29, 2008

Here, boot_command is string "boot", device path is the OpenBoot device tree path to the
boot device, (an alias is an alias to the boot path). Boot arguments are arguments passed to the
boot command. A NULL character terminates the string.

Each of the three parameters above are delineated by one or more space characters (ASCII
value 0x20). If the second parameter is neither a device path (string which starts with "/" -
ASCII value 0x2F) or a device alias then the second parameter is the boot argument. The
device path can not contain any spaces but boot arguments can have one or more spaces. The
end of the boot argument string is the NULL character.

Note : If the device path or an alias are not specified then OpenBoot will use the “boot-
device” variable value as the boot device. Similarly, if boot arguments are not specified then
OpenBoot will use the “boot-file” variable value as boot arguments.

The maximum length of the “reboot-command” variable string is 256 characters. A string
consisting of just a NULL character (ASCII value 0x00) is considered as an invalid boot string.

9.3.2 Guest OS management of LDom variables

 A guest OS obtains the list of variables defined by OpenBoot from the "options"
device node in the device tree created by OpenBoot. For each such variable, OpenBoot creates
properties in the "options" device node. The property contains the name and value for each of
the LDom variable. This behavior is the same on all systems that use OpenBoot.

However, guest Operating Systems that dismiss OpenBoot after booting must manage
LDom variables directly if changes are to be stored. Thus the list of LDom variables OpenBoot
has defined should be retrived from the "options" device node. A Guest OS will be able to set
any of these variables following the string name value pair format described above using the
variable domain service.

A Revision 2.0 Hypervisor API
May 29, 2008

10 Security keys

Most sun4v SPARC platforms provide the ability via their OpenBoot firmware boot code
to boot a verifiable operating system image across a wide area network (WAN) such as the
Internet.

To guard against a “man-in-the-middle” attack where a false boot image is provided in
place of a legitimate one for booting, verification and security for boot images is performed
using security keys to attest to the correctness of the image being downloaded. OpenBoot
documentation provides a more in-depth discussion of this mechanism.

In support of this WAN Boot capability a domain service is provided to be able to store
and retrieve these security keys by a LDom on its platform. These keys themselves are
typically manipulated via CLIs provided by OpenBoot and operating systems like Solaris.

The WAN Boot key values need to be persisted across reboot. This is achieved in a sun4v
virtual machine by presenting the keys in the guest Machine Description (MD) node called
"keystore". Setting and deleting the keys is achieved via a domain service described in this
section.

The MD node definitions are given in section 8.22.

The mechanism to store and access the Security Key values is identical to the variable store
and access and is described in section 30.12. The only difference is the MD node and the
domain services used to access the keys. The keystore format is also identical to LDom
variables. The reason for the differentiation is that security keys are not LDom variables and
should not be manipulatable via the normal variable management CLIs.

Page 94 of 293

Hypervisor API Revision 2.0
May 29, 2008

11 API versioning

This section describes the API versioning interface available to all privileged code.

11.1 API call

11.1.1 api_set_version

trap# CORE_TRAP
function# API_SET_VERSION
arg0 api_group
arg1 major_number
arg2 req_minor_number

ret0 status
ret1 act_minor_number

The API service enables a guest to request and check for a version of the Hypervisor APIs
with which it may be compatible. It uses its own trap number to ensure consistency between
future versions of the virtual machine environment. API services are grouped into sets that are
specified by the argument api_group, (defined in the table below). For the specified group the
guest's requested API major version number is given by the argument major_number and a
requested API minor version number is given by the argument req_minor_number.

If the major_number is supported, the actual minor version implemented by the Hypervisor
is returned in ret1 (act_minor_number). Note that the actual minor version number may be less
than, equal to, or greater than the requested minor version number. (See Notes, below). If the
returned act_minor_number is greater than the req_minor_number then the APIs enabled by the
Hypervisor for api_group will be compatible with req_minor_number.

If the major_number is not supported, the Hypervisor returns an error code in ret0, and ret1
is undefined. (See Errors, below.)

If the major_number requested is zero, the version of the api_group selected is requested to
return to the initial un-set (disabled) state. If the call succeeds it will return with EOK in status,
and zero in act_minor_number.

The version number of a specified API group may be set at any time with this API service,
however;

1. The act of selecting an API version for an api_group, or requesting that the group return
to being un-set (major_number=0), does not reset any previous state associated with services
within a group - unless specified explicitly for that group associated state after a
api_set_version call is undefined.

2. Any API calls belonging to the same api_group being made concurrently with this
api_set_version service will have undefined results.

3. Calls to APIs made concurrently with api_set_version that are not in api_group proceed
as normally defined.

4. Simultaneous calls to api_set_version using the same api_group, may succeed but leave
the api_group in an undefined state.

5. Simultaneous calls to api_set_version and api_get_version using the same api_group
have undefined results for api_get_version.

6. api_set_version does not affect the CORE_TRAP API calls - these remain unaffected and
may be called at any time.

A Revision 2.0 Hypervisor API
May 29, 2008

The API groups are defined in Appendix A: Number Registry (on page 286) together with
the approved version numbers for each of the API services defined in this specification.

Programming note: Each API group is treated independently of the others from a versioning
perspective, so one group can have its version negotiated while APIs from other groups are actively
being used. However, a guest operating system should take care to ensure that while a api_set_version
is in progress, no APIs from the same api_group are used, and no other calls to api_set_version or
api_get_version are made using the same api_group.

11.1.1.1 Errors

EINVAL If api_group field is unknown to this hypervisor,
(this error takes precedent over ENOTSUPPORTED)

ENOTSUPPORTED If major number for that api_group is not
supported

EOK If api_group and major_number match, or
major_number is zero

EWOULDBLOCK Operation would block
EBUSY The api_group is currently in use, and the

requested version would leave the virtual machine
in an illegal state

11.1.1.2 Usage Notes:

This API uses its own trap number, not for performance reasons, but to ensure its
constancy even in the face of new API major versions.

Regardless of version number, the Hypervisor core APIs (CORE_TRAP) defined above
enables any guest to print a message and cleanly exit its virtual machine environment in the
event it is unsuccessful in negotiating an API version with which to communicate with other
hypervisor functions.

The following informative text is provided as a guide to assist the reader in understanding
the hypervisor versioning API.

API functions and returned data structures are categorized into specific groups. Each
group represents an area of hypervisor functionality that may change independently of the
others, and therefore may be versioned independently.

For each API group there is a major and a minor version number. Differences in the major
version number indicate incompatible changes. Differences in the minor number indicate
compatible changes, such that a higher version number espoused by the hypervisor will be
compatible with a lower minor number requested by a guest. If the api_group is not supported
the api_version function will return EINVAL. If the major version number for a valid
api_group is not supported the api_version function will return ENOTSUPPORTED.

The handling of an unsupported API version is purely guest policy, however a guest may
freely attempt a different major version if it is capable of driving that alternate interface. The
suggested minimal behaviour is to print a warning message and exit the virtual machine.

By way of example consider a guest that requests minor version 'Requested', and this API
may return minor version 'Actual' for a given major_number and api_group.

If Requested == Actual, then the requested minor version is available.

If Actual < Requested, the guest must be able to determine if the interface with minor
version Actual offers the required services and proceed accordingly. (This is a guest policy
issue.)

Page 96 of 293

Hypervisor API Revision 2.0
May 29, 2008

If Actual > Requested, then the guest may assume it can operate compatibly with version
Requested. Minor version number increments are defined to be compatible with the
preceeding version, so in general the guest may accept Actual when Actual > Requested. In
this case, the guest may want to print a warning, but that is up to the policy of the guest.

Alternatively in the event that Actual>Requested, the hypervisor may elect to emulate
version Requested, thus returning Requested.

For situations such as the co-residence of OBP with Solaris, or mutliple Solaris modules
using the same API group, a layered software approach must be taken for version negotiation.

For example, it is recommended that OpenBoot intially negotiate to the lowest version
number supported for the firmware consolidation for api groups it intends to use. A
subsequent guest operating system may then negotiate versions up for each api group by
calling though OpenBoot's CIF interface. Using the CIF interface means OpenBoot will be
aware of the version negotiation and can adapt itself accordingly to new api versions, or
simply veto requested versions it cannot compatibly upgrade to. If a guest negotiates versions
directly with the hypervisor bypassing the CIF, the guest is responsible for dismissing
OpenBoot and providing OpenBoot services for itself.

A Revision 2.0 Hypervisor API
May 29, 2008

11.1.2 api_get_version

trap# CORE_TRAP
function# API_GET_VERSION
arg0 api_group

ret0 status
ret1 major_number
ret2 minor_number

This service is used to determine the major and minor number of the most recently
successfully set API version for the specified group (see section 11.1.1). In the event that no
API version has been successfully set the call returns the error code EINVAL and ret1 and ret2
are set to 0.

11.1.2.1 Errors

EINVAL - No API version yet successfully set

Page 98 of 293

Hypervisor API Revision 2.0
May 29, 2008

12 Core services

The following services enable privileged software to request information about or to affect
the entire virtual machine domain.

12.1 API calls

12.1.1 mach_exit

trap# FAST_TRAP
function# MACH_EXIT
arg0 exit_code

This service stops all CPUs in the virtual machine domain and places them into the stopped
state. The 64-bit exit_code may be passed to a service entity as the domain's exit status.

On systems without a service entity, the domain will undergo a reset, and the boot
firmware will be reloaded.

This function will never return to the guest that invokes it.

Note: by convention a exit_code of zero denotes successful exit by the guest code. A non-zero
exit_code denotes a guest specific error indication.

12.1.1.1 Errors

This service does not return.

A Revision 2.0 Hypervisor API
May 29, 2008

12.1.2 mach_desc

trap# FAST_TRAP
function# MACH_DESC
arg0 buffer
arg1 length

ret0 status
ret1 length

This service copies the most current machine description into the buffer indicated by the
real address in arg0. The buffer provided must be 16 byte aligned. Upon success or EINVAL
this service returns the actual size of the machine description is provided in the ret1 (length)
return value.

Note: A method of determining the appropriate buffer size for the machine description is to first
call this service with a buffer length of 0 bytes.

12.1.2.1 Errors

EBADALIGN Buffer is badly aligned
ENORADDR Buffer is to an illegal real address.
EINVAL Buffer length is too small for complete machine

description.

Page 100 of 293

Hypervisor API Revision 2.0
May 29, 2008

12.1.3 mach_sir

trap# FAST_TRAP
function# MACH_SIR

This service provides a software initiated reset of a virtual machine domain. All CPUs are
captured as soon as possible, all hardware devices are returned to the entry default state, and
the domain is restarted at the SIR (trap type 0x4) real trap table (rtba) entry point on one of the
CPUs. The single CPU restarted is selected as determined by platform specific policy. Memory
is preserved across this operation.

12.1.3.1 Errors

This service does not return.

A Revision 2.0 Hypervisor API
May 29, 2008

12.1.4 mach_watchdog

trap# FAST_TRAP
function# MACH_WATCHDOG
arg0 timeout

ret0 status
ret1 time_remaining

This API service provides a basic watchdog timer service.

A guest uses this API to set a watchdog timer. Once the guest has set the timer, it must call
the timer service again either to disable or re-set the expiration. If the timer expires before
being re-set or disabled, then the hypervisor takes a platform specific action leading to guest
termination within a bounded time period. The platform action may include recovery actions
such as reporting the expiration to a Service Processor, and/or automatically restarting the
guest.

If the timeout argument is zero, the watchdog timer is disabled.

If the timeout argument is not zero, the watchdog timer is set to expire after a minimum of
timeout milli-seconds. The implemented timeout granularity is given by the watchdog-resolution
property in the platform node of the guest's machine description (see §8.19.6); the timeout
specified is rounded up to the nearest integer multiple of watchdog-resolution milliseconds.

The largest allowed timeout value is specified by the watchdog-max-timeout property of
the platform node. If the timeout value exceeds the value of the watchdog-max-timeout property,
the hypervisor leaves the watchdog timer state unchanged, and returns a status of EINVAL.

The time_remaining return value is valid regardless of whether the return status is EOK or
EINVAL. A non-zero return value indicates the number of milli-seconds that were remaining
until the timer was to expire. The time remaining will be rounded up to the nearest milli-
second of watchdog-resolution available.

Programming note: If the hypervisor cannot support the exact timeout value requested, but can
support a larger timeout value, the hypervisor may round the actual timeout to a value larger than the
requested timeout, consequently the time_remaining return value may be larger than the previously
requested timeout value.

Programming note: Any guest OS debugger should be aware that the watchdog service may be in
use. Consequently, it is recommended that the watchdog service is disabled upon debugger entry (e.g.
reaching a breakpoint), and then re-enabled upon returning to normal execution. The API has been
designed with this in mind, and the time_remaining result of the disable call may be used directly as
the timeout argument of the re-enable call.

Page 102 of 293

Hypervisor API Revision 2.0
May 29, 2008

13 CPU services

CPUs represent devices that can execute software threads. A single chip that contains
multiple cores or strands is represented as multiple CPUs with unique CPU identifiers. CPUs
are exported to OBP via the machine description (and to Solaris via the device tree). CPUs are
always in one of three states: stopped, running, or error.

13.1 CPU id and CPU list

A cpu id is a pre-assigned 16bit value that uniquely identifies a CPU within a logical
domain.

Operations that are to be be performed on multiple CPUs specify them via a CPU list. A
CPU list is an array in real memory, of which each 16-bit word is a CPU id.

CPU lists are passed through the API as two arguments: the first is the number of entries
(16-bit words) in the CPU list, and the second is the (real address) pointer to the CPU id list.

A valid CPU list must have one or more CPU id entries.

13.2 API calls

13.2.1 cpu_start

trap# FAST_TRAP
function# CPU_START
arg0 cpuid
arg1 pc
arg2 rtba
arg3 target_arg0

ret0 status

Start CPU with id cpuid with pc in %pc and with a real trap base address value of rtba. The
indicated CPU must be in the stopped state. The supplied rtba must be aligned on a 256byte
boundary. On successful completion, the specified cpu will be in the running state and will be
supplied with target_arg0 in %o0 and rtba in %tba.

13.2.1.1 Errors

ENOCPU Invalid cpuid
EINVAL Target cpuid is not in the stopped state
ENORADDR Invalid pc or rtba real address
EBADALIGN Unaligned pc or unaligned rtba
EWOULDBLOCK if starting resource is not available

A Revision 2.0 Hypervisor API
May 29, 2008

13.2.2 cpu_stop

trap# FAST_TRAP
function# CPU_STOP
arg0 cpu

ret0 status

Stop CPU cpu. The indicated CPU must be in the running state. On completion, it will be
in the stopped state. It is not legal to stop the current CPU.

Note: As this service cannot be used to stop the current cpu, this service may not be used to stop
the last running CPU in a domain. To stop and exit a running domain a guest must use the mach_exit
service.

13.2.2.1 Errors

ENOCPU Invalid cpu
EINVAL target cpu is the current cpu
EINVAL target cpu is not in the running state
EWOULDBLOCK if stopping resource is not available
ENOTSUPPORTED if not supported on the platform

13.2.3 cpu_set_rtba

trap# FAST_TRAP
function# CPU_SET_RTBA
arg0 rtba

ret0 status
ret1 previous_rtba

Set the real trap base address of the local cpu to the value of rtba. The supplied rtba must
be aligned on a 256byte boundary. Upon success the previous value of rtba is returned in ret1.

Note: the real trap table is described in the sun4v architecture specification.

Note: this service does not affect %tba

13.2.3.1 Errors

ENORADDR Invalid rtba real address
EBADALIGN rtba is incorrectly aligned for a trap table

13.2.4 cpu_get_rtba

trap# FAST_TRAP
function# CPU_GET_RTBA

ret0 status
ret1 previous_rtba

Returns the current value of rtba in ret1.

13.2.4.1 Errors

No possible error

Page 104 of 293

Hypervisor API Revision 2.0
May 29, 2008

13.2.5 cpu_yield

trap# FAST_TRAP
function# CPU_YIELD

ret0 status

Suspend execution on the current CPU. Execution may resume for any reason but is
guaranteed to resume for any event that would generate a disrupting trap if pstate.ie=1.

13.2.5.1 Programming note:

This API may be used to save power and prevent contention on some CPUs by disabling
hardware strands.

The guest is responsible for handling any race conditions that may occur when calling this
service with pstate.ie=1.

Interrupts which are blocked by some mechanism other than pstate.ie (for example %pil)
are not guaranteed to cause a return from this service.

13.2.5.2 Errors

No possible error

13.2.6 cpu_qconf

trap# FAST_TRAP
function# CPU_QCONF
arg0 queue
arg1 base raddr
arg2 nentries

ret0 status

Configure queue queue to be placed at real address base, and of nentries entries. nentries
must be a power of two number of entries. Base must be aligned exactly to match the queue
size. Each queue entry is 64 bytes long, so for example, a 32 entry queue must be aligned on a
2048 byte real address boundary.

The specified queue is un-configured if nentries is 0.

For the current version of this API service the argument queue is defined as follows:
queue description
0x3c cpu mondo queue
0x3d device mondo queue
0x3e resumable error queue
0x3f non-resumable error queue

Programming note: The maximum number of entries for each queue for a specific cpu may be
determined from the machine description.

13.2.6.1 Errors

ENORADDR Invalid base
EINVAL Invalid queue or,

nentries not a power of two in number or,
nentries is less than two or too large.

EBADALIGN baseaddr is not correctly aligned for size

A Revision 2.0 Hypervisor API
May 29, 2008

13.2.7 cpu_qinfo

trap# FAST_TRAP
function# CPU_QINFO
arg0 queue

ret0 status
ret1 base raddr
ret2 nentries

Return the configuration info for queue queue. The base_raddr is the currently defined
read address base of the defined queue, and nentries is the size of the queue in terms of
number of entries.

For the current version of this API service the argument queue is defined as follows:
queue description
0x3c cpu mondo queue
0x3d device mondo queue
0x3e resumable error queue
0x3f non-resumable error queue

If the specified queue is a valid queue number, but no queue has been defined this service
will return success, but with nentries set to 0 and base_raddr will have an undefined value.

13.2.7.1 Errors

EINVAL Invalid queue

13.2.8 cpu_mondo_send

trap# FAST_TRAP
function# CPU_MONDO_SEND
arg0-1 cpulist
arg2 data

ret0 status

Send a mondo interrupt to CPU list cpulist with 64 bytes of data pointed to by data. data
must be a 64 byte aligned real address. The mondo data will be delivered to the cpu_mondo
queues of the recipient cpus.

In all cases, (error or no), the cpus in cpulist to which the mondo has been successfully
delivered will be indicated by having their entry in cpulist updated with the value 0xffff.

13.2.8.1 Errors

EBADALIGN Mondo data is not 64byte aligned
or cpulist is not 2byte aligned

ENORADDR Invalid data mondo address, or
invalid cpu list address

ENOCPU Invalid CPU in cpus
EWOULDBLOCK Some or all of the listed cpus did not

receive the mondo
EINVAL cpulist includes caller's cpuid

Page 106 of 293

Hypervisor API Revision 2.0
May 29, 2008

13.2.9 cpu_myid

trap# FAST_TRAP
function# CPU_MYID

ret0 status
ret1 cpuid

Return the hypervisor ID handle for the current CPU. Used by a virtual cpu to discover its
own identity.

13.2.9.1 Errors

No errors defined

13.2.10 cpu_state

trap# FAST_TRAP
function# CPU_STATE
arg0 cpuid

ret0 status
ret1 state

Retrieve the current state of cpu cpuid. The states are:
CPU_STATE_STOPPED 0x1 cpu is in the stopped state
CPU_STATE_RUNNING 0x2 cpu is in the running state
CPU_STATE_ERROR 0x3 cpu is in the error state

13.2.10.1 Errors

ENOCPU Invalid CPU in cpuid

A Revision 2.0 Hypervisor API
May 29, 2008

14 MMU services

These hypervisor services control the behavior of address translations handled by the
hypervisor.

A basic sun4v guest operating system, need not use any of these services at all. The
default/initial operating environment for a guest is with virtual address translation disabled.
In this mode all instructions and data references are made with real addresses.

If a guest operating system enables MMU translations, then virtual to real mappings may
be specified in one of three different ways; either as permanent mappings, or as mappings that
may be evicted and reloaded into system TLBs directly via MMU service functions, or
indirectly via Translation Storage Buffers (TSBs). Moreover, with translations enabled, a guest
Operating System must declare a Fault Status area for the hypervisor to provide information
in the event of a translation fault.

14.1 Translation Storage Buffer (TSB) specification

The TSB functions control two sets of TSBs, one for when the virtual address context is
zero, and one for when it is not zero. The demap functions remove translations from hardware
TLBs.

A TSB description is a memory data structure that defines a single TSB:

offset size contents

0 2 page size to use for index shift in TSB

2 2 associativity of TSB

4 4 size of TSB in TTEs (16 bytes)

8 4 context_index

12 4 page size bitmask

16 8 real address of TSB base

24 8 reserved

The maximum TSB associativity supported is indicated in the guest machine description
(see section 8.19.3).

14.1.1 Page sizes

The sun4v architecture defines value encodings of page size for translation table entries
(TTEs). The page size bitmask indicates which of these encodings may be specified for TTEs
within a given TSB. For each bit in the page size bitmask, if set, the sun4v page size may be
specified. For example, bit 0 corresponds to an 8KByte page size, bit 1 to a 64K page size, and
so on in multiples of 8 of the page size for each bit in the field:

Page 108 of 293

Hypervisor API Revision 2.0
May 29, 2008

Bit Page size

0 8K

1 64K

2 512K

3 4MB

4 32MB

5 256MB

6 2GB

7 16GB

Bits 8 through 15 are reserved and must be set to zero.

The index shift page size indicates the page size to use for computing the TSB index for
TTE retrieval. This value is the same as the page size value that may be specified in an
individual sun4v TTE:

Value Page size assumed for
index computation

0 8K

1 64K

2 512K

3 4MB

4 32MB

5 256MB

6 2GB

7 16GB

Values 8 though 15 are reserved. The index shift value must correspond to the smallest
page size specified in the page size bit mask.

14.1.2 Context index

This TSB description field enables TSBs to be defined where the context value for a page-
translation is supplied within each entry of the TSB, or where a single value applies to the
whole TSB. The latter enables a single TSB to be used for multiple context values (the context
field within each TSB entry (TTE) is required to be zero). The context index field within a TSB
description selects which of these two modes the TSB is defined to use.

If a context index field value of -1 (0xffffffff) is given in the TSB description, the TSB is
defined to use the context field within each TTE.

If a context index field contains a value between 0 and mmu-#shared-contexts, the context
value used for every entry in the TSB (TTE) will be taken from sun4v context register identified
by the context index field at the time the TTE is used. For example, a translation required for
(express or implied) ASI_PRIMARY and matched by a TTE in the TSB, will take its context
value from the register PRIMARY_CONTEXT1 if the context index field of the TSB description
is 1.

Any other value supplied in the context index field is invalid.

The value of mmu-#shared-contexts is provided in the cpu node (§8.19.3) of the machine
description for each virtual cpu.

A Revision 2.0 Hypervisor API
May 29, 2008

14.2 MMU flags

The MMU APIs are designed to function for both instruction and data address
translations. Therefore, many of these interfaces take an MMU 'flags' argument in order to
specify whether the operation is relevant to instruction or data mappings, or both. To ensure
consistency between the MMU services this flags argument is defined here, and as follows:

The flags argument applies the API operation to instruction translations if bit 1 is set, and
in addition applies the API operation to data translation entries if bit 0 is set. For every API
service requiring a flags argument, at least one of bit 0 and/or bit 1 must be set.

It is a programming error to request an instruction mapping (using the mapping flags)
whose TTE's X bit is zero.

Implementation note: For hardware implementations with unified instruction and data
functions (for example; TLBs); Mapping an instruction translation entry may also cause an identical
data translation entry to be mapped, and vice-versa even if not explicitly requests by the flags
argument. Similarly, demapping an instruction translation entry may also cause the data translation
entry to be demaped, and vice-versa even if not explicitly requested by the flags setting.

14.3 Translation table entries

A TTE in a TSB describes virtual addresses to real address mappings.

Sun4v specifies a TSB entry format with the following features:

14.3.1 TSB entry tag word

The 64bit TSB entry tag word has a 16bit context field, and a 42 bit VA field.

All 16-bits of the context field are significant. However, platforms are not required to
support the full range (0 through 65535) of possible context values, thus certain context values
are reserved and should not be used in the context field of the TSB entry tag. Use of a reserved
context value results in a TSB entry miss. The guaranteed minimum range of supported
context values is 0 through 8191. The availability of values between 8192 and 65535 is platform
dependent. The maximum context value supported on a specific CPU is given in the machine
description provided to a guest operating system.

The reserved field must be written as 0. Any non-zero values in this field will result in a
TSB miss.

The VA field holds the upper 42bits of the virtual address to be matched for this TSB entry.
All bits of this field are significant. For page sizes larger than 4MB, the appropriate lower VA
address bits must be zero, or a TSB entry miss results.

Page 110 of 293

TSB tag word

Context reserved VA[63:22]

63 48 47 42 41 0

TSB data word

V NFO SW RA[NN:13] IE E CP C
V

P X W S
W

S
W

Sz[3:0]

63 62 61 56 55 13 12 11 10 9 8 7 6 5 4 3 0

Figure 6 TSB entry (TTE) format

Hypervisor API Revision 2.0
May 29, 2008

Platforms are not required to support the full range of 64bit virtual addresses, however for
platforms supporting fewer than 64 VA bits the highest order bit is sign-extended through bit
63 and compared with the entire VA field of the TTE entry tag word. This sign extension of
virtual addresses results in a “hole” in the supported virtual address spaces. TSB entries whose
VA tag fields fall within the hole will result in a TSB miss for that entry.

The range of virtual address bits supported for a specific CPU is given in the machine
description provided to a guest operating system.

14.3.2 TSB entry data word

The sun4v TTE's range of the real address space is 56bits.

The UltraSPARC-1 TTE's lock bit has been removed from sun4v. Non faulting translation
entries can be specified by privileged code via. a hypervisor API call.

The sun4v TTE data bitfields are as follows:

Bit Field Mnemonic Meaning

63 V Valid. =1 if TTE is a valid entry

62
NFO Non Faulting Only. If set to 1 this TTE is intended to match only loads

using the non-faulting ASIs

61 - 56 SW Software useable bits

55-13 RA Real address bits 55 to 13. For page sizes larger than 8KB, the low order
address bits below the page size are ignored

12 IE Invert endianness

11 E Side effect. If the side-effect bit it set, speculative loads will trap for
addresses within the page, noncacheable memory addresses other than
block loads and stores are strongly ordered against other E-bit accesses

and non-cacheable stores are not merged. This bit should be set for pages
that map I/O devices having side-effects.

Note: the E bit does not prevent normal instruction prefetching. The E bit
has no effect for instruction fetches.

Note: The E bit does not force noncacheable access. It is expected, but not
required that the CP and CV bits are cleared to 0 with the E bit. If both

CP and CV are set ot 1 along with the E bit, the result is undefined

Note: The E bit and the NFO bit are mutually exclusive: both bits should
never be set in any TTE.

9 & 10 CP & CV Cacheable Physical & Cacheable Virtual. These two bits are passed to the
cache memory sub-system on any access and determine the cacheability

of that access as follows:

If CP is set to 1 then the mapped data or instructions may be cached in
any physically indexed cache. If CP and CV are both set to 1 then the

mapped data or instructions may be cached in any physically or virtually
index cache. If CP is cleared to 0 then the contents of the mapped page

are non-cacheable.

8 P Privileged. If P is set to 1 then this mapping will only match in the TLB if
the processor i s in privileged mode (PSTATE.priv = 1)

7 X eXecute. If the X bits is set to 1 instructions may be fetched and executed
from this page.

6 W Writeable. If the W bit is set to 1, data mapped by this page may be
written to.

5 & 4 SW Software useable bits

3-0 Sz Size: page size

A Revision 2.0 Hypervisor API
May 29, 2008

Bit Field Mnemonic Meaning

0 = 8KB, 1=64KB, 2=512KB, 3=4MB, 4=32MB, 5=256MB, 6=2GB, 7=16GB

Sizes 8 through 15 are reserved.

The size field of the sun4v TSB entry format is four bits wide. Page size values 0 through 7
are defined, while values 8 through 15 are reserved and should not be used. Attempts to
specify page sizes in the range 8 through 15 result in an instruction_access_exception or
data_access_exception indicating an invalid page size.

14.4 Translation storage buffer (TSB) configuration

TSBs are configured by privilege mode code via a hypervisor API call.

Each TSB can be configured in one of two different modes; context-match or context-
ignore. The mode determines how a TSB entry is matched when the TSB is searched:

In context-match mode the context field of the TTE tag is matched against one of the
nucleus, primary or secondary context registers (as specified by the actual or implied access
ASI). This mode enables a TSB to be used for caching translation entries belonging to different
contexts. Matching with the context field allows only those translations belonging to the
current contexts to loaded into the TLB.

In context-ignore mode the context field of a TSB entry is ignored when the TSB is
searched. A TSB configured in this mode must have the context field of each translation entry
set to 0. When a valid TSB entry is matched it is loaded into the TLB with a context value
provided from one of the primary or secondary context registers. The choice of primary or
secondary is determined by the actual or implied access ASI, the index of the context register is
specified as part of the TSB configuration. Context-ignore mode enables TSB entries to be used
with more than one context.

Note: please refer to the section above on context registers, and in particular the possibility of
multi-matching TLB entries.

14.5 Permanent and non-permanent mappings

It is an error to attempt to create overlapping permanent mappings. It is an error to create
non-permanent mappings that conflict with permanent mappings. These errors are not
necessarily detected, but may result in undefined behavior.

14.6 MMU Fault status area

MMU related faults have their status and fault address information placed into a memory
region made available by privileged code. Like the TSBs above, the fault status area for each
virtual processor is declared to the hypervisor via a hypervisor API call.

It is possible for MMU related faults to be delivered either by the hypervisor or directly by
processor hardware if so implemented. For this reason, the MMU fault area is arranged on an
aligned address boundary with instruction and data fault fields arranged into distinct 64byte
blocks.

The layout of the MMU fault status area is described in the table below:

Offset (bytes) Size (bytes) Field

0x00 0x8 Instruction fault type (IFT)

0x08 0x8 Instruction fault address (IFA)

0x10 0x8 Instruction fault context A(IFC)

Page 112 of 293

Hypervisor API Revision 2.0
May 29, 2008

Offset (bytes) Size (bytes) Field

0x18 0x28 reserved

0x40 0x8 Data fault type (DFT)

0x48 0x8 Data fault address (DFA)

0x50 0x8 Data fault context (DFC)

0x58 0x28 reserved

The reserved fields must not be used. Their contents are undefined, and are not
guaranteed preserved if written.

The definition of the values of the instruction and data fault type fields is as follows:

Code Fault type

1 fast miss

2 fast protection

3 MMU miss

4 invalid RA

5 privileged violation

6 protection violation

7 NFO access

8 so page/NFO side effect

9 invalid VA

10 invalid ASI

11 nc atomic

12 privileged action

13 reserved

14 unaligned access

15 invalid page size

16 to -2 reserved

-1 (0xffffffffffffffff) multiple errors

For each MMU related trap, the fault status area is updated as follows; (a blank entry for
IFT,IFA,IFC,DFT,DFA or DFC indicates the field is not updated for the particular condition
and is therefore undefined, and '●' indicates the field is updated with the relevant fault type,
address or context information for the trap).

A Revision 2.0 Hypervisor API
May 29, 2008

sun4v trap type Fault type IFT IFA IFC DFT DFA DFC Comments

instruction_access_exception invalid RA (0x4) ● ● instruction fetch to real
address out of range

privilege violation (0x5)

● ● ●

non privileged
instruction access to

privileged page
(TTE.p=1)

NFO access (0x7)
● ● ●

instruction access to
non-faulting load page

(TTE.nfo=1)

invalid VA (0x9) ● ● ● instruction virtual
access out of range

Invalid TSB entry

● ● ●

Hardware table walk
found an invalid RA in

a TTE loaded from a
TSB

Protection violation (0x6)
● ● ●

Instruction access to
page without execute

permission

Multiple error (-1) ● Hardware encountered
multiple errors

instruction_access_MMU_miss MMU miss (0x3) ● ● ● TSB Miss

data_access_exception invalid RA (0x4) ● ● ● real address out of
range

privilege violation (0x5)
● ● ●

Non-privileged data
access to privileged

page (TTE.p=1)

NFO access (0x7)

● ● ●

Data access to non-
faulting page

(TTE.nfo=1) with ASI
other than a non-

faulting ASI.

so page/NFO side effect
(0x8) ● ● ●

Non-faulting ASI data
access to side-effect

page (TTE.e=1)

invalid VA (0x9) ● ● ● Data or branch virtual
access out of range

invalid ASI (0xa) ● ● ● Invalid ASI for
instruction

nc atomic (0xb)
● ● ●

Atomic access to non-
cacheable page

(TTE.cp=0)

privileged action (0xc)

● ● ●

Data access by non-
privileged software

using a privileged or
hyper-privileged ASI

invalid page size (0xf) ●

Multiple error (-1) ● Hardware encountered
multiple errors

data_access_MMU_miss MMU miss (0x3) ● ● ● TSB Miss

data_access_protection protection violation (0x6) ● ● ● store to non-
writeable ??

Page 114 of 293

Hypervisor API Revision 2.0
May 29, 2008

sun4v trap type Fault type IFT IFA IFC DFT DFA DFC Comments

mem_address_not_aligned
LDDF_mem_address_not_aligned
STDF_mem_address_not_aligned
LDQF_mem_address_not_aligned
STQF_mem_address_not_aligned

unaligned access (0xe)

● ●

● ●

● ●

● ●

● ●

Data access is not
properly aligned

fast_instruction_access_MMU_miss fast miss (0x1) ● ● TLB Miss

fast_data_access_MMU_miss fast miss (0x1) ● ● TLB MIss

fast_data_access_protection fast protection (0x2)
● ●

Store data access to
page without write

permission

privileged_action privileged action (0xc) ● ● Use of privileged ASI
when pstate.priv = 0

A Revision 2.0 Hypervisor API
May 29, 2008

14.7 API calls

14.7.1 mmu_tsb_ctx0

trap# FAST_TRAP
function# MMU_TSB_CTX0
arg0 ntsb
arg1 tsbdptr

ret0 status

Configures the TSBs for the current CPU for virtual addresses with context zero. tsbdptr is
a pointer to an array of ntsbs TSB descriptions.

Note: the maximum number of TSBs available to a virtual CPU is given by the mmu-max-
#tsbs property of the cpu's corresponding “cpu” node in the machine description.

14.7.1.1 Errors

ENORADDR Invalid tsbdptr or TSB base in a TSB descriptor
EBADALIGN tsbdptr is not aligned to an 8 byte boundary, or

TSB base in a descriptor is not aligned for a
TSB size

EBADPGSZ Invalid pagesize in a TSB descriptor
EBADTSB Invalid associativity or size in a TSB descriptor
EINVAL Invalid ntsbs, or

invalid context index in a TSB descriptor, or
index page size not equal to smallest page size

in page size bitmask field.

14.7.2 mmu_tsb_ctxnon0

trap# FAST_TRAP
function# MMU_TSB_CTXNON0
arg0 ntsb
arg1 tsbdptr

ret0 status

Configures the TSBs for the current CPU for virtual addresses with non-zero contexts.
tsbdptr is a pointer to an array of ntsbs TSB descriptions.

A maximum of 16 TSBs may be specified in the TSB description list.

14.7.2.1 Errors

ENORADDR Invalid tsbdptr or TSB base in a TSB descriptor
EBADALIGN tsbdptr is not aligned to an 8 byte boundary, or

TSB base in a descriptor is not aligned for a
TSB size

EBADPGSZ Invalid pagesize in a TSB descriptor
EBADTSB Invalid associativity or size in a TSB descriptor
EINVAL Invalid ntsbs, or

invalid context index in a TSB descriptor, or
index page size not equal to smallest page size

in page size bitmask field.

Page 116 of 293

Hypervisor API Revision 2.0
May 29, 2008

14.7.3 mmu_demap_page

trap# FAST_TRAP
function# MMU_DEMAP_PAGE
arg0 reserved
arg1 reserved
arg2 vaddr
arg3 context
arg4 flags

ret0 status

Demaps any page mapping of virtual address vaddr in context context for the current
virtual CPU. Any virtual tagged caches are guaranteed to be kept consistent. The flags
argument is defined according to section 14.2; “MMU flags“.

Arguments arg0 and arg1 are reserved and must be set zero.

14.7.3.1 Errors

The implementation of this function is not required to check for all possible errors, and
may return the following error codes:

EINVAL Invalid vaddr, context or flag value
ENOTSUPPORED arg0 or arg1 is non-zero

14.7.4 mmu_demap_ctx

trap# FAST_TRAP
function# MMU_DEMAP_CTX
arg0 reserved
arg1 reserved
arg2 context
arg3 flags

ret0 status

Demaps all non-permanent virtual page mappings previously specified for context context
for the current virtual CPU. Any virtual tagged caches are guaranteed to be kept consistent.
The flags argument is defined according to section 14.2; “MMU flags“.

Arguments arg0 and arg1 are reserved and must be set zero.

14.7.4.1 Errors

The implementation of this function is not required to check for all possible errors, and
may return the following error codes:

EINVAL Invalid context or flag value
ENOTSUPPORED arg0 or arg1 is non-zero

A Revision 2.0 Hypervisor API
May 29, 2008

14.7.5 mmu_demap_all

trap# FAST_TRAP
function# MMU_DEMAP_ALL
arg0 reserved
arg1 reserved
arg2 flags

ret0 status

Demaps all non-permanent virtual page mappings previously specified for the current
virtual CPU. Any virtual tagged caches are guaranteed to be kept consistent. The flags
argument is defined according to section 14.2; “MMU flags“.

Arguments arg0 and arg1 are reserved and must be set zero.

14.7.5.1 Errors

The implementation of this function is not required to check for all possible errors, and
may return the following error codes:

EINVAL Invalid flag value
ENOTSUPPORED arg0 or arg1 is non-zero

14.7.6 mmu_map_addr

trap# MMU_MAP_ADDR
arg0 vaddr
arg1 context
arg2 TTE
arg3 flags

ret0 status

This API service creates a non-permanent mapping using the TTE to virtual address vaddr
for context for the calling virtual CPU. The flags argument is defined according to section 14.2;
“MMU flags“.

Given a TTE specified with the valid bit clear, this service will have undefined behavior.

Note: This API call is for privileged code to specify temporary translation mappings without the
need to create and manage a TSB.

14.7.6.1 Errors

The implementation of this function is not required to check for all possible errors, and
may return the following error codes:

EINVAL Invalid vaddr, context, or flag error
EBADPGSZ Invalid page size value
ENORADDR Invalid real address in TTE

Page 118 of 293

Hypervisor API Revision 2.0
May 29, 2008

14.7.7 mmu_map_perm_addr

trap# FAST_TRAP
function# MMU_MAP_PERM_ADDR
arg0 vaddr
arg1 reserved
arg2 TTE
arg3 flags

ret0 status

This API service creates a permanent mapping using the TTE to virtual address vaddr for
the calling virtual CPU for context 0. The reserved field must be specified as zero.

A maximum of 8 such permanent mappings may be specified by privileged code.
Mappings may be removed with mmu_unmap_perm_addr below.

This service guarantees an automatic demap of any conflicting non-permanent mappings.

It is an error to attempt to create overlapping permanent mappings. It is an error to create
non-permanent mappings that conflict with existing permanent mappings.

The flags argument is defined according to section 14.2; “MMU flags“.

Given a TTE specified with the valid bit clear, this service will have undefined behavior.

Programming Notes:

This API call is used to specify address space mappings for which privileged code does
not expect to receive misses. For example, this mechanism can be used to map kernel nucleus
code and data.

 To effect automatic de-map, this service may demap all non-permanent mappings.

14.7.7.1 Errors

EINVAL Invalid vaddr, or flag error
EBADPGSZ Invalid page size value
ENORADDR Invalid real address in TTE
ETOOMANY Too many mappings (maximum of 8 reached)

A Revision 2.0 Hypervisor API
May 29, 2008

14.7.8 mmu_unmap_addr

trap# MMU_UNMAP_ADDR
arg0 vaddr
arg1 context
arg2 flags

ret0 status

Demaps virtual address vaddr in context context on this CPU. This function is intended to
be used to demap pages mapped with mmu_map_addr. This service is equivalent to invoking
mmu_demap_page with only the current CPU in the CPU list.

The flags argument is defined according to section 14.2; “MMU flags“.

Attempting to perform an unmap operation for a previously defined permanent mapping
will have undefined results.

14.7.8.1 Errors

The implementation of this function is not required to check for all possible errors, and
may return the following error codes:

EINVAL Invalid vaddr, context or flag value

Page 120 of 293

Hypervisor API Revision 2.0
May 29, 2008

14.7.9 mmu_unmap_perm_addr

trap# FAST_TRAP
function# MMU_UNMAP_PERM_ADDR
arg0 vaddr
arg1 reserved
arg2 flags

ret0 status

Demaps any permanent page mapping (established via mmu_map_perm_addr) of virtual
address vaddr for context 0 for the current virtual CPU. Any virtual tagged caches are
guaranteed to be kept consistent.

The flags argument is defined according to section 14.2; “MMU flags“.

14.7.9.1 Errors

EINVAL Invalid vaddr or flag value
ENOMAP Specified mapping was not found

14.7.10 mmu_fault_area_conf

trap# FAST_TRAP
function# MMU_FAULT_AREA_CONF
arg0 raddr

ret0 status
ret1 previous mmu fault area raddr

Configure the MMU fault status area for the calling CPU. A 64 byte aligned real address
specifies where MMU fault status information is placed. The return value is the previously
specified area, or 0 for the first invocation. Specifying a fault area at real address 0 is not
allowed.

14.7.10.1 Errors

ENORADDR Invalid real address
EBADALIGN Invalid alignment for fault area

A Revision 2.0 Hypervisor API
May 29, 2008

14.7.11 mmu_enable

trap# FAST_TRAP
function# MMU_ENABLE
arg0 enable_flag
arg1 return_target

ret0 status

This function either enables or disables virtual address translation for the calling CPU
within the virtual machine domain. If the enable_flag is zero, translation is disabled, any non-
zero value will enable translation.

When this function returns, the newly selected translation mode will be active. The
argument return_target is a virtual address if translation is being enabled, or return_target is a
real address in the event that translation is to be disabled.

Upon successful completion, this API service will return control to the return_target
address with the new operating mode. In the event of call failure, the previous operating mode
remains, and the service simply returns to the caller with the appropriate error code in ret0.

14.7.11.1 Errors

ENORADDR Invalid real address when disabling translation
EBADALIGN return_target is not aligned to an instruction
EINVAL enable_flag requests current operating mode;

(e.g. disable if already disabled).

14.7.12 mmu_tsb_ctx0_info

trap# FAST_TRAP
function# MMU_TSB_CTX0_INFO
arg0 maxtsbs
arg1 bufferptr

ret0 status
ret1 ntsbs

This function returns the TSB configuration as previously defined by mmu_tsb_ctx0 into
the buffer provided by arg1. The size of the buffer is given in arg1 in terms of number of TSB
description entries.

Upon return, ret1 always contains the number of TSB descriptions previously configured.

If zero TSBs were configured, then EOK is returned with ret1 containing 0.

14.7.12.1 Errors

EINVAL supplied buffer (maxtsbs) is too small
EBADALIGN bufferptr is badly aligned
ENORADDR invalid real address for for buffer at bufferptr

Page 122 of 293

Hypervisor API Revision 2.0
May 29, 2008

14.7.13 mmu_tsb_ctxnon0_info

trap# FAST_TRAP
function# MMU_TSB_CTXNON0_INFO
arg0 maxtsbs
arg1 bufferptr

ret0 status
ret1 ntsbs

This function returns the TSB configuration as previously defined by mmu_tsb_ctxnon0
into the buffer provided by arg1. The size of the buffer is given in arg1 in terms of number of
TSB description entries.

Upon return ret1 always contains the number of TSB descriptions previously configured.

If zero TSBs were configured, then EOK is returned with ret1 containing 0.

14.7.13.1 Errors

EINVAL supplied buffer (maxtsbs) is too small
EBADALIGN bufferptr is badly aligned
ENORADDR invalid real address for for buffer at bufferptr

14.7.14 mmu_fault_area_info

trap# FAST_TRAP
function# MMU_FAULT_AREA_INFO

ret0 status
ret1 fara

This API service returns the currently defined MMU fault status area for the current CPU.
The real address of the fault status area is returned in ret1, or 0 is returned in ret1 if no fault
status area is defined.

Note: mmu_fault_area_conf may be called with the return value (ret1) from this service if there is
a need to save and restore the fault area for a cpu.

14.7.14.1 Errors

no errors are defined

A Revision 2.0 Hypervisor API
May 29, 2008

15 Cache and Memory services

In general, caches and memory are not exposed to the supervisor, although they are
described to it in the machine description.

15.1 API calls

15.1.1 mem_scrub

trap# FAST_TRAP
function# MEM_SCRUB
arg0 raddr
arg1 length

ret0 status
ret1 length scrubbed

This service zeros the memory contents for the memory address range raddr to
raddr+length-1. It also creates a valid error-checking code for the memory address range
raddr to raddr+length-1.

This service starts scrubbing at raddr, but may scrub less than length bytes of memory. On
success the actual length scrubbed is returned in ret1.

The arguments raddr and length must be aligned to an 8K page boundary or must contain
the start address and length from a sun4v error report.

Note: There are two uses for this function: The first use is to block clear and initialize memory and
the second is to scrub an uncorrectable error reported via a resumable or non-resumable trap. The
second use requires the arguments to be equal to the raddr and length provided in a sun4v memory
error report.

15.1.1.1 Errors

ENORADDR Invalid raddr
EBADALIGN Either the start address or length are

not correctly aligned.
EINVAL length == 0

Page 124 of 293

Hypervisor API Revision 2.0
May 29, 2008

15.1.2 mem_sync

trap# FAST_TRAP
function# MEM_SYNC
arg0 raddr
arg1 length

ret0 status
ret1 length synced

For the memory address range raddr to raddr+length-1, this service forces the next access
within that range to be fetched from main system memory.

This service starts syncing at raddr, but may sync less than length bytes of memory. On
success the actual length synced is returned in ret1.

The arguments raddr and length must be aligned to an 8K page boundary.

15.1.2.1 Errors

ENORADDR Invalid raddr
EBADALIGN Either the start address or length are

not correctly aligned.
EINVAL length == 0

A Revision 2.0 Hypervisor API
May 29, 2008

16 Device interrupt services

Device interrupts are allocated to system bus bridges by the hypervisor, and described to
the boot firmware in the machine description. OBP then describes them to Solaris via the
device tree. The services described here are the generic interrupt services only, it is expected
that the system bus nexus drivers will have additional APIs for functions that are specific to
that bridge.

16.1 Definitions

These definitions apply to the following services:

cpuid A unique opaque value which represents a target cpu.

devhandle Device handle. The device handle uniquely identifies a sun4v device. It
consists of the the lower 28-bits of the hi-cell of the first entry of the sun4v
device's "reg" property as defined by the Sun4v Bus Binding to Open
Firmware.

devino Device interrupt number. Specifies the relative interrupt number within
the device. The unique combination of devhandle and devino are used to
identify a specific device interrupt.

Note: The devino value is the same as the values in the "interrupts" property or
"interrupt-map" property in the sun4v device.

 sysino System Interrupt Number. A 64-bit unsigned integer representing a
unique interrupt within a virtual machine. Note: this argument is only
valid for legacy interrupt interfaces and is considered deprecated.

cookie A 64-bit value set by the guest operating system for a specific devhandle,
devino combination. Management of cookie values is the responsibility of
the guest operating system, and the hypervisor makes no attempt to
enforce uniqueness.

intr_state A flag representing the interrupt state for a given interrupt. The state
values are defined as:

Name Value Definition

INTR_IDLE 0 Nothing Pending

INTR_RECEIVED 1 Interrupt received by hardware

INTR_DELIVERED 2 Interrupt delivered to queue

intr_enabled A flag representing the 'enabled' state for a given interrupt. The state
values are defined as:

Name Value Definition

INTR_DISABLED 0 sysino not enabled

INTR_ENABLED 1 sysino enabled

Page 126 of 293

Hypervisor API Revision 2.0
May 29, 2008

16.2 API calls

16.2.1 vintr_getcookie

trap #FAST_TRAP
function# VINTR_GETCOOKIE
arg0 devhandle
arg1 devino

ret0 status
ret1 cookie_value

This API returns the the cookie_value that will be delivered in word 0 of a dev_mondo
packet to a guest. In the event that no cookie has been set, a value of 0 is returned.

16.2.1.1 Errors

EINVAL Invalid devhandle or devino
ENOTSUPPORTED (Virtual) device does not support cookies

16.2.2 vintr_setcookie

trap #FAST_TRAP
function# VINTR_SETCOOKIE
arg0 devhandle
arg1 devino
arg2 cookie_value

 ret0 status

Sets the cookie_value that will be delivered in word 0 of a dev_mondo packet to a guest. A
call to this API will overwrite any previous cookie values set via the same API.

If cookie_value is 0 the interrupt source is returned to the state of having no cookie
assigned, and interrupts are explicity disabled for the device.

16.2.2.1 Errors

EINVAL Invalid devhandle or devino, or
cookie_value is in range 1 to 2047

ENOTSUPPORTED (Virtual) device does not support cookies
EWOULDBLOCK Operation would block

A Revision 2.0 Hypervisor API
May 29, 2008

16.2.3 vintr_getenabled

trap #FAST_TRAP
function# VINTR_GETENABLED
arg0 devhandle
arg1 devino

ret0 status
ret1 intr_enabled

Returns state in intr_enabled for the interrupt defined by devino. Return values are:
INTR_ENABLED or INTR_DISABLED.

16.2.3.1 Errors

EINVAL Invalid devhandle or devino
ENOTSUPPORTED (Virtual) device does not support the interface

16.2.4 vintr_setenabled

trap #FAST_TRAP
function# VINTR_SETENABLED
arg0 devhandle
arg1 devino
arg2 intr_enabled

ret0 status

Sets the 'enabled' state of the interrupt devino legal values for intr_enabled are:
INTR_ENABLED or INTR_DISABLED.

16.2.4.1 Errors

EINVAL Invalid devhandle or devino
ENOTSUPPORTED (Virtual) device does not support the interface

Page 128 of 293

Hypervisor API Revision 2.0
May 29, 2008

16.2.5 vintr_getstate

trap #FAST_TRAP
function# VINTR_GETSTATE
arg0 devhandle
arg1 devino

ret0 status
ret1 intr_state

Returns the current state of the interrupt given by the devino argument.

16.2.5.1 Errors

EINVAL Invalid devhandle or devino
ENOTSUPPORTED (Virtual) device does not support the interface

16.2.6 vintr_setstate

trap #FAST_TRAP
function# VINTR_SETSTATE
arg0 devhandle
arg1 devino
arg2 intr_state

ret0 status

Sets the current state of the interrupt given by the devino argument to the value given in
the argument intr_state.

16.2.6.1 Programming note

Setting the state to INTR_IDLE clears any pending interrupt for devino.

16.2.6.2 Errors

EINVAL Invalid devhandle or devino
ENOTSUPPORTED (Virtual) device does not support the interface

A Revision 2.0 Hypervisor API
May 29, 2008

16.2.7 vintr_gettarget

trap #FAST_TRAP
function# VINTR_GETTARGET
arg0 devhandle
arg1 devino

ret0 status
ret1 cpuid

Returns the cpuid that is the current target of the interrupt given by the devino argument.

The cpuid value returned is undefined if the target has not been set via vintr_settarget.

16.2.7.1 Errors

EINVAL Invalid devhandle or devino
ENOTSUPPORTED (Virtual) device does not support the interface

16.2.8 vintr_settarget

trap #FAST_TRAP
function# VINTR_SETTARGET
arg0 devhandle
arg1 devino
arg2 cpuid

ret0 status

Set the target cpu for the interrupt defined by the argument devino to the target cpu value
defined by the argument cpuid.

16.2.8.1 Errors

EINVAL Invalid devhandle or devino
ENOCPU Invalid cpuid
ENOTSUPPORTED (Virtual) device does not support the interface

Page 130 of 293

Hypervisor API Revision 2.0
May 29, 2008

16.3 Deprecated API calls

The following API calls correspond to the legacy sysino interrupt interfaces discussed in
section 6.6. This interfaces have now been deprecated. They are documented here (for the time
being) for completeness.

16.3.1 intr_devino_to_sysino

trap# FAST_TRAP
function# INTR_DEVINO2SYSINO
arg0 devhandle
arg1 devino

ret0 status
ret1 sysino

Converts a device specific interrupt number given by the arguments devhandle and devino
into a system specific ino (sysino).

16.3.1.1 Errors

EINVAL Invalid devhandle/devino

16.3.2 intr_getenabled

trap# FAST_TRAP
function# INTR_GETENABLED
arg0 sysino

ret0 status
ret1 intr_enabled

Returns state in intr_enabled for the interrupt defined by sysino. Return values are:
INTR_ENABLED or INTR_DISABLED

16.3.2.1 Errors

EINVAL Invalid sysino

16.3.3 intr_setenabled

trap# FAST_TRAP
function# INTR_ENABLED
arg0 sysino
arg1 intr_enabled

ret0 status

Sets the 'enabled' state of the interrupt sysino legal values for intr_enabled are:
INTR_ENABLED or INTR_DISABLED

16.3.3.1 Errors

EINVAL Invalid sysino or intr_enabled value

A Revision 2.0 Hypervisor API
May 29, 2008

16.3.4 intr_getstate

trap# FAST_TRAP
function# INTR_GETSTATE
arg0 sysino

ret0 status
ret1 intr_state

Returns the current state of the interrupt given by the sysino argument.

16.3.4.1 Errors

EINVAL Invalid sysino

16.3.5 intr_setstate

trap# FAST_TRAP
function# INTR_SETSTATE
arg0 sysino
arg1 intr_state

ret0 status

Sets the current state of the interrupt given by the sysino argument to the value given in
the argument intr_state.

Note: Setting the state to INTR_IDLE clears any pending interrupt for sysino.

16.3.5.1 Errors

EINVAL Invalid sysino or invalid intr_state

Page 132 of 293

Hypervisor API Revision 2.0
May 29, 2008

16.3.6 intr_gettarget

trap# FAST_TRAP
function# INTR_GETTARGET
arg0 sysino

ret0 status
ret1 cpuid

Returns the cpuid that is the current target of the interrupt given by the sysino argument.

The cpuid value returned is undefined if the target has not been set via intr_settarget.

16.3.6.1 Errors

EINVAL Invalid sysino

16.3.7 intr_settarget

trap# FAST_TRAP
function# INTR_SETTARGET
arg0 sysino
arg1 cpuid

ret0 status

Set the target cpu for the interrupt defined by the argument sysino to the target cpu value
defined by the argument cpuid.

16.3.7.1 Errors

EINVAL Invalid sysino
ENOCPU Invalid cpuid

A Revision 2.0 Hypervisor API
May 29, 2008

16.4 Interrupt API version control

In introducing the interrupt cookie based interrupt API calls, the legacy interrupt
interfaces needed to be deprecated. This is achievable using the version negotiation APIs.
However the legacy sysino interfaces were grouped with the core hypervisor APIs (group
0x1).

To resolve this problem, all the interrupt interfaces are now moved to a new group (group
0x2). The legacy (deprecated) API functions will be available to a guest when it negotiates
version 1.0 in this group.

The list of APIs being migrated to group 0x2 are as follows;
INTR_DEVINO2SYSINO
INTR_GETENABLED
INTR_SETENABLED
INTR_GETSTATE
INTR_SETSTATE
INTR_GETTARGET
INTR_SETTARGET

The behavior of these APIs will not change and they will continue to function as
described. A guest has to now negotiate version 1.0 in group 0x2 prior to accessing these APIs.

The new interrupt APIs specified above allow a guest to specify a single 64-bit cookie that
will be delivered in the first word (word 0) of a dev_mondo packet. These APIs use the
devhandle and devino to refer to the interrupt source instead of the sysino provided by the
Hypervisor via the INTR_DEVINO2SYSINO API.

The new interrupt API functions will be available to a guest when it negotiates version 2.0
in the interrupt API group 0x2. When a guest negotiates v2.0, all interrupt sources will only
support using the cookie interface, and any attempt to use the version 1.0 INTR_xxx APIs
numbered 0xa0 to 0xa6 will result in ENOTSUPPORTED being returned. Interrupts from all
sources are explicitly disabled until the guest that negotiated v2.0 in group 0x2, sets a valid
cookie value for the interrupt source.

A guest may upgrade to using the cookie based interrupt APIs, by negotiating version 2.0
in group 0x2, even if it had previously negotiated version 1.0 in group 0x2. Subsequent
accesses to v1.0 interrupt APIs in group 0x2 will fail with ENOTSUPPORTED.

Two different guests running in a system can negotiate different versions in API group
0x2, but a single guest can negotiate either version 1.0 or 2.0 in group 0x2 and use the
corresponding APIs.

Page 134 of 293

Hypervisor API Revision 2.0
May 29, 2008

17 Time of day services

The time of day (TOD) is maintained by the hypervisor on a per-domain basis. Setting the
TOD in one domain does not affect any other domain.

Time is described by a single unsigned 64-bit word equivalent to a time_t for the POSIX
time(2) system call. The word contains the time since the Epoch (00:00:00 UTC, January 1,
1970), measured in seconds.

17.1 API calls

17.1.1 tod_get

trap# FAST_TRAP
function# TOD_GET

ret0 status
ret1 time-of-day

Returns the current time-of-day. May block if TOD access is temporarily not possible.

17.1.1.1 Errors

EWOULDBLOCK TOD resource is temporarily unavailable
ENOTSUPPORTED If TOD not supported

17.1.2 tod_set

trap# FAST_TRAP
function# TOD_SET
arg0 tod

ret0 status

The current time-of-day is set to the value specified in arg0. May block if TOD access is
temporarily not possible.

17.1.2.1 Errors

EWOULDBLOCK TOD resource is temporarily unavailable
ENOTSUPPORTED If TOD not supported

A Revision 2.0 Hypervisor API
May 29, 2008

18 Console services

This section describes the API services provided for a guest console.

18.1 API calls

18.1.1 cons_getchar

trap# FAST_TRAP
function# CONS_GETCHAR

ret0 status
ret1 character

Returns a character from the console device. If no character is available then an
EWOULDBLOCK error is returned. If a character is available, then the returned status is EOK
and the character value is in ret1.

A virtual BREAK is represented by the 64-bit value -1.

A virtual HUP signal is represented by the 64-bit value -2.

18.1.1.1 Errors

EWOULDBLOCK No character available

18.1.2 cons_putchar

trap# FAST_TRAP
function# CONS_PUTCHAR
arg0 char

ret0 status

This service sends a character to the console device. Only character values between 0 and
255 may be used. Values outside this range are invalid except as follows:

A virtual BREAK may be sent using the 64-bit value -1.

18.1.2.1 Errors

EINVAL Illegal character
EWOULDBLOCK Output buffer currently full, would block

Page 136 of 293

Hypervisor API Revision 2.0
May 29, 2008

18.1.3 cons_read

trap# FAST_TRAP
function# CONS_READ
arg0 raddr
arg1 size

ret0 status
ret1 retval

Reads up to size characters from the console device and places them in the buffer provided
starting at the real address raddr.

On success, ret1 contains either a special value (as per cons_getchar) or the number of
characters placed into the supplied buffer. The number of characters returned may be less than
or equal to the buffer size specified. If ret0 is not EOK, then no characters (special or
otherwise) have been read and retval is invalid.

A virtual BREAK is represented by the 64-bit value -1 in retval.

A virtual HUP signal is represented by the 64-bit value -2 retval.

18.1.3.1 Machine description properties

A optional property cons-read-buffer-size in the machine description's platform node
provides a hint as to the size of the console's internal input buffering. A guest OS may use this
property in determining the appropriate size of the read buffer to pass to this API call.

18.1.3.2 Errors

ENORADDR Invalid real address
EWOULDBLOCK Cannot complete operation without blocking
EIO I/O error

18.1.4 cons_write

trap# FAST_TRAP
function# CONS_WRITE
arg0 raddr
arg1 size

ret0 status
ret1 retval

Writes up to size characters to the console device from the buffer provided starting at the
real address raddr.

On success, retval contains the actual number of characters written to the console device,
which may be fewer than the requested number of characters.

If status is not EOK, then no characters have been written to the console device and retval
is invalid.

18.1.4.1 Machine description properties

A optional property cons-write-buffer-size in the machine description's platform node
provides a hint as to the size of the console's internal output buffering. A guest OS may use
this property in determining the appropriate size of the write buffer to pass to this API call.

A Revision 2.0 Hypervisor API
May 29, 2008

18.1.4.2 Errors

ENORADDR Invalid real address
EWOULDBLOCK Cannot complete operation without blocking
EIO I/O error

Page 138 of 293

Hypervisor API Revision 2.0
May 29, 2008

19 Domain state services

This section describes the API services provided for a guest to report its operational state
to an external entity.

19.1 API calls

The following API services are provided to get and set the current domain state.

19.1.1 soft_state_set

Trap# FAST_TRAP
function# SOFT_STATE_SET
arg0 software_state
arg1 software_description_ptr

ret0 error code

This service enables the guest to report its soft state to the hypervisor. The soft state of the
guest consists of two primary components: The first identifies whether the guest software is
running or not. The second contains optional details specific to the software. The current soft
state may be retrieved using the soft_state_get API service.

The software_state argument is a 64-bit value used to indicate whether the guest software
is operating normally or in a transitional state. The states “normal” and “in-transition” are
defined in the Sun Indicator Standard.

SIS_NORMAL 0x1 guest software is operating normally
SIS_TRANSITION 0x2 guest software is in transition

The argument software_description_ptr is a real address of a data buffer of size 32 bytes
aligned on a 32byte boundary. This buffer provides additional details specific to the guest
software its operating state. The contents of this buffer are treated as a NUL terminated and
padded 7-bit ASCII string of up to 31 characters not including the NUL termination. This
string is to be defined by the guest software - no registry or convention is defined by this API,
and guest software is free to use any appropriate string value.

Once the soft-state API group has been successfully negotiated the initial soft state is set to
SIS_TRANSITION with an empty string for the software description.

19.1.1.1 Errors

EINVAL - software_state is not valid, or
software_description is not NUL terminated

ENORADDR - software_description is not a valid real addr
buffer
EBADALIGNED - software_description is not correctly aligned

19.1.1.2 Programming Notes

This service enables a guest operating system, or boot loader, to indicate its state to an
entity external to the guest's virtual machine environment. Two simple states; ”normal” or
“transition” enable a guest to indicate whether it is operating normally, or in a transitional
state such as booting or shutting down. The ability to provide a short message string enables
the guest to supply additional human-readable information to supplement the two basic
states.

Examples of this human readable string could be:
"OpenBoot before boot"
"OpenBoot booting"

A Revision 2.0 Hypervisor API
May 29, 2008

"Solaris booting"
"Solaris panicked"

This service is enabled by successfully negotiating a version of its API service group.
Before the group has been enabled a hypervisor may externally report the guest state as
unavailable or as SIS_NORMAL (with a default string such as “operating normally”)
depending upon implementation. The current soft state is not visible to the guest itself until
the service is enabled.

Once the soft state group has been enabled, the initial state is set to SIS_TRANSITION
with an empty string. The virtual machine soft state is initially set to SIS_TRANSITION in the
expectation that the guest operating environment will set the state to SIS_NORMAL once
successfully started.

For example, while loading Solaris, OpenBoot may ignore, or set the state to transition
several times (updating the informational string to identify different steps in the boot process),
once booted and running Solaris may set the state to SIS_NORMAL indicating that it booted
successfully. Similarly, when shutting down or panicking, Solaris may set the state to
SIS_TRANSITION.

The state strings used by a guest are to be defined within the context of that guest
software, there are no commonly defined strings to be used by all guests. The intended use of
the soft state strings is as presentation messages to human readers. Use of commonly defined
strings is strongly discouraged so as to prevent interpretation and use by external automated
management software. External management software should only ascribe meaning to the
well defined software state values.

Page 140 of 293

Hypervisor API Revision 2.0
May 29, 2008

19.1.2 soft_state_get

Trap# FAST_TRAP
function# SOFT_STATE_GET
arg0 software_description_ptr

ret0 error code
ret1 software_state

This service retrieves the current value of the guest's software state.

The software_description_ptr argument is the real address of a guest provided 32 byte
buffer to be aligned on a 32 byte boundary. The API service will return the current value of the
guest software description in this buffer. The hypervisor is only guaranteed to return up to
and including the first NUL byte of the software description buffer contents (see
soft_state_set).

19.1.2.1 Errors

ENORADDR - software_description is not a valid real addr
buffer
EBADALIGNED - software_description is not correctly aligned

A Revision 2.0 Hypervisor API
May 29, 2008

20 Core dump services

When privileged code in a domain crashes/panics it may provide a capability to dump its
internal state for later debugging. Such “core dumps” can be provided from the field to help
diagnose field problems. However the hypervisor virtualizes much of the platform hardware,
thus obscuring information about the physical resources that can be useful in diagnosing
configuration related bugs.

Instead of adding a core dumping capability to the hypervisor, this API allows the
domain's privileged code to dump platform and hypervisor-specific information as part of its
own core dumping procedure. Privileged code allocates a section of its own memory space
and informs the hypervisor that this may be used as a “dump buffer” for the hypervisor to
place hypervisor specific debug/dump information.

Once declared, a dump buffer can be used at any time by the hypervisor to record private
debug information, thus avoiding having such logs within the hypervisor itself.

The required size of the dump buffer is provided to the domain as part of the initial
machine description.

During a core-dump operation, a guest requests that the hypervisor update any
information in the dump buffer in preparation to being dumped as part of the domain's
memory image.

Dump buffer information is highly platform and hypervisor specific. The format and
content of the buffer are hypervisor private and should not be considered useable by sun4v
code. Some platform hypervisors may provide no dump buffer information for security
reasons.

Page 142 of 293

Hypervisor API Revision 2.0
May 29, 2008

20.1 API calls

20.1.1 dump_buf_update

trap# FAST_TRAP
function# DUMP_BUF_UPDATE
arg0 raddr
arg1 size

ret0 status
ret1 required size of dump buffer

This function declares a domain dump buffer to the hypervisor. The raddr supplies the real
base address of the dump-buffer and must be 64-byte aligned.

The size field specifies the size of the dump buffer allocated, and may be larger than the
minimum size specified in the machine description.

The hypervisor will fill the dump buffer with opaque data.

Note: a guest may elect to include dump buffer contents as part of a crash dump to assist with
debugging. This function may be called any number of times so that a guest may relocate a dump
buffer, or create “snapshots” of any dump-buffer information. Each call to dump_buf_update
atomically declares the new dump buffer to the hypervisor.

A specified size of 0 unconfigures the dump buffer.

If raddr is an illegal or badly aligned real address, then any currently active dump buffer is
disabled (equivalent to passing a size of 0) and an error is returned.

In the event that the call fails with EINVAL, ret1 contains the minimum size required by
the hypervisor for a valid dump buffer.

20.1.1.1 Errors

ENORADDR Invalid raddr
EBADALIGN raddr not aligned on 64byte boundary
EINVAL size is non-zero but less than minimum

size required
ENOTSUPPORTED If not supported for current logical domain

20.1.2 dump_buf_info

trap# FAST_TRAP
function# DUMP_BUF_INFO

ret0 status
ret1 real address of current dump buffer
ret2 size of current dump buffer

This service returns the currently configured dump buffer description.

A returned size of 0 bytes indicates an undefined dump buffer. In this case the return
address (ret1) is undefined.

20.1.2.1 Errors

No errors defined

A Revision 2.0 Hypervisor API
May 29, 2008

21 Trap trace services

The hypervisor provides a trap tracing capability for privileged code running on each
virtual CPU.

Privileged code provides a round-robin trap trace queue within which the hypervisor
writes 64 byte entries detailing hyperprivileged traps taken on behalf of privileged code. This
is provided as a debugging capability for privileged code.

21.1 Trap trace buffer control structure

The trap trace control structure is 64 bytes long and placed at the start (offset 0) of the trap
trace buffer.

The format of the control structure is as follows:
Offset Size Field definition

0x00 8 Head offset
0x08 8 Tail offset
0x10 0x30 Reserved

The head offset is the offset of the most recently completed entry in the trap-trace buffer.
The tail offset is the offset of the next entry to be written.

The control structure is owned and modified by the hypervisor. A guest may not modify
the control structure contents. Attempts to do so will result in undefined behavior for the
guest.

21.2 Trap trace buffer entry format

Trap trace entries all have the following format:

Offset Size Name Description

0 x0 1 TTRACE_ENTRY_TYPE Indicates hypervisor or guest entry

0x01 1 TTRACE_ENTRY_HPSTATE Hyper-privileged state

0x02 1 TTRACE_ENTRY_TL Trap level

0x03 1 TTRACE_ENTRY_GL Global register level

0x04 2 TTRACE_ENTRY_TT Trap type

0x06 2 TTRACE_ENTRY_TAG Extended trap identifier

0x08 8 TTRACE_ENTRY_TSTATE Trap state

0x10 8 TTRACE_ENTRY_TICK Tick

0x18 8 TTRACE_ENTRY_TPC Trap PC

0x20 8 TTRACE_ENTRY_F1 Entry specific

0x28 8 TTRACE_ENTRY_F2 Entry specific

0x30 8 TTRACE_ENTRY_F3 Entry specific

0x38 8 TTRACE_ENTRY_F4 Entry specific

Page 144 of 293

Hypervisor API Revision 2.0
May 29, 2008

For each entry the TTRACE_ENTRY_TYPE field value is defined as follows:

Value Name Description

0x00 TTRACE_TYPE_UNDEF Entry content undefined

0x01 TTRACE_TYPE_HV Hypervisor trap entry

0xff TTRACE_TYPE_GUEST Guest entry via ttrace_addentry service

21.3 API calls

21.3.1 ttrace_buf_conf

trap# FAST_TRAP
function# TTRACE_BUF_CONF
arg0 raddr
arg1 nentries

ret0 status
ret1 nentries

This function requests hypervisor trap tracing and declares a virtual cpu's trap trace buffer
to the hypervisor. The raddr supplies the real base address of the trap trace queue and must be
64byte aligned.

The nentries field specifies the size in 64-byte entries of the buffer allocated. Specifying a
value of zero for nentries disables trap tracing for the calling virtual cpu. The buffer allocated
must be sized for a power of two number of 64 byte trap trace entries plus an initial 64 byte
control structure.

This function may be called any number of times so that a virtual cpu may relocate a trap
trace buffer, or create “snapshots” of information.

If raddr is an illegal or badly aligned real address, then trap tracing is disabled (equivalent
to passing a nentries value of 0) and an error is returned.

Upon success ret1 is nentries.

Upon failure with EINVAL this service call returns in ret1 (nentries) the minimum number
of buffer entries required.

Upon other failure ret1 is undefined.

21.3.1.1 Errors

ENORADDR Invalid raddr
EINVAL if size too small
EBADALIGN raddr not aligned on 64byte boundary

A Revision 2.0 Hypervisor API
May 29, 2008

21.3.2 ttrace_buf_info

trap# FAST_TRAP
function# TTRACE_BUF_INFO

ret0 status
ret1 raddr
ret2 size

This function returns the size and location of the previously declared trap-trace buffer. In
the event that no buffer was previously declared, or the buffer disabled (e.g. via a
ttrace_bufconf call with a size of zero), this call will return a size of zero (0) bytes.

21.3.2.1 Errors

none defined

21.3.3 ttrace_enable

trap# FAST_TRAP
function# TTRACE_ENABLE
arg0 enable

ret0 status
ret1 previous enable state

This function enables (or disables) trap tracing, returning the previously enabled state in
ret1. Future systems may define various flags for the enable argument (arg0), for the moment a
guest should pass (uint64_t)-1 to enable, and (uint64_t)0 to disable all tracing - which will
ensure future compatibility.

21.3.3.1 Errors

EINVAL No buffer currently defined

21.3.4 ttrace_freeze

trap# FAST_TRAP
function# TTRACE_FREEZE
arg0 freeze

ret0 status
ret1 previous_state

This function freezes (or unfreezes) trap tracing, returning the previous freeze state in ret1.
A guest should pass a non-zero value to freeze and a zero value to un-freeze all tracing.

The returned previous_state is 0 for not frozen, and 1 for frozen.

21.3.4.1 Errors

EINVAL No buffer currently defined

Page 146 of 293

Hypervisor API Revision 2.0
May 29, 2008

21.3.5 ttrace_addentry

trap# TTRACE_ADDENTRY
arg0 tag (16-bits)
arg1 data word 0
arg2 data word 1
arg3 data word 2
arg4 data word 3

ret0 status

This function adds and entry to the trap trace buffer. Upon return only arg0/ret0 is
modified - none of the other registers holding arguments are volatile across this hypervisor
service.

21.3.5.1 Errors

EINVAL No buffer currently defined

A Revision 2.0 Hypervisor API
May 29, 2008

22 Logical Domain Channel services

The hypervisor provides communication channels to services and other domains. These
channels are created by the Logical Domain Manager, and manifest themselves within a
domain as an endpoint. Two endpoints are connected together and traffic is transferred by the
hypervisor thus forming a logical domain channel (LDC).

22.1 Endpoints

Endpoints available within a domain are described within the Machine Description
available via the MACH_DESC hypervisor API call. This API specification makes no
assumptions about the peer on the other end of a LDC - the LDC APIs serve simply as a link
communications layer with which higher level protocols are used for communication in and
out of a logical domain. The details of these higher level protocols are usage specific and
outside the scope of this link-layer specification.

Communication via an LDC occurs in the form of short fixed-length (64byte) message
packets. Logical Domain Channels form bi-directional point-to-point links so all traffic sent to
a local endpoint will arrive only at the corresponding endpoint at the other end of the channel.
This fixed-length point-to-point nature means there is no address header or switching/routing
operation performed by the hypervisor as part of packet delivery.

LDCs are not guaranteed as reliable link level communication channels. If a reliable or
larger packet communication mechanism is required it must be provided as a protocol on top
of this basic link-level communication mechanism.

22.2 LDC queues

LDC packets are delivered to an endpoint and deposited by the hypervisor into a queue
provided by a guest operating system from its real address space. Only one receive queue may
be allocated for each endpoint, and a channel direction is considered “down” while no receive
queue is provided. Messages from a channel are deposited by the hypervisor at the “tail” of a
queue, and the receiving guest indicates receipt by moving the corresponding “head” pointer
for the queue.

A receive queue is defined to be consistent with other sun4v architecture queues, i.e. with
the same restrictions as the cpu/device and error mondo queues. The guest identifies the
queue to the hypervisor using an API call (LDC_RXQ_CONF) that is consistent with other
queue API calls (for example CPU_QCONF). The head and tail pointers for an endpoint's
receive queue are held by the hypervisor. Both the head and tail pointers are available via a
hypervisor API call, but only the head pointer may be modified by a guest – also using a
hypervisor API call.

To send LDC messages a guest operating system uses a transmit queue allocated from its
own real address space. Only one transmit queue may be defined per-endpoint, undefined
behavior for the sending guest occurs if the same memory is used for two or more different
endpoint transmit queues. Like the receive queue, the transmit queue is defined to be
consistent with other sun4v architecture queues such as the device and cpu mondo queues.
The transmit queue's head and tail pointers are accessed via hypervisor API call.

To send a packet down an LDC, a guest deposits the packet into its transmit queue for the
local endpoint, and then uses a hypervisor API call to update the tail pointer for the transmit
queue. If an LDC is “up”, then from the point at which a transmit queue becomes non-empty
(a guest updates the tail pointer for its transmit queue), LDC packets are transferred from the
transmit queue to the receive queue of the corresponding endpoint.

The assignment of a transmit queue does not affect whether an LDC is up or down.

Page 148 of 293

Hypervisor API Revision 2.0
May 29, 2008

22.3 LDC interrupts

To avoid the need for polling, LDC endpoints may be enabled to deliver interrupts to a
guest domain indicating a change of endpoint state. Interrupts appear as mondos on the
device mondo queue, with the mondo payload indicating the local LDC endpoint who's status
has changed. The following endpoint states may be enabled to cause an interrupt;

LDC is down, LDC is up, receive queue is non-empty, receive queue is full, transmit queue
is empty, transmit queue is not-full.

A Revision 2.0 Hypervisor API
May 29, 2008

22.4 API calls

The following API calls are provided for LDC usage.

22.4.1 ldc_tx_qconf

trap# FAST_TRAP
function# LDC_TX_QCONF
arg0 ldc_id
arg1 base raddr
arg2 nentries

ret0 status

Configure transmit queue for LDC endpoint ldc_id to be placed at real address base, and of
nentries entries. nentries must be a power of two number of entries. Base_raddr must be aligned
exactly to match the queue size. Each queue entry is 64 bytes long, so for example, a 32 entry
queue must be aligned on a 2048 byte real address boundary.

Upon configuration of a valid transmit queue the head and tail pointers are set to an
hypervisor specific indentical value indicating that the queue initially is empty.

The endpoint's transmit queue is un-configured if nentries is 0.

Programming note: The maximum number of entries for each queue for a specific cpu may be
determined from the machine description.

Programming note: A transmit queue may be specified even in the event that the LDC is down
(peer endpoint has no receive queue specified). Transmission will begin as soon as the peer endpoint
defines a receive queue.

Programming note: It is recommended that a guest wait for a transmit queue to empty prior to
reconfiguring it, or un-configuring it. Re or un-configuration of a non-empty transmit queue behaves
exactly as defined above, however it is undefined as to how many of the pending entries in the original
queue will be delivered prior to the re-configuration taking effect. Furthermore, as the queue
configuration causes a reset of the head and tail pointers there is no way for a guest to determine how
many entries have been sent after the configuration operation.

22.4.1.1 Errors

ENORADDR Invalid base_raddr
ECHANNEL Invalid ldc_id
EINVAL nentries not a power of two in number or,

nentries is less than two or too large.
EBADALIGN base_raddr is not correctly aligned for size

Page 150 of 293

Hypervisor API Revision 2.0
May 29, 2008

22.4.2 ldc_tx_qinfo

trap# FAST_TRAP
function# LDC_TX_QINFO
arg0 ldc_id

ret0 status
ret1 base raddr
ret2 nentries

Return the configuration info for the transmit queue of LDC endpoint ldc_id. The
base_raddr is the currently defined real address base of the defined queue, and nentries is the
size of the queue in terms of number of entries.

If the specified ldc_id is a valid endpoint number, but no transmit queue has been defined
this service will return success, but with nentries set to 0 and base_raddr will have an undefined
value.

22.4.2.1 Errors

ECHANNEL Invalid ldc_id

22.4.3 ldc_tx_get_state

trap# FAST_TRAP
function# LDC_TX_GET_STATE
arg0 ldc_id

ret0 status
ret1 head_offset
ret2 tail_offset
ret3 channel_state

Return the transmit state, and the head and tail queue pointers for the transmit queue of
LDC endpoint ldc_id. The head and tail values are the byte offset of the head and tail positions
of the transmit queue for the specified endpoint.

The channel_state has the following defined values:
LDC_CHANNEL_DOWN 0
LDC_CHANNEL_UP 1

22.4.3.1 Errors

ECHANNEL Invalid ldc_id
EINVAL No transmit queue defined
EWOULDBLOCK Operation would block

A Revision 2.0 Hypervisor API
May 29, 2008

22.4.4 ldc_tx_set_qtail

trap# FAST_TRAP
function# LDC_TX_SET_QTAIL
arg0 ldc_id
arg1 tail_offset

ret0 status

Update the tail pointer for the transmit queue associated with the LDC endpoint ldc_id.
The tail offset specified must be aligned on a 64byte boundary, and calculated so as to increase
the number of pending entries on the transmit queue. Any attempt to decrease the number of
pending transmit queue entries is considered an invalid tail offset and will result in an
EINVAL error.

Programming note: Since the tail of the transmit queue may not be moved “backwards”, the
transmit queue may be “flushed” by configuring a new transmit queue, whereupon the hypervisor will
configure the initial transmit head and tail pointers to be equal (queue empty).

22.4.4.1 Errors

ECHANNEL Invalid ldc_id
EINVAL No transmit queue defined, or

invalid tail_offset value
EBADALIGN tail_offset not correctly aligned
EWOULDBLOCK Operation would block

Page 152 of 293

Hypervisor API Revision 2.0
May 29, 2008

22.4.5 ldc_rx_qconf

trap# FAST_TRAP
function# LDC_RX_QCONF
arg0 ldc_id
arg1 base raddr
arg2 nentries

ret0 status

Configure receive queue for LDC endpoint ldc_id to be placed at real address base, and of
nentries entries. nentries must be a power of two number of entries. Base_raddr must be aligned
exactly to match the queue size. Each queue entry is 64 bytes long, so for example, a 32 entry
queue must be aligned on a 2048 byte real address boundary.

The endpoint's receive queue is un-configured if nentries is 0.

If a valid receive queue is specified for a local endpoint the LDC is in the up state for the
purpose of transmission to this endpoint.

Programming note: The maximum number of entries for each queue for a specific cpu may be
determined from the machine description.

Programming note: As receive queue configuration causes a reset of the queue's head and tail
pointers there is no way for a guest to determine how many entries may have been received between a
preceeding ldc_get_rx_state API call and the completion of the configuration operation. It should be
noted that datagram delivery is not guaranteed via domain channels anyway, and therefore any higher
protocol should be resilient to datagram loss if necessary. However, to overcome this specific race
potential it is recommended, for example, that a higher level protocol be employed to ensure either re-
transmission, or ensure that no datagrams are pending on the peer endpoint's transmit queue prior to
the configuration operation.

22.4.5.1 Errors

ENORADDR Invalid base_raddr
ECHANNEL Invalid ldc_id
EINVAL nentries not a power of two in number or,

nentries is less than two or too large.
EBADALIGN base_raddr is not correctly aligned for size

A Revision 2.0 Hypervisor API
May 29, 2008

22.4.6 ldc_rx_qinfo

trap# FAST_TRAP
function# LDC_RX_QINFO
arg0 ldc_id

ret0 status
ret1 base raddr
ret2 nentries

Return the configuration info for the receive queue of LDC endpoint ldc_id. The base_raddr
is the currently defined real address base of the defined queue, and nentries is the size of the
queue in terms of number of entries.

If the specified ldc_id is a valid endpoint number, but no receive queue has been defined
this service will return success, but with nentries set to 0 and base_raddr will have an undefined
value.

22.4.6.1 Errors

ECHANNEL Invalid ldc_id

22.4.7 ldc_rx_get_state

trap# FAST_TRAP
function# LDC_RX_GET_STATE
arg0 ldc_id

ret0 status
ret1 head_offset
ret2 tail_offset
ret3 channel_state

Return the receive state, and the head and tail queue pointers of the receive queue for LDC
endpoint ldc_id. The head and tail values are the byte offset of the head and tail positions of
the receive queue for the specified endpoint.

The channel_state has the following defined values:
LDC_CHANNEL_DOWN 0
LDC_CHANNEL_UP 1

22.4.7.1 Errors

ECHANNEL Invalid ldc_id
EINVAL No receive queue defined
EWOULDBLOCK Operation would block

Page 154 of 293

Hypervisor API Revision 2.0
May 29, 2008

22.4.8 ldc_rx_set_qhead

trap# FAST_TRAP
function# LDC_RX_SET_QHEAD
arg0 ldc_id
arg1 head_offset

ret0 status

Update the head pointer for the receive queue associated with the LDC endpoint ldc_id.
The head offset specified must be aligned on a 64byte boundary, and calculated so as to
decrease the number of pending entries on the receive queue. Any attempt to increase the
number of pending receive queue entries is considered an invalid head offset and will result in
an EINVAL error.

Programming note: The receive queue may be“flushed” by setting the head offset equal to the
current tail offset.

22.4.8.1 Errors

ECHANNEL Invalid ldc_id
EINVAL No receive queue defined, or

invalid head_offset value
EBADALIGN head_offset not correctly aligned
EWOULDBLOCK Operation would block

A Revision 2.0 Hypervisor API
May 29, 2008

23 PCI I/O Services

23.1 Introduction.

This section details Hypervisor services in support of PCI, PCI-X and PCI_Express
interfaces.

23.1.1 External documents

The following documents are either referenced in this section, or should be consulted in
together with this section

[1] sun4v Bus Binding to Open Firmware

[2] VPCI Bus Binding to Open Firmware

[3] PCI Express Base Specification 1.0a

23.2 IO Data Definitions

cpuid A unique opaque value which represents a target cpu.

devhandle Device handle. The device handle uniquely identifies a sun4v device. It
consists of the the lower 28-bits of the hi-cell of the first entry of the sun4v
device's "reg" property as defined by the Sun4v Bus Binding to Open
Firmware.

devino Device Interrupt Number. An unsigned integer representing an interrupt
within a specific device.

sysino System Interrupt Number. A 64-bit unsigned integer representing a
unique interrupt within a "system".

23.3 PCI IO Data Definitions

devhandle Device handle. The device handle uniquely identifies a sun4v device. It
consists of the the lower 28-bits of the hi-cell of the first entry of the sun4v
device's "reg" property as defined by the Sun4v Bus Binding to Open
Firmware.

tsbnum TSB Number. Identifies which io-tsb is used. For this version of the spec,
tsbnum must be zero.

tsbindex TSB Index. Identifies which entry in the tsb is is used. The first entry is
zero.

tsbid A 64-bit aligned data structure which contains a tsbnum and a tsbindex.
bits 63:32 contain the tsbnum. bits 31:00 contain the tsbindex.

io_attributes IO Attributes for iommu mappings. Attributes for iommu mappings. One
or more of the following attribute bits stored in a 64-bit unsigned int.

PCI_MAP_ATTR_READ 0x01 - xfr direction is from memory
PCI_MAP_ATTR_WRITE 0x02 - xfr direction is to memory

Bits 63:2 are unused and must be set to zero for this version of the
specification.

Note: For compatibility with future versions of this specification, the
caller must set 63:2 to zero. The implementation shall ignore bits 63:2

Page 156 of 293

Hypervisor API Revision 2.0
May 29, 2008

r_addr 64-bit Real Address.

pci_device PCI device address. A PCI device address identifies a specific device on a
specific PCI bus segment. A PCI device address is a 32-bit unsigned
integer with the following format:

00000000.bbbbbbbb.dddddfff.00000000

Where:

bbbbbbbb is the 8-bit pci bus number

ddddd is the 5-bit pci device number

fff is the 3-bit pci function number

00000000 is the 8-bit literal zero.

pci_config_offset PCI Configuration Space offset.

For conventional PCI, an unsigned integer in the range 0 .. 255
representing the offset of the field in pci config space.

For PCI implementations with extended configuration space, an unsigned
integer in the range 0 .. 4095, representing the offset of the field in
configuration space. Conventional PCI config space is offset 0 .. 255.
Extended config space is offset 256 .. 4095

Note: For pci config space accesses, the offset must be 'size' aligned.

error_flag Error flag

A return value specifies if the action succeeded or failed, where:

 0 - No error occurred while performing the service.

 non-zero - Error occurred while performing the service.

io_sync_direction "direction" definition for pci_dma_sync

A value specifying the direction for a memory/io sync operation, The
direction value is a flag, one or both directions may be specified by the
caller.

 0x01 - For device (device read from memory)
 0x02 - For cpu (device write to memory)

io_page_list A list of io_page_addresses. An io_page_address is an r_addr.

io_page_list_p A pointer to an io_page_list.

"size based byte swap" - Some functions do size based byte swapping
which allows sw to access pointers and counters in native form when the
processor operates in a different endianness than the io bus. Size-based
byte swapping converts a multi-byte field between big-endian format and
little endian format as follows:

Size Original value Swapped value

2 0x0102 0x0201

4 0x01020304 0x04030201

8 0x0102030405060708 0x0807060504030201

A Revision 2.0 Hypervisor API
May 29, 2008

23.4 API calls

The following APIs are provided for PCI services.

23.4.1 pci_iommu_map

trap# FAST_TRAP
function# PCI_IOMMU_MAP
arg0 devhandle
arg1 tsbid
arg2 #ttes
arg3 io_attributes
arg4 io_page_list_p

ret0 status
ret1 #ttes_mapped

Create iommu mappings in the sun4v device defined by the argument devhandle.

The mappings are created in the tsb defined by the tsbnum component of the tsbid
argument. The first mapping is created in the tsb index defined by the tsbindex component of
the tsbid argument. The call creates up to #ttes mappings, the first one at tsbnum, tsbindex, the
second at tsbnum, tsbindex +1, etc.

All mappings are created with the attributes defined by the io_attributes argument.

The page mapping addresses are described in the io_page_list defined by the argument
io_page_list_p, which is a pointer to the io_page_list. The first entry in the io_page_list is the
address for the first iotte, the 2nd entry for the 2nd iotte, and so on.

Each io_page_address in the io_page_list must be appropriately aligned.

#ttes must be greater than zero.

For this version of the spec, the tsbnum component of the tsbid argument must be zero.
Returns the actual number of mappings created, which may be less than or equal to the
argument #ttes. If the function returns a value which is less than the #ttes, the caller may
continue to call the function with an updated tsbid, #ttes, io_page_list_p arguments until all
pages are mapped.

Note: This function does not imply an iotte cache flush. The guest must demap an entry
before re-mapping it.

23.4.1.1 Errors

EINVAL Invalid devhandle/tsbnum/tsbindex/io_attributes
EBADALIGN Improperly aligned r_addr
ENORADDR Invalid r_addr

23.4.2

Page 158 of 293

Hypervisor API Revision 2.0
May 29, 2008

23.4.3 pci_iommu_demap

trap# FAST_TRAP
function# PCI_IOMMU_DEMAP
arg0 devhandle
arg1 tsbid
arg2 #ttes

ret0 status
ret1 #ttes_demapped

Demap and flush iommu mappings in the device defined by the argument devhandle.

Demaps up to #ttes entries in the tsb defined by the tsbnum component of the tsbid
argument, starting at the tsb index defined by the tsbindex component of the tsbid argument.

For this version of the spec, the tsbnum component of the tsbid argument must be zero.

#ttes must be greater than zero.

Returns the actual number of ttes demapped in the return value #ttes_demapped, which
may be less than or equal to the argument #ttes. If #ttes_dempapped is less than #ttes, the
caller may continue to call this function with updated tsbid and #ttes arguments until all pages
are demapped.

Note: Entries do not have to be mapped to be demapped. A demap of an unmapped page
will flush the entry from the tte cache.

23.4.3.1 Errors

EINVAL invalid devhandle/tsbnum/tsbindex

23.4.4 pci_iommu_getmap

trap# FAST_TRAP
function# PCI_IOMMU_GETMAP
arg0 devhandle
arg1 tsbid

ret0 status
ret1 io_attributes
ret2 r_addr

Read and return the mapping in the device given by the argument devhandle and tsbid. If
successful, the io_attributes shall be returned in ret1, the page address of the mapping shall be
returned in ret2.

For this version of the spec, the tsbnum component of tsbid must be zero.

23.4.4.1 Errors

EINVAL invalid devhandle/tsbnum/tsbindex
ENOMAP Mapping is not valid - no translation exists

23.4.5

A Revision 2.0 Hypervisor API
May 29, 2008

23.4.6 pci_iommu_getbypass

trap# FAST_TRAP
function# PCI_IOMMU_GETBYPASS
arg0 devhandle
arg1 r_addr
arg2 io_attributes

ret0 status
ret1 io_addr

Create a "special" mapping in the device given by the argument devhandle for the
arguments given by r_addr and io_attributes. Return the io address in ret1 if successful.

Note: The error code ENOTSUPPORTED indicates that the function exists, but is not
supported by the implementation.

23.4.6.1 Errors

EINVAL Invalid devhandle/tsbnum/attributes
ENORADDR Invalid real Address
ENOTSUPPORTED Function not supported in this implementation.

23.4.7

Page 160 of 293

Hypervisor API Revision 2.0
May 29, 2008

23.4.8 pci_config_get

trap# FAST_TRAP
function# PCI_CONFIG_GET
arg0 devhandle
arg1 pci_device
arg2 pci_config_offset
arg3 size

ret0 status
ret1 error_flag
ret2 data

Read PCI configuration space for the pci adaptor defined by the argument devhandle.

Read size (1, 2 or 4) bytes of data for the PCI device defined by the argument pci_device,
from the offset from the beginning of the configuration space defined by the argument
pci_config_offset. If there was no error during the read access, set ret1 (error_flag) to zero and
set ret2 to the data read. Insignificant bits in ret2 are not guaranteed to have any specific value
and therefore must be ignored.

The data returned in ret2 is size based byte swapped.

If an error occurs during the read, set ret1 (error_flag) to a non-zero value.

pci_config_offset must be 'size' aligned.

23.4.8.1 Errors

EINVAL invalid devhandle/pci_device/offset/size
EBADALIGN pci_config_offset not size aligned
ENOACCESS Access to this offset is not permitted

23.4.9

A Revision 2.0 Hypervisor API
May 29, 2008

23.4.10 pci_config_put

trap# FAST_TRAP
function# PCI_CONFIG_PUT
arg0 devhandle
arg1 pci_device
arg2 pci_config_offset
arg3 size
arg4 data

ret0 status
ret1 error_flag

Write PCI config space for the pci adaptor defined by the argument devhandle.

Write 'size' bytes of data in a single operation. The argument 'size' must be 1, 2 or 4. The
configuration space address is described by the arguments pci_device and pci_config_offset.
pci_config_offset is the offset from the beginning of the configuration space given by the
argument pci_device. The argument 'data' contains the data to be written to configuration
space. Prior to writing the data is size based byte swapped.

If an error occurs during the write access, do not generate an error report, do set ret1
(error_flag) to a non-zero value. Otherwise, set ret1 to zero.

pci_config_offset must be 'size' aligned.

This function is permitted to read from offset zero in the configuration space described by
the argument pci_device if necessary to ensure that the write access to config space completes.

23.4.10.1 Errors

EINVAL invalid devhandle/pci_device/offset/size
EBADALIGN pci_config_offset not size aligned
ENOACCESS Access to this offset is not permitted

Page 162 of 293

Hypervisor API Revision 2.0
May 29, 2008

23.4.11 pci_peek

trap# FAST_TRAP
function# PCI_PEEK
arg0 devhandle
arg1 r_addr
arg2 size

ret0 status
ret1 error_flag
ret2 data

Attempt to read the io-address given by the arguments devhandle, r_addr and size. size
must be 1, 2, 4 or 8. The read is performed as a single access operation using the given size. If
an error occurs when reading from the given location, do not generate an error report, but
return a non-zero value in ret1 (error_flag). If the read was successful, return zero in ret1
(error_flag) and return the actual data read in ret2 (data). The data returned in ret2 is size
based byte swapped.

Non-significant bits in ret2 (data) are not guaranteed to have any specific value and
therefore must be ignored. If ret1 (error_flag) is returned as non-zero, the data value is not
guaranteed to have any specific value and should be ignored.

The caller must have permission to read from the given devhandle, r_addr, which must be
an io address. The argument r_addr must be a size-aligned address.

The hypervisor implementation of this function must block access to any io address
that the guest does not have explicit permission to access.

23.4.11.1 Errors

EINVAL invalid size or devhandle
EBADALIGN improperly aligned r_addr
ENORADDR bad r_addr
ENOACCESS guest access prohibited

23.4.12

A Revision 2.0 Hypervisor API
May 29, 2008

23.4.13 pci_poke

trap# FAST_TRAP
function# PCI_POKE
arg0 devhandle
arg1 r_addr
arg2 size
arg3 data
arg4 pci_device

ret0 status
ret1 error_flag

Attempt to write data to the io-address described by the arguments devhandle, r_addr.
The argument size defines the size of the 'write' in bytes and must be 1, 2 4 or 8.

The write is performed as a single operation using the given size. Prior to writing, the data
is size based byte swapped.

If an error occurs when writing the data to the given location, do not generate an error
report, but return a non-zero value in ret1 (error_flag). If the write operation was successful,
return the value zero in ret1 (error_flag).

pci_device describes the configuration address of the device being written to. The
implementation may safely read from offset 0 with the configuration space of the device
described by devhandle and pci_device in order to guarantee that the write portion of the
operation completes.

Any error that occurs due to the read shall be reported using the normal error reporting
mechanisms .. the read error is not suppressed.

The caller must have permission to write to the given devhandle, r_addr, which must be
an io address. The argument r_addr must be a size aligned address. The caller must have
permission to read from the given devhandle, pci_device configuration space offset 0.

The hypervisor implementation of this function must block access to any io address that
the guest does not have explicit permission to access.

23.4.13.1 Errors

EINVAL invalid size, devhandle or pci_device
EBADALIGN improperly aligned address
ENORADDR bad address
ENOACESS guest access prohibited
ENOTSUPPORTED function is not supported by this implementation.

23.4.14

Page 164 of 293

Hypervisor API Revision 2.0
May 29, 2008

23.4.15 pci_dma_sync

trap# FAST_TRAP
function# PCI_DMA_SYNC
arg0 devhandle
arg1 r_adddr
arg2 size
arg3 io_sync_direction

ret0 status
ret1 #synced

Synchronize a memory region described by the arguments r_addr, size for the device
defined by the argument devhandle using the direction(s) defined by the argument
io_sync_direction. The argument size is the size of the memory region in bytes.

Return the actual number of bytes synchronized in the return value #synced, which may
be less than or equal to the argument size. If the return value #synced is less than size, the
caller must continue to call this function with updated r_addr and size arguments until the
entire memory region is synchronized.

23.4.15.1 Errors

EINVAL invalid devhandle or io_sync_direction
ENORADDR bad r_addr

A Revision 2.0 Hypervisor API
May 29, 2008

24 MSI Services

MSI services are effectively part of PCI, however, they are logically grouped into a
separate set of services defined in this section.

24.1 Message Signaled Interrupt (MSI)

Message Signaled Interrupt as defined in the PCI Local Bus Specification and the PCI
Express Base Specification. A device signals an interrupt via MSI using a posted write cycle to
an address specified by system software using a data value specified by system software. The
MSI capability data structure contains fields for the PCI address and data values the device
uses when sending an MSI message on the bus. MSI-X is an extended form of MSI, but uses the
same mechanism for signaling the interrupt as MSI. For the purposes of this document, the
term "MSI" refers to MSI or MSI-X.

Root complexes that support MSI define an address range and set of data values that can
be used to signal MSIs.

sun4v/pci requirements for MSI:

The root complex defines two address ranges. One in the 32-bit pci memory space and one
in the 64-bit pci memory address space used as the target of a posted write to signal an MSI.

The root complex treats any write to these address ranges as signaling an MSI, however,
only the data value used in the posted write signals the MSI.

24.2 MSI Event Queue (MSI EQ)

The MSI Event Queue is a page-aligned main memory data structure used to store MSI
data records.

Each root port supports several MSI EQs, and each EQ has a system interrupt associated
with it, and can be targeted (individually) to any cpu. The number of MSI EQs supported by a
root complex is described by a property defined in [2]. Each MSI EQ must be large enough to
contain all possible MSI data records generated by any one PCI root port. The number of
entries in each MSI EQ is described by a property defined in [2].

Each MSI EQ is compliant with the definition of interrupt queues described in [4],
however, instead of accessing the queue head/tail registers via ASI-based registers, an API is
provided to access the head/tail registers.

The sun4v/pci compliant root complex has the ability to generate a system interrupt when
the MSI EQ is non-empty.

MSI/Message/INTx Data Record format

Each data record consists of 64 bytes of data, aligned on a 64-byte boundary.

The data record is defined as follows:

6666555555555544444444443333333333222222222211111111110000000000
3210987654321098765432109876543210987654321098765432109876543210

0x00:
VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVxxxxxxxxxxxxxxxxxxxxxxxxTTTTTTTT

0x08:
II

0x10:

Page 166 of 293

Hypervisor API Revision 2.0
May 29, 2008

xx

0x18:
SS

0x20:
xxRRRRRRRRRRRRRRRR

0x28:
AA

0x30:
DD

0x38:
xx

Where,

 xx..xx are unused bits and must be ignored by sw.

 VV..VV is the version number of this data record

For this release of the spec, the version number

field must be zero.

 TTTTTTTT is the data record type:

Upper 4 bits are reserved, and must be zero
0000 - Not an MSI data record - reserved for sw use.
0001 - MSG
0010 - MSI32
0011 - MSI64
0010 - Reserved
...
0111 - Reserved
1000 - INTx
1001 - Reserved

...
1110 - Reserved
1111 - Not an MSI data record - reserved for sw use.

All other encodings are reserved.

II..II is the sysino for INTx (sw defined value), otherwise zero.

SS..SS is the message timestamp if available.

If supported by the implementation, a non-zero value in this field is a copy of
the %stick register at the time the message is created. If unsupported, this field will contain
zero.

 RR..RR is the requester ID of the device that initiated the MSI/MSG and has the
following format:

bbbbbbbb.dddddfff

Where bb..bb is the bus number, dd..dd is the device number and fff is the
function number.

Note that for PCI devices or any message where the requester is unknown,
this may be zero, or the device-id of an intermediate bridge.

A Revision 2.0 Hypervisor API
May 29, 2008

For intx messages, this field should be ignored.

 AA..AA is the MSI address. For MSI32, the upper 32-bits must be zero. (for data
record type MSG or INTx, this field is ignored)

 DD..DD is the MSI/MSG data or INTx number

For MSI-X, bits 31..0 contain the data from the MSI packet which is the msi-
number. bits 63..32 shall be zero.

For MSI, bits 15..0 contain the data from the MSI message which is the msi-
number. bits 63..16 shall be zero

For MSG data, the message code and message routing code are encoded as
follows:

63:32 - 0000.0000.0000.0000.0000.0000.GGGG.GGGG
32:00 - 0000.0000.0000.0CCC.0000.0000.MMMM.MMMM

Where,

GG..GG is the target-id of the message in the

following form:

bbbbbbbb.dddddfff

where bb..bb is the target bus number.

ddddd is the target deviceid

fff is the target function number.

CCC is the message routing code as defined by [3]

MM..MM is the message code as defined by [3]

For INTx data, bits 63:2 must be zero and the low order 2 bits are defined as
follows:

00 - INTA
01 - INTB
10 - INTC
11 - INTD

Page 168 of 293

Hypervisor API Revision 2.0
May 29, 2008

24.3 Definitions

cpuid A unique opaque value which represents a target cpu.

devhandle Device handle. The device handle uniquely identifies a sun4v device. It
consists of the the lower 28-bits of the hi-cell of the first entry of the sun4v
device's "reg" property as defined by the Sun4v Bus Binding to Open
Firmware.

msinum A value defining which MSI is being used.

msiqhead The offset value of a given MSI-EQ head.

msiqtail The offset value of a given MSI-EQ tail.

msitype Type specifier for MSI32 or MSI64
0 - type is MSI32
1 - type is MSI64

msiqid A number from 0 .. 'number of MSI-EQs - 1', defining which MSI EQ
within the device is being used.

msiqstate An unsigned integer containing one of the following values:
PCI_MSIQSTATE_IDLE 0 # idle (non-error) state
PCI_MSIQSTATE_ERROR 1 # error state

msiqvalid An unsigned integer containing one of the following values:
PCI_MSIQ_INVALID 0 # disabled/invalid
PCI_MSIQ_VALID 1 # enabled/valid

msistate An unsigned integer containing one of the following values:
PCI_MSISTATE_IDLE 0 # idle/not enabled
PCI_MSISTATE_DELIVERED 1 # MSI Delivered

msivalid An unsigned integer containing one of the following values:
PCI_MSI_INVALID 0 # disabled/invalid
PCI_MSI_VALID 1 # enabled/valid

msgtype A value defining which MSG type is being used. An unsigned integer
containing one of the following values: (as per PCIe spec 1.0a)

PCIE_PME_MSG 0x18 PME message
PCIE_PME_ACK_MSG 0x1b PME ACK message
PCIE_CORR_MSG 0x30 Correctable message
PCIE_NONFATAL_MSG 0x31 Non fatal message
PCIE_FATAL_MSG 0x33 Fatal message

msgvalid An unsigned integer containing one of the following values:
PCIE_MSG_INVALID 0 # disabled/invalid
PCIE_MSG_VALID 1 # enabled/valid

A Revision 2.0 Hypervisor API
May 29, 2008

24.4 API calls

24.4.1 pci_msiq_conf

trap# FAST_TRAP
function# PCI_MSIQ_CONF
arg0 devhandle
arg1 msiqid
arg2 r_addr
arg3 nentries

ret0 status

Configure the MSI queue given by the arguments devhandle, msiqid for use and to be
placed at real address r_addr, and of nentries entries. nentries must be a power of two number
of entries.

r_addr must be aligned exactly to match the queue size. Each queue entry is 64 bytes long,
so for example, a 32 entry queue must be aligned on a 2048 byte real address boundary.

The MSI-EQ Head and Tail are initialized so that the MSI-EQ is 'empty'.

Implementation Note: Certain implementations have fixed sized queues. In that case
nentries must contain the correct value.

24.4.1.1 Errors

EINVAL Invalid devhandle, msiqid or nentries
EBADALIGN improperly aligned r_addr
ENORADDR bad r_addr

24.4.2 pci_msiq_info

trap# FAST_TRAP
function# PCI_MSIQ_CONF
arg0 devhandle
arg1 msiqid

ret0 status
ret1 r_addr
ret2 nentries

Return configuration information for the MSI queue given by the arguments devhandle,
msiqid.

The base address of the queue is returned in r_addr. The number of entries in the queue is
returned in nentries.

If the queue is unconfigured r_addr is undefined and returns zero in nentries.

24.4.2.1 Errors

EINVAL Invalid devhandle or msiqid

Page 170 of 293

Hypervisor API Revision 2.0
May 29, 2008

24.4.3 pci_msiq_getvalid

trap# FAST_TRAP
function# PCI_MSIQ_GETVALID
arg0 devhandle
arg1 msiqid

ret0 status
ret1 msiqvalid

Get the valid state of the MSI-EQ defined by the arguments devhandle and msiqid.

24.4.3.1 Errors

EINVAL bad devhandle or msiqid

24.4.4 pci_msiq_setvalid

trap# FAST_TRAP
function# PCI_MSIQ_SETVALID
arg0 devhandle
arg1 msiqid
arg2 msiqvalid

ret0 status

Set the valid state of the MSI-EQ defined by the arguments devhandle and msiqid to the
state described by the argument msiqvalid. msiqvalid must be PCI_MSIQ_VALID or
PCI_MSIQ_INVALID.

24.4.4.1 Errors

EINVAL bad devhandle or msiqid or msiqvalid value or MSI EQ is uninitialized.

24.4.5 pci_msiq_getstate

trap# FAST_TRAP
function# PCI_MSIQ_GETSTATE
arg0 devhandle
arg1 msiqid

ret0 status
ret1 msiqstate

Get the state of the MSI-EQ defined by the arguments devhandle and msiqid.

24.4.5.1 Errors

EINVAL bad devhandle or msiqid

A Revision 2.0 Hypervisor API
May 29, 2008

24.4.6 pci_msiq_setstate

trap# FAST_TRAP
function# PCI_MSIQ_SETSTATE
arg0 devhandle
arg1 msiqid
arg2 msiqstate

ret0 status

Set the state of the MSI-EQ defined by the arguments devhandle and msiqid to the state
described by the argument msiqstate. msiqstate must be PCI_MSIQSTATE_IDLE or
PCI_MSIQSTATE_ERROR.

24.4.6.1 Errors

EINVAL bad devhandle, msiqid or msiqstate or
MSI EQ is uninitialized.

24.4.7 pci_msiq_gethead

trap# FAST_TRAP
function# PCI_MSIQ_GETHEAD
arg0 devhandle
arg1 msiqid

ret0 status
ret1 msiqhead

Return the current msiqhead for the MSI-EQ described by the argument devhandle, msiqid.

24.4.7.1 Errors

EINVAL Invalid devhandle or msiqid or
MSI EQ uninitialized

24.4.8 pci_msiq_sethead

trap# FAST_TRAP
function# PCI_MSIQ_GETHEAD
arg0 devhandle
arg1 msiqid
arg2 msiqhead

ret0 status

Set the MSI EQ queue head in the MSI EQ described by the arguments devhandle, msiqid to
the value given by the msiqhead argument.

24.4.8.1 Errors

EINVAL Invalid devhandle, msiqid or msiqhead
or MSI EQ is uninitialized

Page 172 of 293

Hypervisor API Revision 2.0
May 29, 2008

24.4.9 pci_msiq_gettail

trap# FAST_TRAP
function# PCI_MSIQ_GETTAIL
arg0 devhandle
arg1 msiqid

ret0 status
ret1 msiqtail

Return the current msiqtail for the MSI-EQ described by the argument devhandle, msiqid.

24.4.9.1 Errors

EINVAL Invalid devhandle or msiqid or
uninitialized MSI EQ

24.4.10 pci_msi_getvalid

trap# FAST_TRAP
function# PCI_MSI_GETVALID
arg0 devhandle
arg1 msinum

ret0 status
ret1 msivalidstate

Return in msivalidstate, the current valid/enabled state for the MSI defined by the
arguments devhandle, msinum.

24.4.10.1 Errors

EINVAL Invalid devhandle or msinum

24.4.11 pci_msi_setvalid

trap# FAST_TRAP
function# PCI_MSI_SETVALID
arg0 devhandle
arg1 msinum
arg2 msivalidstate

ret0 status

Set the valid/enabled state of the MSI described by the arguments devhandle, msinum to
the valid/enabled state defined by the argument msivalidstate

24.4.11.1 Errors

EINVAL Invalid devhandle, msinum or msivalidstate

A Revision 2.0 Hypervisor API
May 29, 2008

24.4.12 pci_msi_getmsiq

trap# FAST_TRAP
function# PCI_MSI_GETMSIQ
arg0 devhandle
arg1 msinum

ret0 status
ret1 msiqid

For the MSI defined by the arguments devhandle, msinum return the MSI EQ that this MSI
is bound to in the return value msiqid.

24.4.12.1 Errors

EINVAL Invalid devhandle or msinum or msi unbound.

24.4.13 pci_msi_setmsiq

trap# FAST_TRAP
function# PCI_MSI_SETMSIQ
arg0 devhandle
arg1 msinum
arg2 msitype
arg3 msiqid

ret0 status

Set the target msiq of the MSI defined by the arguments devhandle, msinum to the MSI EQ
id defined by the argument msiqid.

24.4.13.1 Errors

EINVAL Invalid devhandle, msinum or msiqid

24.4.14 pci_msi_getstate

trap# FAST_TRAP
function# PCI_MSI_GETSTATE
arg0 devhandle
arg1 msinum

ret0 status
ret1 msistate

Return the state of the MSI defined by the arguments devhandle, msinum. If the MSI is not
initialized, returns the state PCI_MSISTATE_IDLE.

24.4.14.1 Errors

EINVAL Invalid devhandle or msinum

Page 174 of 293

Hypervisor API Revision 2.0
May 29, 2008

24.4.15 pci_msi_setstate

trap# FAST_TRAP
function# PCI_MSI_SETSTATE
arg0 devhandle
arg1 msinum
arg2 msistate

ret0 status

Set the state of the MSI defined by the arguments devhandle, msinum to the state defined by
the argument msistate.

24.4.15.1 Errors

EINVAL Invalid devhandle or msinum or msistate

24.4.16 pci_msg_getmsiq

trap# FAST_TRAP
function# PCI_MSG_GETMSIQ
arg0 devhandle
arg1 msgtype

ret0 status
ret1 msiqid

For the msg defined by the arguments devhandle, msgtype return the MSI EQ that this msg
is bound to in the return value msiqid.

24.4.16.1 Errors

EINVAL Invalid devhandle or msgtype.

24.4.17 pci_msg_setmsiq

trap# FAST_TRAP
function# PCI_MSG_SETMSIQ
arg0 devhandle
arg1 msg
arg2 msiqid

ret0 status

Set the target msiq of the msg defined by the arguments devhandle, msgtype to the MSI EQ
id defined by the argument msiqid.

24.4.17.1 Errors

EINVAL Invalid devhandle, msgtype or msiqid

A Revision 2.0 Hypervisor API
May 29, 2008

24.4.18 pci_msg_getvalid

trap# FAST_TRAP
function# PCI_MSG_GETVALID
arg0 devhandle
arg1 msgtype

ret0 status
ret1 msgvalidstate

Return in msgvalidstate, the current valid/enabled state for the msg defined by the
arguments devhandle, msgtype.

24.4.18.1 Errors

EINVAL Invalid devhandle or msgtype

24.4.19 pci_msg_setvalid

trap# FAST_TRAP
function# PCI_MSG_SETVALID
arg0 devhandle
arg1 msgtype
arg2 msgvalidstate

ret0 status

Set the valid/enabled state of the msg described by the arguments devhandle, msg to the
valid/enabled state defined by the argument msgvalidstate

24.4.19.1 Errors

EINVAL Invalid devhandle, msgtype or msgvalidstate

Page 176 of 293

Hypervisor API Revision 2.0
May 29, 2008

25 Cryptographic services

The following APIs provide access via the Hypervisor to hardware assisted cryptographic
functionality. These APIs may only be provided by certain platforms, and even then may not
be available to all virtual machines. Restrictions on the use of these APIs may be imposed in
order to support live-migration and other system management activities.

25.1 Random Number Generation

The UltraSPARC-T2 incorporates a hardware random number generator to support
cryptographic functionality. This provides a source of entropy to be used by Operating System
cryptographic frameworks to ultimately provide efficient random number generation to
higher layers of software.

The random number generation (RNG) APIs provide two forms of access to the
underlying RNG hardware; configuration & management, and random number data access.

25.1.1 Trusted Domains

In order to provide system-wide security, the configuration & management APIs are
restricted in multiple domain configurations to use only by Trusted Domains, for example the
Control Domain.

Only Trusted domains are allowed configuration and diagnostic control of the RNG.
Trusted domains are designated by the LDom manager with enforcement of such designation
implemented within the Hypervisor. Attempts by a non-trusted domain to access Control or
Diagnostic related API entrypoints will fail with ENOACCESS errors.

Note that access to Control and Diagnostic entrypoints is dynamic and can be taken away
at anytime from a domain. Exactly one (1) domain must exist as the Ttrusted Domain to
ensure proper RNG behavior.

The RNG operations are restricted as follows:
Trusted Domain(s) ONLY Any Domain

RNG_GET_DIAG_CONTROL RNG_DATA_READ
RNG_CTL_READ
RNG_CTL_WRITE
RNG_DATA_READ_DIAG

25.1.2 RNG Control Register data structure

This data structure is used as an argument to the CTL write/read operations to
specify/retrieve the contents of the RNG Control Register. It consists of a linear array of four
64 bit register values, one for each of the four control registers.

25.1.3 RNG State

Specifies the state of the RNG and is set during rng_ctl_write operations.
Name Value
RNG_STATE_UNCONFIGURED 0
RNG_STATE_CONFIGURED 1
RNG_STATE_HEALTHCHECK 2
RNG_STATE_ERROR 3

When "configured" the RNG is available for general RNG_DATA_READ operations. In
"health check" mode the RNG is generally unavailable and assumed to be going through a
health check sequence via a Trusted domain. Once the health check is complete the Trusted

A Revision 2.0 Hypervisor API
May 29, 2008

domain will return the RNG to a "configured" state. If the health check determines that the
RNG is faulty then it will be left in the "error" state and thus unavailable for any
RNG_DATA_READ operations.

25.1.4 Maximum Data Read Length

The minimum length in bytes that can be read from the hardware RNG Data Register by
rng_data_read_diag is defined to be 8 bytes.

The maximum length in bytes that can be read from the hardware RNG Data Register by
rng_data_read_diag is defined to be 128K bytes (128*1024).

25.1.5 RNG Mutual Exclusion

All of the RNG hypervisor entrypoints are protected through mutual exclusion by the HV
to ensure that only one thread of control is operating on the RNG at a time. This is necessary
to prevent against competing threads (or OS Guests) from re-initializing the RNG hardware
while a Data read is possibly in progress from another thread.

The hypervisor does not block waiting for access to the RNG device, instead it will return
to the caller with a EWOULDBLOCK error indicating that the hardware device was
temporarily unavailable.

Page 178 of 293

Hypervisor API Revision 2.0
May 29, 2008

25.1.6 rng_get_diag_control

trap# FAST_TRAP
function# RNG_GET_DIAG_CONTROL
No args

ret0 status

This API gives the calling Guest OS diagnostic control over the RNG for performing
subsequent rng_ctl_write/rng_data_read_diag operations. Only one Guest at a time is
permitted to execute the aforementioned diagnostic operations. Control will remain with the
current Guest until another Guest takes control by invoking this same entrypoint.

25.1.6.1 Errors

ret0 Description

EOK Success
EWOULDBLOCK RNG currently in use by another thread.
ENOACCESS Caller does not have permission to call

this entrypoint.

A Revision 2.0 Hypervisor API
May 29, 2008

25.1.7 rng_ctl_read

trap# FAST_TRAP
function# RNG_CTL_READ
arg0 raddr

ret0 status
ret1 state
ret2 delta

This API will store the contents of the RNG Control registers into the RNG control
structure pointed to by raddr. This address must be a real address, physically contiguous, and
aligned on an 8-byte boundary. If raddr is NULL (0), then no Control register information will
be stored. This API will also return the current state, and the current ready delta which
specifies how many system clock ticks from the present time that the RNG will be available for
further operations. A value of zero indicates that the RNG is immediately available.

25.1.7.1 Programming note

The actual N2 RNG hardware control register does not return the same contents that were
written from a previous write operation. Thus, the Hypervisor will keep a snapshot of what
was written on a previous rng_ctl_write and simply return this information whenever
rng_ctl_read is called.

25.1.7.2 Errors

EBADALIGN Pointer address is improperly aligned.
ENORADDR Pointer address is not a valid real address.
EWOULDBLOCK RNG currently in use by another thread. Caller

should retry.
ENOACCESS Caller does not have permission to call this API

Page 180 of 293

Hypervisor API Revision 2.0
May 29, 2008

25.1.8 rng_ctl_write

trap# FAST_TRAP
function# RNG_CTL_WRITE
arg0 raddr
arg1 newstate
arg2 timeout

ret0 status
ret1 delta

This API is used to initialize the RNG hardware by writing to the RNG Control register
with the contents of the structure pointed to by raddr. This address must be a real address,
physically contiguous, and aligned on an 8-byte boundary. The state of the RNG will be set to
newstate and must be one of the state values specified in section 1.1.2.

When setting the state to RNG_STATE_CONFIGURED the caller also specifies a timeout ,
in system ticks (a delta from the current time), to indicate when the current configuration
setting will effectively expire. Once this time has expired the hypervisor will put the RNG into
the RNG_STATE_ERROR state thus making the RNG unavailable for Data Reads. A timeout
value of zero (0) indicates an infinite lifetime for the new configuration setting.

If this function returns EWOULDBLOCK, indicating that the hardware isn't ready to
respond to the request, it also returns a value in delta (in system clock ticks) indicating when
the RNG will be available for a subsequent operation. This delay in having the RNG available
occurs after a previous rng_ctl_write operation and is to allow the RNG to reach a steady state
after it has been configured.

25.1.8.1 Programming note

The intent of providing a timeout is to allow a Trusted Guest to enforce a policy of
periodic "health checks" of the RNG hardware if required. The timeout argument is ignored
when specifying any state other than RNG_STATE_CONFIGURED.

Note also that the caller must have Diagnostic Control of the RNG in order to invoke this
operation (see rng_get_diag_control).

25.1.8.2 Errors

EIO The calling Guest does not currently have
Diagnostic Control to manipulate the
RNG settings. Caller must first invoke
rng_get_diag_control.

EINVAL Specified state is not a valid value.
EBADALIGN Pointer address is improperly aligned.
ENORADDR Pointer address is not a valid real address.
EWOULDBLOCK RNG currently in use by another thread or it has

not yet reached its steady state.
Caller should retry in delta clock ticks.

ENOACCESS Caller does not have permission to use this API

A Revision 2.0 Hypervisor API
May 29, 2008

25.1.9 rng_data_read_diag

trap# FAST_TRAP
function# RNG_DATA_READ_DIAG
arg0 raddr
arg1 size

ret0 status
ret1 delta

This API provides access to 64-bit quantities from the RNG Data Register. The contents of
the RNG Data Register are repeatedly read and stored into consecutive locations starting at the
specified raddr. The buffer address in raddr must be a real address, size aligned, and physically
contiguous. The buffer size specifies the size of the buffer in bytes and must be a multiple of 8.
If the size is greater than 8 then the RNG Data Register will be re-read into consecutive
locations in the buffer for each multiple of 8 specified by size. For example, if a buffer size of
32 is specified then the RNG Data Register will be read 4 times (32/8) with each read
consecutively stored into the buffer address.

If this function returns EWOULDBLOCK, indicating that the hardware isn't ready to
respond to the request, then it also returns a system clock tick value in delta indicating how
many system clock ticks from the current time that the RNG will be available for a subsequent
operation.

25.1.9.1 Programming Note

The caller of this API must have Diagnostic Control of the RNG in order to invoke this
operation (see rng_get_diag_control).

25.1.9.2 Errors

EIO The calling Guest does not currently
have Diagnostic Control to manipulate the RNG
settings. Caller must first invoke
rng_get_diag_control.

EINVAL Specified buffer size is invalid
EBADALIGN Pointer address is improperly aligned.
ENORADDR Pointer address is not a valid real address.
EWOULDBLOCK RNG currently blocked.
ENOACCESS Caller does not have permission for this API.

Page 182 of 293

Hypervisor API Revision 2.0
May 29, 2008

25.1.10 rng_data_read

trap# FAST_TRAP
function# RNG_DATA_READ
arg0 raddr

ret0 status
ret1 delta

API for reading a single 64-bit quantity from the RNG Data Register. The contents of the
RNG Data Register are stored into the buffer specified by raddr. The buffer address must be a
real address and 8-byte aligned.

The RNG register must be in the RNG_STATE_CONFIGURED state in order to
successfully read from the Data Register.

If this function returns EWOULDBLOCK, indicating that the hardware isn't ready to
respond to the request, then it also returns a system clock tick value in delta indicating how
many system clock ticks before the RNG will be available for a subsequent operation.

25.1.10.1 Errors

EIO RNG is currently Unconfigured or in a
Healthcheck.
ENOACCESS RNG is in the Error state and unavailable.
EBADALIGN Pointer address is improperly aligned.
ENORADDR Pointer address is not a valid real address.
EWOULDBLOCK RNG currently in use by another thread or it has

not yet reached its steady state.

A Revision 2.0 Hypervisor API
May 29, 2008

25.2 Niagara crypto services

This sections describes the Niagara Crypto Service (NCS) Hypervisor API for the
UltraSPARC-T1 and UltraSPARC-T2 processors. This API is designed to resemble the queuing
interfaces provided by other hypervisor APIs.

This interface is designed to be used by a more generic cryptographic framework provided
by a guest Operating System. (For example the Solaris Cryptographic Framework). Therefore
these hypervisor services only provide access to chip specific functionality, rather than
providing more generic cryptographic operations.

25.2.1 Versioning

The interface presented here represents version 2.0. The previous NCS hypervisor API
representing version 1.x is now deprecated.

25.2.2 Work queues

The UltraSPARC-T1 processor provides a multiply-accumulate-unit associated with each
processor core to be used for accelerating bulk cryptographic operations. UltraSPARC-T2
extended this functionality and added a random number generator, and support for moer
advanced cryptographic operations via the CWQ. A full description of this functionality can
be found in the programmer's reference manuals for these chips, and so is not discussed
further here.

Work is submitted to a cryptographic unit via a queue, and similarly results are enqueued
by the hypervisor upon completion. A queue type parameter is used to select between MAU
and CWQ functionality for work submission.

The queues are managed as circular arrays with head and tail pointers indicating where
active jobs are present.. Operation of the queues is analogous to the interrupt queues.

Note: Byte ordering of all fields is Big-endian.

25.2.2.1 Queue Type:

The queue type parameter specifies whether the queue being operated on represents either
the MAU or CWQ, and has one of the values as specified below:

NCS_QTYPE_MAU 0x01
NCS_QTYPE_CWQ 0x02 (UltraSPARC-T2 only)

The queue handle parameter specifies a 64-bit unsigned integer value that uniquely
identifies the queue being operated on.

25.2.2.2 MAU queue

 The MAU queue is described by an array of 64-byte entries where each entry is described
by the following structure:

Offset Size Field Name Description

0 8 nhd_state Valid values:

ND_STATE_FREE (0) Entry is unused.

ND_STATE_PENDING (1) Allocated and pending submission to MAU.

ND_STATE_BUSY (2) Entry has been submitted to MAU.

Page 184 of 293

Hypervisor API Revision 2.0
May 29, 2008

Offset Size Field Name Description

ND_STATE_DONE (3) Entry has been successfully executed.

ND_STATE_ERROR (4) Entry completed execution, with an error.

8 8 nhd_type Bit flags to delineate independent MAU jobs which may be comprised of
one or more queue entries. Interrupts are only sent to the OS when the
Last entry in a job has been completed.

Valid values:
ND_TYPE_UNASSIGNED (0x00) Indicates that entry is unused.
ND_TYPE_START (0x01) Entry indicating the start of a job.
ND_TYPE_CONT (0x02) Continuation of an existing job.
ND_TYPE_END (0x80) Entry indicating the end of a job.

16 32 nhd_regs Values to be installed in the MAU hardware registers. See below.

48 8 nhd_errstatus Bit flags indicating type of MAU error which may have occurred with
respect to descriptor.
Valid values:
ND_ERR_OK (0x00) Indicates no error.
ND_ERR_INVOP (0x01) Invalid MAU operation.
ND_ERR_HWE (0x02) Hardware Error detected by MAU.

56 8 _padding Padding out to 64-bytes

The nhd_regs field is a 32 byte structure with the following format:

Offset Size Field name Description

0 8 mr_ctl MA Control Register

8 8 mr_mpa MA Physical Address Register

16 8 mr_ma MA Memory Address Register

24 8 mr_np MA NP Register

The exact definition of these registers is given in the Programmer's Reference Manual for
the UltraSPARC-T1 or UltraSPARC-T2 processors, and is beyond the scope of this document.

25.2.2.3 CWQ queue (UltraSPARC-T2 only)

The CWQ queue is described by an array of 128-byte entries where each entry is described
by the following structure:

Offset Size Field name Description

0 8 cw_ctlbits Control bits indicating the nature of the respective control
word.

8 8 cw_src_addr Real address of source data.

16 8 cw_auth_key_addr Real address of location containing authentication key.

24 8 cw_auth_iv_addr Real address of location containing initial value for
authentication.

32 8 cw_final_auth_state_addr Real address of the location that will be used to hold the final

A Revision 2.0 Hypervisor API
May 29, 2008

Offset Size Field name Description

authentication state.

40 8 cw_enc_key_addr Real address of location containing encryption key.

48 8 cw_enc_iv_addr Real address of location containing encryption initialization
vector.

56 8 cw_dst_addr Real address of destination buffer.

64 8 cw_csr Control and Status bits which are set on completion of control
word.

72 56 _padding Padding out to 128-bytes

The PRM for UltraSPARC-T2 details the exact definition of these fields.

25.2.3 ncs_qconf

trap# FAST_TRAP
function# NCS_QCONF
arg0 queue_type
arg1 raddr/handle
arg2 size

ret0 status
ret1 handle

This API is used for configuring or unconfiguring either a MAU queue or a CWQ queue as
specified by queue_type (arg0).

The the real address of the base of the queue is given in raddr (arg1) and must be aligned
on a queue size boundary. For example, a 32 entry MAU queue must be aligned on a 2048 byte
real address boundary while a 32 entry CWQ queue must be aligined on a 4096 byte real
address boundary. When unconfiguring a queue, the handle (arg1) represents the queue to be
unconfigured.

The number of entries in the queue is given in size (arg2) and must be a power of 2. A
value of zero (0) indicate to unconfigure the given queue represented by the queue handle
(arg1).

25.2.3.1 Programming note

On success when configuring a queue the caller is returned a queue handle (ret1) which
must be used for subsequent queue operations. Note that the queue being configured is only of
the MAU/CWQ for the processor Core containing the CPU upon which the caller is executing.
The calling thread should bind itself to the current CPU to ensure its context does not get
switched to a different CPU and possibly a different Core during the operation.

25.2.3.2 Errors

EINVAL Specified queue type is not recognized, or
specified queue size is not a power of 2, or
queue handle is invalid

ENOACCESS CPU does not have access to a MAU/CWQ.
EBADALIGN Base address of queue is improperly aligned.
ENORADDR Base address of queue is not a valid real
address.

Page 186 of 293

Hypervisor API Revision 2.0
May 29, 2008

25.2.4 ncs_qinfo

trap# FAST_TRAP
function# NCS_QINFO
arg0 handle

ret0 status
ret1 type
ret2 raddr
ret3 size

This API retrieves the queue type and the real address of the base of the queue (in raddr),
and the queue size for the queue identified by the queue handle (arg0).

25.2.4.1 Errors

EINVAL Queue handle is invalid.

25.2.5 ncs_gethead

trap# FAST_TRAP
function# NCS_GETHEAD
arg0 handle

ret0 status
ret1 offset

This API retrieves the head offset for the queue identified by handle (arg0). The head
represents the current beginning point for queue jobs to be processed. There is no guarantee
that subsequent to calling this entrypoint that the head will not move forward.

25.2.5.1 Errors

EINVAL Queue handle is invalid.

25.2.6 ncs_sethead_marker

trap# FAST_TRAP
function# NCS_SETHEAD_MARKER
arg0 handle
arg1 offset

ret0 status

This API tells the hypervisor to set the head offset (arg1) for a given queue handle (arg0) to
the specified value. This value is used to effectively determine how far along the caller has
processed the queue of descriptors relative to where the CWQ hardware is currently
operating. This value is NOT stored into the actual CWQ hardware Head register since that
register is managed by hardware once a queue has been configured and enabled.

The offset must be aligned on a 64-byte(MAU)/128-byte(CWQ) boundary. Any attempt to
specify a head value that resides after the hardware's notion of the current Head and before
the hardware's notion of the current tail will result in an EINVAL error.

25.2.6.1 Errors

EINVAL Queue handle is invalid, or
specified queue head value is invalid.

A Revision 2.0 Hypervisor API
May 29, 2008

25.2.7 ncs_gettail

trap# FAST_TRAP
function# NCS_GETTAIL
arg0 handle

ret0 status
ret1 offset

This API retrieves the tail offset (ret1) for the queue identified by the queue handle (arg0).
The tail represents the current point for enqueuing new jobs. Changes in the tail can only
happen via the NCS_SETTAIL API.

25.2.7.1 Errors

EINVAL Queue handle is invalid.

25.2.8 ncs_settail

trap# FAST_TRAP
function# NCS_SETTAIL
arg0 queue handle
arg1 tail offset

ret0 status

This API tells the hypervisor to set the tail offset for a given queue handle (arg0) to the
value specified in offset (arg1). The hypervisor will automatically start processing of
operations starting at the current head pointer, if not already in progress.

The offset must be aligned on a 64-byte(MAU)/128-byte(CWQ) boundary and calculated
so as to increase the number of pending entries on the queue. Any attempt to decrease the
number of pending queue entries is considered an invalid Tail offset and will result in an
EINVAL error.

25.2.8.1 Programming note

Care must be taken with multi-threaded guest code where a scheduler may move the
calling thread to another virtual CPU. To ensure that the caller does not get switched to a
different CPU and thus possibly a different Core and crypto queue between enqueuing a job
and calling the NCS_SETTAIL API, the caller should bind itself to the target CPU.

The caller can wait for an asynchronous interrupt indicating completion of a job in the
queue at which point the caller must check the current head/tail pointers to verify whether
their job has completed.

25.2.8.2 Errors

EINVAL Queue handle is invalid, or
specified queue tail value is invalid.

ENORADDR Buffer address referenced in queue entry is
not a valid real address.

Page 188 of 293

Hypervisor API Revision 2.0
May 29, 2008

25.2.9 ncs_qhandle_to_devino

trap# FAST_TRAP
function# NCS_QHANDLE_TO_DEVINO
arg0 handle

ret0 status
ret1 devino

This API retrieves the interrupt number (devino) for the crypto unit represented by the
given queue handle (arg0).

25.2.9.1 Errors

EINVAL Queue handle is invalid.

A Revision 2.0 Hypervisor API
May 29, 2008

26 UltraSPARC-T2 Network Interface Unit

26.1 Introduction

The network interface incorportated into the UltraSPARC-T2 processor is designed to be
high performance and capable of many sophisticated operations in order to optimize the
performance of the UltraSPARC strands themselves.

Critically in support of virtualization, the device has multiple DMA engines that can be
assigned to different on-chip processing strands and driven by an on-chip packet filter in
order to balance packet processing load and achieve the greatest possible paralelism.

A detailed discussion of this device is beyond the scope of this document, and the reader is
recommended to read the UltraSPARC-T2 programmers reference manual (PRM) for more
detail.

For the purpose of this document, we assume a working knowledge of the NIU and
concern ourself with accessing the device via programmed IO operations (PIOs) and the
addresses used in read/write requests. The latter relates to memory protection. Together these
two features enable resource (both memory and DMAs) isolation, which is the basis of
virtualization.

In UltraSPARC T2, since the device is part of the processor, the hypervisor controls how
the hardware is presented to a guest OS. Not all hardware resources support virtualization
directly.

 The NIU in UltraSPARC T2 is accessed primarily via load and store instructions. and the
hypervisor may organize the hardware as a two-function device split into two different
address ranges. Within each function, two address ranges are defined: one for management,
one for virtualization. The entire device may be accessed through the management addresses.

Virtualization addresses, on the other hand, only have accesses to a set of defined DMAs.
The control and status registers (CSRs) of multiple DMA channels can be grouped into an 8KB
page within the virtualization address ranges. The grouping itself is defined by a table in the
management address range. To support memory protection, each transmit or receive DMA
supports two logical pages. The addresses in the configuration registers, packet gather list
pointers on the transmit side, and the allocated buffer pointer on the receive side will be
relocated accordingly. The logical page registers are only accessable via the management
address ranges.

 In UltraSPARC T2, the sun4v hypervisor software may expose an 8KB page, with a few
DMAs defined, to the driver software thus enabing the driver software to control those DMAs
via PIOs. In addition, hypervisor also defines the logical page registers for these DMAs, which
limits the addresses ranges allowed in the descriptors for DMA transations. Together, this
protects the system memory with regard to DMA operations guest OS software may use.

The remainder of this section details the hypervisor APIs calls available to interact with
the UltraSPARC-T2 NIU, however a working knowledge of the device is essential to
understand these interfaces.

26.2 Definitions

Here we define a few of the abbreviations and acronyms used in the rest of this section.

Logical Device(LD) - A term used generically to refer to a functional block that may
ultimately cause an interrupt.

Page 190 of 293

Hypervisor API Revision 2.0
May 29, 2008

Logical Device Group (LDG) - A group of logical devices sharing an interrupt. A group
may have only one LD.

Logical Device Flag (LDF) - Is a logical 'OR' of some LC

Logical Device Group Interrupt (LDGI) - The interrupt associated with a LDG. This
interrupt is controlled by a one shot mechanism, i.e. hardware will issue only one single
interrupt, and software will need to arm the LDG again to enable it to issue another interrupt.

Logical Device State Vector (LDSV) - a read only state vector capturing the LDFs of ALL
the LDs.

Logical Domain (LDom, ldom) - Separation of platform resources into self-contained
partition that is capable of supporting an operating system.

Logical Page - A contiguous range of memory location. If an address posted by software is
within the logical page, it will be translated to a physical address by replacing the base address
of the logical page with the base address of the physical page. The size of the logical page is
programmable.

Receive Block Ring(RBR) - It is a ring buffer of memory blocks posted by software.

Receive Completion Ring(RCR) - The ring stores the addresses of the buffers used to store
incoming packets.

Receive DMA Channel (RDC) - It is comprised of a RBR, a RCR and a set of control and
status registers. A receive DMA channel is selected after an incoming packet is classified. A
packet buffer is derived from the pool and used to store the incoming packet. Each channel is
capable of issuing interrupt to software based on the queue length of the Receive Completion
Ring or a time-out.

Transmit Ring (TR) - The data structure built in system memory for software to post
transmission requests.

Transmit DMA Channel (TDC) - Consists of a transmit ring and a set ofcontrol and status
registers.

26.3 Version 1.0 and version 1.1 APIs

Version 1.0 of the NIU APIs allow a domain that owns a complete NIU device to
configure, manage and send/receive data through the NIU device.

Version 1.1 of the NIU APIs extend this ability to allow a domain to own part of the NIU
device, specifically a virtual region with associated resources. It also adds a set of APIs to
enable the domain that owns the NIU device to share it with another domain.

A Revision 2.0 Hypervisor API
May 29, 2008

26.4 Version 1.0 APIs

The following APIs are available by negotiating version 1.0 for the NIU API group.

26.4.1 niu_rx_logical_page_set

trap# FAST_TRAP
function# N2NIU_RX_LP_SET
arg0 chidx
arg1 pgidx
arg2 raddr
arg3 size

ret0 status

This API configures a mapping described by arguments raddr and size in the NIU receive
DMA engine address translation (logical page) register indicated by chidx and pgidx.

If there is already a valid mapping for the page specified by pgidx, that mapping is
overwritten.

The specified mapping is un-configured if the size is 0. In this case, raddr is ignored.

chidx must be between 0 and 15.

pgidx must be 0 or 1.

raddr must be size aligned.

size must be a power-of-2.

26.4.1.1 Errors

EBADALIGN Invalid alignment for raddr or size
ENORADDR Invalid real address
EINVAL Invalid index for channel or register

26.4.2 niu_rx_logical_page_get

 trap# FAST_TRAP
 function# N2NIU_RX_LP_GET
 arg0 chidx
 arg1 pgidx

 ret0 status
 ret1 raddr
 ret2 size

Return the current mapping in the NIU recieve DMA engine address translation (logical
page) register indicated by chidx and pgidx. The real address and size are returned in ret1 and
ret2.

chidx must be between 0 and 15.

pgidx must be 0 or 1.

If there is no current mapping for the given chidx and pgidx, then the return values raddr
and size will both be 0.

26.4.2.1 Errors

EINVAL Invalid index for channel or register

Page 192 of 293

Hypervisor API Revision 2.0
May 29, 2008

26.4.3 niu_tx_logical_page_set

trap# FAST_TRAP
function# N2NIU_TX_LP_SET
arg0 chidx
arg1 pgidx
arg2 raddr
arg3 size

ret0 status

Configure a mapping described by arguments raddr and size in the NIU transmit DMA
engine address translation (logical page) register indicated by chidx and pgidx.

If there is already a valid mapping for the page specified by pgidx, that mapping is
overwritten.

The specified mapping is un-configured if the size is 0. In this case, raddr is ignored.

chidx must be between 0 and 15.

pgidx must be 0 or 1.

raddr must be size aligned.

size must be a power-of-2.

26.4.3.1 Errors

EBADALIGN Invalid alignment for raddr or size
ENORADDR Invalid real address
EINVAL Invalid index for channel or register

26.4.4 niu_tx_logical_page_get

trap# FAST_TRAP
function# N2NIU_TX_LP_GET
arg0 chidx
arg1 pgidx

ret0 status
ret1 raddr
ret2 size

Return the current mapping in the NIU transmit DMA engine address translation (logical
page) register indicated by chidx and pgidx. The real address and size are returned in ret1 and
ret2.

chidx must be between 0 and 15.

pgidx must be 0 or 1.

If there is no current mapping for the given chidx and pgidx, then the return values raddr
and size will both be 0.

26.4.4.1 Errors

EINVAL Invalid index for channel or register

A Revision 2.0 Hypervisor API
May 29, 2008

26.5 Version 1.1 APIs

Version 1.1 APIs are an extension to the preceeding version 1.0 APIs. The preceeding APIs
continue to function, however by successfully negotiating version 1.1 for the NIU API group
the following APIs will also be available for guest software running on a UltraSPARC-T2
system.

26.6 NIU Virtual Region(VR) Specific APIs

26.6.1 vr_assign

trap #FAST_TRAP
function# N2NIU_VR_ASSIGN
arg0 vr_idx
arg1 ldc_id

ret0 status
ret1 vr_cookie

This API assigns the specified virtual region to a domain identified by the endpoint ldc_id
of the channel to the target domain. The returned vr_cookie can be used by a domain to obtain
access to the virtual region.

vr_idx is the Virtualization Region index number (0-7). The NIU has 2 Functions, each
Function has 2 Virtualization regions, each region can be split into 2 access protected pages.

The ldc_id is the LDC endpoint in the domain that owns the NIU device and the channel
that runs between and the domain to which the virtual region is being assigned.

Upon success the API returns in vr_cookie a 32 bit unique id. This cookie represents a
specific NIU and a specific Virtual Region(VR) within it.

26.6.1.1 Errors

ENOACCESS Domain does not own the NIU
ECHANNEL Invalid Channel (LDC ID)
EINVAL Invalid VR idx / VR already assigned

Page 194 of 293

Hypervisor API Revision 2.0
May 29, 2008

26.6.2 vr_unassign

trap #FAST_TRAP
function# N2NIU_VR_UNASSIGN
arg0 vr_cookie

ret0 status

 This API frees the virtual region that was previously assigned to a domain. Only the
domain that owns the NIU device is allowed to call this interface. After the virtual region is
unassigned, subsequent access by the guest will fail with EINVAL to HV calls, or memory
access violations.

 vr_cookie is a 32 bit unique id that represents the NIU virtual region as returned by
N2NIU_VR_ASSIGN.

26.6.2.1 Errors

ENOACCESS Domain does not own NIU device
EINVAL Invalid cookie / VR not assigned

A Revision 2.0 Hypervisor API
May 29, 2008

26.6.3 vr_getinfo

trap #FAST_TRAP
function# N2NIU_VR_GETINFO
arg0 vr_cookie

ret0 status
ret1 real_base
ret2 real_size

This API obtains the real address base and size for the virtual region corresponding to the
specified cookie value. This API can only successfully be called from the guest that owns the
virtual region associated with that cookie.

vr_cookie A 32 bit unique id that represents a NIU/VR.

real_base Base real address of the start of the virtualization region.

real_size Size of the VR mapping.

26.6.3.1 Errors

ENOACCESS Cookie not associated with this domain
EINVAL Invalid Cookie

Page 196 of 293

Hypervisor API Revision 2.0
May 29, 2008

26.7 NIU DMA Channel (DMAC) Specific APIs

26.7.1 vr_rx_dma_assign and vr_tx_dma_assign

trap #FAST_TRAP
function# N2NIU_VR_RX_DMA_ASSIGN
arg0 vr_cookie
arg1 gch_idx

ret0 status
ret1 vch_idx

trap #FAST_TRAP
function# N2NIU_VR_TX_DMA_ASSIGN
arg0 vr_cookie
arg1 gch_idx

ret0 status
ret1 vch_idx

These two APIs assign TX and RX DMA channel resources to a specific virtual region. A
virtual region has to be assigned to a domain before resources can be assigned to the virtual
region. There is a hardware maximum of 8 channels per virtual region, but implementations
may restrict the channels maximum further. Each global channel may only be assigned to one
virtual region at a time.

vr_cookie A 32 bit unique id that represents an NIU/VR.

gch_idx The Global DMA channel index number (0-15).

vch_idx The Virtual DMA channel index number (0-7).

26.7.1.1 Programming Note:

The interrupt resources assigned to this gch_idx channel will be automatically migrated to
the guest domain. In addition, the interrupt resource is also marked disabled. Its the
responsibility of the domain that owns the NIU device to remove any interrupt handler
associated with the channel.

26.7.1.2 Errors

ENOACCESS Guest does not own the NIU
EINVAL Invalid Cookie/Channel
ENOMAP Channel not available

A Revision 2.0 Hypervisor API
May 29, 2008

26.7.2 vr_rx_dma_unassign and vr_tx_dma_unassign

trap #FAST_TRAP
function# N2NIU_VR_RX_DMA_UNASSIGN
arg0 vr_cookie
arg1 vch_idx

ret0 status

trap #FAST_TRAP
function# N2NIU_VR_TX_DMA_UNASSIGN
arg0 vr_cookie
arg1 vch_idx

ret0 status

This API unassigns RX and TX DMA channel resources from a virtual region. Accesses to
an unassigned virtual channel in the guest will return EINVAL or memory access violations.
Once a channel has been unassigned it may be reassigned to another region.

vr_cookie A 32 bit unique id that represents VR.

vch_idx The Virtual DMA channel index number (0-7).

26.7.2.1 Programming Note:

 The unassign operation will migrate the interrupts back to the domain that owns the
NIU device. It will also disable the channel if it is not already disabled. The channels are
restored back to the domain that owns the NIU device.

26.7.2.2 Errors

ENOACCESS Guest does not own the NIU
EINVAL Invalid Cookie/Channel
ENOMAP Channel is not assigned

Page 198 of 293

Hypervisor API Revision 2.0
May 29, 2008

26.7.3 vr_get_rx_map and vr_get_tx_map

trap #FAST_TRAP
function# N2NIU_VR_GET_RX_MAP
arg0 vr_cookie

ret0 status
ret1 dma_map

trap #FAST_TRAP
function# N2NIU_VR_GET_TX_MAP
arg0 vr_cookie

ret0 status
ret1 dma_map

These APIs obtain a list of TX or RX DMA channel resources assigned to a virtual region.
vr_cookie is a 32 bit unique id that represents an NIU/VR. Upon success the API returns in
dma_map the Rx/Tx DMA channel map (bit mask) that shows which slots in the virtual region
have DMA channels mapped. For example, bit N will be set in the map iff virtual channel N
(0-7) is assigned in the VR.

26.7.3.1 Errors

ENOACCESS Cookie not associated with this domain
EINVAL Invalid Cookie

A Revision 2.0 Hypervisor API
May 29, 2008

26.7.4 vrrx_set_ino and vrtx_set_ino

trap #FAST_TRAP
function# N2NIU_VRRX_SET_INO
arg0 vr_cookie
arg1 vch_idx
arg2 ino

ret0 status

trap #FAST_TRAP
function# N2NIU_VRTX_SET_INO
arg0 vr_cookie
arg1 vch_idx
arg2 ino

ret0 status

 This API assigns an interrupt number for the specified RX/TX virtual DMA channel in a
virtual region. A unique interrupt number should be assigned to each channel across all VRs
assigned from a single NIU device.

vr_cookie is a 32 bit unique id that represents an NIU/VR. vch_idx is the Virtual DMA
channel index number, retrieved through the N2NIU_VR_GET_*_MAP interface (0-7). ino
is a unique 32-bit device interrupt no. (devino) to be associated with this channel. Each DMA
Channel corresponds to an interrupt source and should be assigned a unique ino between 0 to
63.

26.7.4.1 Programming Note:

These device inos must then be assigned interrupt cookie, (or converted to system wide
interrupt numbers sysinos), for use within the domain.

26.7.4.2 Errors

ENOACCESS Cookie not associated with this domain
EINVAL Invalid Cookie

Page 200 of 293

Hypervisor API Revision 2.0
May 29, 2008

26.7.5 vrrx_get_info and vrtx_get_info

trap #FAST_TRAP
function# N2NIU_VRRX_GET_INFO
arg0 vr_cookie
arg1 vch_idx

ret0 status
ret1 group
ret2 logdev

trap #FAST_TRAP
function# N2NIU_VRTX_GET_INFO
arg0 vr_cookie
arg1 vch_idx

ret0 status
ret1 group
ret2 logdev

These APIs get the virtual group number and logical device associated with a RX/TX
virtual DMA channel in a virtual region. Since interrupts are delivered via bits in the LDSV
that corresponds to the logical device, the guest needs to map each virtual channel to a logical
device in order to identify the interrupted channel and re-arm the interrupt. The guest will use
PIO's using these values to rearm the associated interrupts. vr_cookie a 32 bit unique id that
represents an NIU/VR. vch_idx The Virtual DMA channel index number (0-7).

Upon success the API returns in group the Virtual Group number (Bits 7:5 of the
VRARDDR associated with that VR's LDSV management, and in logdev the Logical device
number. Please refer to the UltraSPARC-T2 programmer's reference manual for more detail.

26.7.5.1 Errors

ENOACCESS Cookie not associated with this domain
EINVAL Invalid Cookie
ENOINTR No virtual group exists for that channel in this domain

A Revision 2.0 Hypervisor API
May 29, 2008

26.7.6 vrrx_lp_set and vrtx_lp_set

trap #FAST_TRAP
function# N2NIU_VRRX_LP_SET
arg0 vr_cookie
arg1 vch_idx
arg2 pgidx
arg3 raddr
arg4 size

ret0 status

trap #FAST_TRAP
function# N2NIU_VRTX_LP_SET
arg0 vr_cookie
arg1 vch_idx
arg2 pgidx
arg3 raddr
arg4 size

ret0 status

These APIs xonfigure a mapping described by arguments raddr and size in the NIU DMA
engine address translation (logical page) register indicated by vch_idx and pgidx. If there is
already a valid mapping for the page specified by pgidx, that mapping is overwritten. The
specified mapping is un-configured if the size is 0. In this case, raddr is ignored. If the size is
non-zero, the real address (raddr) should be size aligned and the size must be a power of 2.

This interface is identical to the version 1.0 NIU interfaces described above except for the
presence of a cookie, and it uses virtual channels instead of global channels. Accessing this
memory after the region has been unassigned will cause access violations in the guest.

The argument vr_cookie is a 32 bit unique id that represents an NIU/VR. vch_idx is he
virtual DMA channel index number and should be between 0 and 15. pgidx is the logical page
index number and legal values are 0 or 1. raddr is the logical page Real address (size aligned)
and size is the logical page size.

26.7.6.1 Errors

ENOACCESS Cookie not associated with this domain
EINVAL Invalid Cookie / Invalid Channel index / Invalid Page
index
EBADALIGN Improper RA alignment

Page 202 of 293

Hypervisor API Revision 2.0
May 29, 2008

26.7.7 vrrx_lp_get and vrtx_lp_get

trap #FAST_TRAP
function# N2NIU_VRRX_LP_GET
arg0 vr_cookie
arg1 vch_idx
arg2 pgidx

ret0 status
ret1 raddr
ret2 size

trap #FAST_TRAP
function# N2NIU_VRTX_LP_GET
arg0 vr_cookie
arg1 vch_idx
arg2 pgidx

ret0 status
ret1 raddr
ret2 size

These APIs return the current mapping in the NIU DMA engine address translation
(logical page) register indicated by vch_idx and pgidx. The real address and size are returned
to the caller. If there is no current mapping for the given chidx and pgidx, then the return
values raddr and size will both be 0. This interface is identical to the NIU version 1.0 interfaces
except for the presence of a cookie, and it uses virtual channels instead of global channels.

The argument vr_cookie is a 32 bit unique id that represents an NIU/VR. vch_idx is the
virtual DMA channel index number and should be in the range 0 to 7. pgidx is the logical page
index number - legal values are 0 and 1.

The APIs return raddr the logical page real address and size the logical page size.

26.7.7.1 Errors

ENOACCESS Cookie not associated with this domain
EINVAL Invalid Cookie / Invalid Channel index / Invalid Page index

A Revision 2.0 Hypervisor API
May 29, 2008

26.8 Virtualized Access to Non-virtualized NIU registers

The domain that is the recipient of a virtual region and its DMA channel resources is only
allowed limited access to various registers that control DMA behavior. The APIs specified
below allow the domain to set or get non-virtualized DMA channel registers.

26.8.1 vrrx_param_get and vrtx_param_get

trap #FAST_TRAP
function# N2NIU_VRRX_PARAM_GET
arg0 vr_cookie
arg1 vch_idx
arg2 param

ret0 status
ret1 value

trap #FAST_TRAP
function# N2NIU_VRTX_PARAM_GET
arg0 vr_cookie
arg1 vch_idx
arg2 param

ret0 status
ret1 value

These APIs return the current value of a RX/TX virtual channel parameter. Where
vr_cookie is a 32 bit unique id that represents an NIU/VR. vch_idx is the Virtual DMA channel
index number, and param is the register to query (enumerated lookup)

Upon success value contains the register value.

Legal Values for RX params (others return EINVAL):
Register: Val Reference
RDC_RED_PARA 0 N2PRM, Table 25-19

Legal Values for TX params (others return EINVAL):
Register: Val Reference
TDC_DMA_MAX 0 N2PRM, Table 26-25

26.8.1.1 Errors

ENOACCESS Cookie not associated with this domain
ENOACCESS Specified parameter is not accessible
EINVAL Invalid Cookie / Invalid Channel / Invalid param

Page 204 of 293

Hypervisor API Revision 2.0
May 29, 2008

26.8.2 vrrx_param_set and vrtx_param_set

trap #FAST_TRAP
function# N2NIU_VRRX_PARAM_SET
arg0 vr_cookie
arg1 vch_idx
arg2 param

ret0 status
ret1 value

trap #FAST_TRAP
function# N2NIU_VRTX_PARAM_SET
arg0 vr_cookie
arg1 vch_idx
arg2 param

ret0 status
ret1 value

These APIs set the value of a RX/TX virtual channel parameter. Where vr_cookie is a 32 bit
unique id that represents an NIU/VR. vch_idx is the Virtual DMA channel index number.
param specifies the register to set and value is the register value.

26.8.2.1 Errors

ENOACCESS Cookie not associated with this domain
ENOACCESS Specified parameter cannot be set
EINVAL Invalid Cookie / Invalid Channel / Invalid param

Legal Values for RX params (others return EINVAL):
Register: Val Reference
RDC_RED_PARA 0 N2PRM, Table 25-19

Legal Values for TX params (others return EINVAL):
Register: Val Reference
TDC_DMA_MAX 0 N2PRM, Table 26-25

A Revision 2.0 Hypervisor API
May 29, 2008

27 Chip and platform specific performance counters

27.1 UltraSPARC T1 performance counters

An UltraSPARC T1 processor has one JBus, and four DRAM controllers integrated onto
the same circuit. Each of these components contains counters that may be programmed to
monitor and count specific events. A complete description of the UltraSPARC T1 performance
counters is given in the UltraSPARC T1 Supplement to UltraSPARC Architecture 2005
manual.

Access the memory (DRAM) controller and JBus performance counters of a UltraSPARC
T1 processor system is provided via an hypervisor API service. In a system configured with
more than one guest domain, only one guest is allowed access to these performance counters.
A machine description property ("perfctraccess") indicates that a guest is allowed access to the
performance registers and this is enforced by the hypervisor.

Each DRAM and JBus performance register is assigned a unique performance register
(PerfReg) number for reading/writing purposes as follows:

PerfReg Description

0 JBus Performance control register

1 JBus Performance counter register

2 DRAM Performance control register 0

3 DRAM Performance counter register 0

4 DRAM Performance control register 1

5 DRAM Performance counter register 1

6 DRAM Performance control register 2

7 DRAM Performance counter register 2

8 DRAM Performance control register 3

9 DRAM Performance counter register 3

27.1.1 niagara_get_perfreg

trap# FAST_TRAP
function# NIAGARA_GET_PERFREG
arg0 perfreg

ret0 status
ret1 value

This service reads the value of the DRAM/JBus performance register,as selected by the
perfreg argument. Upon successful completion, it returns an EOK status and the performance
register value.

27.1.1.1 Errors

EINVAL Invalid performance register number
ENOACCESS No access allowed to performance registers

Page 206 of 293

Hypervisor API Revision 2.0
May 29, 2008

27.1.2 niagara_set_perfreg

trap# FAST_TRAP
function# NIAGARA_SET_PERFREG
arg0 perfreg
arg1 value

ret0 status

This service sets the DRAM/JBus performance register, as specified by the perfreg, to value.
Upon successful completion, it updates the specified performance register value and returns
EOK status.

27.1.2.1 Errors:

EINVAL Invalid performance register number
ENOACCESS No access allowed to performance registers

A Revision 2.0 Hypervisor API
May 29, 2008

27.2 UltraSPARC-T1 MMU statistics counters

This section describes the hypervisor API to support MMU statistics collection on a
UltraSPARC-T1 based system. This API is intended for UltraSPARC T1-specific performance
measurement.

27.2.1 Hypervisor API for UltraSPARC-T1 MMU statistics collection

On UltraSPARC-T1, hypervisor maintains MMU statistics. Privileged code provides
Hypervisor a buffer wherein these statistics can be collected. After the successful configuration
of the buffer, it is continuously updated (hits increased and ticks updated).

27.2.1.1 MMU statistic buffer format

The MMU statistics buffer has a fixed size, format and content as defined below:

offset (bytes) size (bytes) field

0x0 0x8 IMMU TSB hits ctx0, 8KByte TTE

0x8 0x8 IMMU TSB ticks ctx0, 8KByte TTE

0x10 0x8 IMMU TSB hits ctx0, 64KByte TTE

0x18 0x8 IMMU TSB ticks ctx0, 64KByte TTE

0x20 0x10 reserved

0x30 0x8 IMMU TSB hits ctx0, 4MByte TTE

0x38 0x8 IMMU TSB ticks ctx0, 4MByte TTE

0x40 0x10 reserved

0x50 0x8 IMMU TSB hits ctx0, 256MByte TTE

0x58 0x8 IMMU TSB ticks ctx0, 256MByte TTE

0x60 0x20 reserved

0x80 0x8 IMMU TSB hits ctxnon0, 8KByte TTE

0x88 0x8 IMMU TSB ticks ctxnon0, 8KByte TTE

0x90 0x8 IMMU TSB hits ctxnon0, 64KByte TTE

0x98 0x8 IMMU TSB ticks ctxnon0, 64KByte TTE

0xA0 0x10 reserved

0xB0 0x8 IMMU TSB hits ctxnon0, 4MByte TTE

0xB8 0x8 IMMU TSB ticks ctxnon0, 4MByte TTE

0xC0 0x10 reserved

0xD0 0x8 IMMU TSB hits ctxnon0, 256MByte TTE

0xD8 0x8 IMMU TSB ticks ctxnon0, 256MByte TTE

0xE0 0x20 reserved

0x100 0x8 DMMU TSB hits ctx0, 8KByte TTE

0x108 0x8 DMMU TSB ticks ctx0, 8KByte TTE

0x110 0x8 DMMU TSB hits ctx0, 64KByte TTE

0x118 0x8 DMMU TSB ticks ctx0, 64KByte TTE

0x120 0x10 reserved

0x130 0x8 DMMU TSB hits ctx0, 4MByte TTE

0x138 0x8 DMMU TSB ticks ctx0, 4MByte TTE

Page 208 of 293

Hypervisor API Revision 2.0
May 29, 2008

offset (bytes) size (bytes) field

0x140 0x10 reserved

0x150 0x8 DMMU TSB hits ctx0, 256MByte TTE

0x158 0x8 DMMU TSB ticks ctx0, 256MByte TTE

0x160 0x20 reserved

0x180 0x8 DMMU TSB hits ctxnon0, 8KByte TTE

0x188 0x8 DMMU TSB ticks ctxnon0, 8KByte TTE

0x190 0x8 DMMU TSB hits ctxnon0, 64KByte TTE

0x198 0x8 DMMU TSB ticks ctxnon0, 64KByte TTE

0x1A0 0x10 reserved

0x1B0 0x8 DMMU TSB hits ctxnon0, 4MByte TTE

0x1B8 0x8 DMMU TSB ticks ctxnon0, 4MByte TTE

0x1C0 0x10 reserved

0x1D0 0x8 DMMU TSB hits ctxnon0, 256MByte TTE

0x1D8 0x8 DMMU TSB ticks ctxnon0, 256MByte TTE

0x1E0 0x20 reserved

Note: "ticks" is the cumulative time spend handling the specified hit measured via deltas
in the %tick register

27.2.2 niagara_mmustat_conf

trap# FAST_TRAP
function# NIAGARA_MMUSTAT_CONF
arg0 raddr

ret0 status
ret1 prev_raddr

This function enables MMU statistic collection and supplies the buffer to deposit the
results for the current virtual CPU. The real address of the buffer, raddr, is supplied in arg0.
The return value, ret1, is the previously specified buffer (prev_raddr), or zero for the first
invocation.

 If raddr is zero MMU statistic collection is disabled for the current virtual CPU and any
previously supplied buffer is no longer accessed.

 If an error is returned no statistics are collected (equivalent to passing an raddr of zero).

 The initial contents of the buffer should be zero otherwise the collected statistics will be
meaningless.

27.2.2.1 Errors

ENORADDR Invalid raddr
EBADALIGN raddr not aligned on 64-byte boundary
EBADTRAP API not supported (all non-Niagara1
architectures)

A Revision 2.0 Hypervisor API
May 29, 2008

27.2.3 niagara_mmustat_info

trap# FAST_TRAP
function# NIAGARA_MMUSTAT_INFO

ret0 status
ret1 raddr

 This function provides an idempotent mechanism to query the state and real address of
the currently configured buffer.

 The real address of the current buffer, raddr, or zero, if no buffer is defined, is returned in
ret1.

27.2.3.1 Errors

EBADTRAP API not supported (all non-Niagara1
architectures)

Page 210 of 293

Hypervisor API Revision 2.0
May 29, 2008

27.3 Fire performance counter APIs

The UltraSPARC-T1 processor is connected to its IO sub-systems via Sun's J-bus
interconnect. The Fire I/O ASIC is used in most UltraSPARC-T1 based systems to bridge
between this J-bus and two PCI-Express root complexes. The SPARC Hypervisor virtualizes
and mostly hides this physical infrastructure. This set of APIs, when available, provide limited
access to the internal performance counters of the Fire device.

27.3.1 Definitions

For the purpose of accessing Fire performance counters devhandle as defined in section 23
is used to identify the Fire bridge, (and consequently its performance counters), associated
with a particular PCI-Express root complex.

Within each Fire each performance register is assigned a unique performance register
(PerfReg) number for reading/writing purposes as follows:

Performance register ID Description

0 JBUS Performance control register

1 JBUS Performance Counter register0

2 JBUS Performance Counter register1

3 PCIE IMU Performance control register

4 PCIE IMU Performance counter register0

5 PCIE IMU Performance counter register1

6 PCIE MMU Performance control register

7 PCIE MMU Performance counter register0

8 PCIE MMU Performance counter register1

9 PCIE TLU Performance control register

10 PCIE TLU Performance counter register0

11 PCIE TLU Performance counter register1

12 PCIE TLU Performance counter register2

13 PCIE LPU Performance control register

14 PCIE LPU Performance counter register1

15 PCIE LPU Performance counter register2

The values associated with each performance counter are defined in the Fire 2.0
Programmer's Reference Manual, however performance register IDs 14 and 15 are
implemented as read/write instead of read only.

27.3.2 fire_get_perf_reg

trap# FAST_TRAP
function# FIRE_GET_PERFREG
arg0 devhandle
arg1 perfreg

ret0 status
ret1 value

A Revision 2.0 Hypervisor API
May 29, 2008

This call reads the value of the Fire performance register specified by the argument
perfreg of the Fire leaf specified by the argument devhandle..

Upon successful completion, it returns EOK status and performance register value.
Otherwise, it returns one of the following errors:

27.3.2.1 Errors

EINVAL Invalid performance register number
ENOACCESS No access allowed to performance registers

27.3.3 fire_set_perf_reg

trap# FAST_TRAP
function# FIRE_SET_PERFREG
arg0 Fire device handle
arg1 Performance register ID
arg2 Performance register value

ret0 status

This call sets the value of the Fire performance register as specified by the argument
"Performance register ID" of the Fire leaf specified by the argument "Fire device handle" to the
value specified by the argument "Performance register value".

Upon successful completion, it updates the specified performance register value and
returns EOK status. Otherwise, it returns one of the following errors:

27.3.3.1 Errors

EINVAL Invalid performance register number
ENOACCESS No access allowed to performance registers

Page 212 of 293

Hypervisor API Revision 2.0
May 29, 2008

27.4 UltraSPARC T2 performance counters

The UltraSPARC-T2 processor is a fully integrated System On a Chip (SOC) design that
incorporates processing cores together with memory controllers, a PCI Express IO root
complex and high performance ethernet interfaces.

Performance instrumentation is provided on-chip for each of SPARC, DRAM, PCI-Express
and Ethernet sub-systems.

27.4.1 Strand performance instrumentation

Each hardware strand has a pair of registers to control/capture CPU specific
instrumentation:

Description Access

SPARC Performance Control Register ASR=0x10
SPARC Performance Instrumentation counter ASR=0x11

These registers are directly accessible by the privileged code. The HT bit in SPARC PCR
controls the counting of hyperprivileged events, can be set only in hyperprivileged mode. The
hypervisor provides an API to allow read/write access to the SPARC performance control
register. A guest should not assume it can count hyperprivileged events. Attempting to set
HT bit may result in the API call failing with ENOACCESS and the guest should handle this
gracefully.

For further information on the register specifications the reader is directed to the
UltraSPARC-T2 programmers reference manual.

27.4.2 DRAM Performance Instrumentation

Each DRAM channel in Niagara2 has a pair of performance counters, packed into a single
register, plus a register to control what is counted. There are a total of four different DRAM
channels for a UltraSPARC-T2 system.

The hypervisor provides an API for read/write access to these registers.

27.4.3 API calls for SPARC and DRAM performance counters

Each of the SPARC and DRAM controller performance registers is assigned a unique
performance register (PerfReg) number as follows:

PerfReg Description

0 SPARC Performance Control register

1 DRAM Performance Control register 0
2 DRAM Performance Counter register 0

3 DRAM Performance Control register 1
4 DRAM Performance Counter register 1

5 DRAM Performance Control register 2
6 DRAM Performance Counter register 2

7 DRAM Performance Control register 3
8 DRAM Performance Counter register 3

The interface for reading/writing SPARC performance control register will pass the entire
register value and not just the HT bit.

A Revision 2.0 Hypervisor API
May 29, 2008

27.4.4 niagara2_get_perfreg

trap# FAST_TRAP
function# NIAGARA2_GET_PERFREG
arg0 regid

ret0 status
ret1 value

This call reads the value of the SPARC or DRAM performance register, as specified by the
argument regid.

Upon successful completion the call returns a status of EOK and a performance register
value.

27.4.4.1 Errors

EINVAL Invalid performance register number
ENOACCESS No access allowed to the performance register

27.4.5 niagara2_set_perfreg

trap# FAST_TRAP
function# NIAGARA2_SET_PERFREG
arg0 regid
arg1 value

ret0 status

This calls sets the SPARC / DRAM performance register specified by the argument regid,
to the value specified by the argument value.

Upon successful completion, it updates the specified performance register value and
returns a status of EOK.

27.4.5.1 Errors

EINVAL Invalid performance register number
ENOACCESS No access allowed to the performance register

27.4.6 API calls for PCI-Express interface unit performance counters

The following hypervisor API calls provide access to the PCI Express Interface
performance counters for a UltraSPARC-T2 processor.

The definition and functionality of the following performance registers is given in the
UltraSPARC-T2 Programmer's Reference Manual

Register ID Description
0 DMU IMU Performance Counter Select
1 DMU IMU Performance Counter Zero
2 DMU IMU Performance Counter One
3 DMU MMU Performance Counter Select
4 DMU MMU Performance Counter Zero
5 DMU MMU Performance Counter One

6 PEU Performance Counter Select
7 PEU Performance Counter Zero
8 PEU Performance Counter One
9 PEU Performance Counter Two

10 PEU Bit Error Counter I
11 PEU Bit Error Counter I

Page 214 of 293

Hypervisor API Revision 2.0
May 29, 2008

27.4.7 n2piu_get_perf_reg

trap# FAST_TRAP
function# N2PIU_GET_PERFREG
arg0 devhandle
arg1 regid

ret0 status
ret1 value

This call reads the value of the UltraSPARC-T2 PIU performance register specified by
the argument regid of the PCI leaf specified by the argument devhandle.

Upon successful completion, it returns EOK status and performance register value.

27.4.7.1 Errors

EINVAL Invalid performance register number
ENOACCESS No access allowed to performance registers

27.4.8 n2piu_set_perf_reg

trap# FAST_TRAP
function# N2PIU_SET_PERFREG
arg0 devhandle
arg1 regid
arg2 value

ret0 status

This call sets the value of the N2 PIU performance register as specified by the
argument "Performance register ID" of the PCI leaf specified by the devhandle argument to the
value specified by the argument value.

Upon successful completion, it updates the specified performance register value and
returns EOK status.

27.4.8.1 Errors

EINVAL Invalid performance register number
ENOACCESS No access allowed to performance registers

A Revision 2.0 Hypervisor API
May 29, 2008

28 Logical Domain Channel (LDC) infrastructure

28.1 Overview

Logical domain channels (LDCs) are designed as point-to-point communication channels
between logical domains or between a logical domain and an external entity such as a service
processor or the Hypervisor itself.

Within a LDom a LDC is instantiated as a single endpoint (unless the LDC has been
created to loop back to the same LDom). The identity of the owner of the other endpoint is
opaque to the LDom - this enables LDCs to be re-connected to other endpoints at will.
Conventional attestation protocols may be layered on top of the basic LDC mechanism if the
identity of the owner of the other end of a LDC is requried. Such attestation is beyond the
scope of this document.

Logical Domain Channels provide two ways of transferring data between endpoints; A
simple micro-datagram based transfer mechanism where data is sent in 64-byte packets. The
second approach allows clients to export regions of their memory address space to share with
clients at the other end of specified LDC connections. The importing clients can then access the
remote memory region by either mapping it into its address space, use an Hypervisor API call
to copy data to/from exported memory, or program an IOMMU to directly read/write the
memory.

28.1.1 Packet based communication

• Between Domains

Domain-to-Domain LDCs provide clients in each domain a simple message
communication mechanism. A domain's LDC transport will register Tx and Rx message
queues with the Hypervisor prior for each LDC endpoint on behalf of its virtual device client.
The message queues are very similar to the sun4v cpu_mondo and dev_mondo queues where
each entry in the queue holds a 64-bytes of data. The transport also uses Hypervisor interfaces
to register interrupts for each channel and for targeting these interrupts at specific virtual
CPUs.

• Between Domain and Hypervisor

Domain-to-Hypervisor LDCs provide a way for LDC clients in a domain to communicate
with clients in the Hypervisor. Instead of using privileged Hypervisor APIs, LDCs provide a
general purpose messaging mechanism that allows clients to send both commands and data as
part of messages, and also directly read/write Hypervisor memory. On the domain side, the
interfaces are similar to the ones in the case to inter-domain LDCs. The domain client will
register a message queue, to transmit and receive packets from the Hypervisor. Hypervisor
clients at the other end of the channel will use an private internal Hypervisor API to register a
callback for each endpoint. When a domain sends data, the Hypervisor will invoke the
callback registered at the Hypervisor endpt, to process the LDC packet, in the context of the
sending CPU. The Hypervisor will not allocate any internal queues to receive packets from the
sending domain. If the internal client, chooses to buffer the incoming datagrams, it may
choose to do so by providing its own buffering mechanism.

• Between SP and Domain/Hypervisor

Communication with the SP over LDCs provide clients in both the guest and HV to
send/recv data using LDC APIs. Like domain to HV LDC connections, the interfaces are
similar to the ones in the case to inter-domain LDCs. The domain client will register a message
queue, to transmit and receive packets from the SP. Hypervisor clients at the other end of the
channel will use an private internal Hypervisor API to register a callback for each

Page 216 of 293

Hypervisor API Revision 2.0
May 29, 2008

endpoint.When a domain advances the Tx tail data, the Hypervisor will initate a send by
copying packets out of the Tx queue into the queue associated with that channel in the SRAM.

28.1.2 Shared memory communication

Memory can be shared between domains or between the Hypervisor and a domain using
the LDC shared memory framework. The Hypervisor LDC framework provides interfaces to
domains that allow them to register tables that contain the list of pages being exported along
with its usage criteria and access permissions. The Hypervisor, will then arbitrate access to the
exported pages from the importing domains using the tables registered by the exporting
domain. The rest of this document will refer to these tables as memory map tables or just map
tables.

• Between domains

At the time of domain initialization, each domain nexus will register with the Hypervisor
one or more map tables for each LDC connection. It will also specify the page size for which
the table will be utilized. Since each processor MMU has capability to support multiple page
sizes, an OS instance and its applications might use different size pages for its memory
regions. In the current design, each table will contain entries for pages of one size only. Also
since each table is bound to a unique LDC connection, only the domain and client at the other
endpoint has implicit access to the pages being exported via this table.

When a client (driver) wants to export memory it will use the nexus API calls to specify
the VA range it wants to export. It will need to specify whether the memory being exported is
for remote mapping, remote copying or IOMMU access only. The nexus will add entries to the
channel's map table and return back to the client a range of cookies that correspond to the VA
range. The client driver can then share the cookies with its peer at the other end of the LDC
connection.

The driver in the importing domain will then use the cookies it obtained from the exporter
to either copy the data to/from of the exported memory, or request the nexus to map the
memory associated with the cookies into its address space. In the case of the later, the nexus
will return back to the client driver a RA range(s) that corresponds to the exported memory.

• Between domain and the Hypervisor

Domain to Hypervisor LDCs can be used to directly read, write, or map Hypervisor
memory. Similar to a guest, the Hypervisor can choose to export access to pages in its physical
address space to a guest over a LDC connection. It does this by creating a map table that holds
the pages it is exporting. It can then provide the guest with a cookie that uniquely identifies
the entry in the table. The guest client driver will then use the same interface it uses for
domain-to-domain LDCs, to either map or read/write the page in the Hypervisor address
space.

• Between Domain/Hypervisor and the service processor

The LDC infrastructure does not allow exporting memory segments to clients of LDC in
the service processor.

A Revision 2.0 Hypervisor API
May 29, 2008

28.2 Hypervisor infrastructure

28.2.1 Packet delivery

The Hypervisor provides a simple point-to-point messaging mechanism to send and
receive packets over a LDC connection. LDC connections as mentioned earlier allows domains
to send data to other domains, or the Hypervisor. The Hypervisor guarantees ordered delivery
by creating two locks for packet transfer over LDC.

LDC connections are created by the ldom manager by adding the appropriate nodes in the
MD. A guest identifies the LDCs associated with virtual devices by looking in its machine
description (MD) nodes for the device. Each guest/client registers LDC Tx and Rx queues for
each endpoint. A guest initiates a transfer by copying data into its transmit queue and
invoking a Hypervisor API to setting the tail for the Tx queue.

If a remote receive queue exists, the Hypervisor sends a interrupt to the remote endpoint
signaling it that there is data available for read. The receiving endpoint calls into the HV to
read the head and tail for the Rx queue. The HV copies data from the sender's Tx queue to the
receiver's Rx queue, and then returns the updated head and tail to the receiver.

28.2.2 Shared memory

This section describes the mechanism by which memory from one logical domain may be
exported for access by another logical domain. This facility enables shared memory to be
utilized for such functionality as virtual device services.

Using the interfaces described herein, one logical domain may export a number of its own
memory pages across a logical domain channel for access and use by the logical domain at the
other end of the channel. The mechanism is intended to be directly analogous to the way a
domain would export pages of its memory for access by I/O devices on the other side of an
I/O bridge (I/O MMU).

28.2.2.1 Map table

The principle means by which a domain may export its local memory across a domain
channel is through the use of an export map table that the guest defines within it's own local
memory - much like a TSB is used to define local virtual memory mappings.

The recipient domain at the other end of the logical channel may make use of the exported
memory either by using a hypervisor API call to copy data into or out of its local memory, or
by using a hypervisor API call to explicitly map the remote exported memory into its real
address space for access.

The real address space of each domain's virtual machine is independent of all the others.
Therefore to coordinate references to exported memory between domains, cookies are used to
refer to entries within the exporter's map table.

Consider a domain (“domain X”) that wishes to export a page of memory to another
domain (“Y”). For this to be possible a domain channel must connect X to Y. Let us assume
that such a channel has been created by the domain manager.

In order to export any memory across this domain channel, domain X must allocate an
export map table from its local memory, and assign that map table to its local channel
endpoint.

The assigned map table may be used to export multiple pages, which remain exported
until explicitly removed from the map table, or the table itself is un-assigned from the channel
endpoint.

Page 218 of 293

Hypervisor API Revision 2.0
May 29, 2008

The map table must be a power of number of entries in size, and must be aligned in
memory on a real address boundary equal to its size in bytes.

Hypervisor API calls are provided to assign a map table to a channel endpoint, unassign
the table, and to get the table info. A map table may not be assigned to more than one channel
endpoint at a time.

28.2.2.2 Map table cookies

For the recipient domain 'Y' to be able to refer to exported memory, it must use a 'cookie'
that describes the memory that domain 'X' is exporting. This cookie may be considered a form
of address for the remote memory, much like a dma-cookie is used for dma operations by an
IO device.

The export cookie is created by the exporting domain 'Y' and it contains two essential
pieces of information - the size of the exported page mapping, and the index in the exporter's
map table of that mapping. A cookie may also contain offset information so as to identify data
located within the memory page defined by a mapping.

A cookie only has meaning within the context of the domain channel its associated map
table is bound to. Thus if a map table is assigned to a channel endpoint in domain X, then
domain Y must also identify its local endpoint when using the cookie. In this way the
hypervisor is not responsible for creating or tracking or transferring cookies between domains.

A cookie is created by the exporting domain, and can be communicated by any means to
the importing domain - for example by message over the same domain channel. When a
cookie is used (for example with a ldc_copy operation), the associated local channel endpoint
enables the hypervisor to determine the remote channel endpoint and the therefore the remote
(exporting) domain and the export table itself. The cookie may then be used to locate the entry
in the export map table that defines the memory being exported.

Cookies created by an exporting domain have the following format:

The upper four bits of the cookie identify the page size of the exported page, and use the
same page size encodings as the basic sun4v TTE format.

The remainder of a cookie consists of an offset within the specified exported page and an
index to the entry within the exporting domain's map table that identifies the actual exported
page. The offset field ranges from bit zero, to the number of offset bits relevent for the cookie's
page size. The index field starts at the first bit for the page frame number and continues to bit
59. For example, for an 8K page; the page size field (bits 60 to 63) is zero, the page offset is in
bits 0 through 12, and the table index is specified in bits 13 through 59.

This compressed cookie format enables a page size, index value and page offset to be
transferred in one single 64bit value that may in effect be treated as an address itself. Basic
arithmetic may be applied to the offset field, which if it overflows will automatically adjust the
table index field. In this way a large number of sequential map table entries of the same page
size can be described by a single cookie value.

 6 6 5
 3 0 9 sz sz-1 0
 +------+-----------------------+-------------------------+
 | pgsz | tbl_idx | pg_off |
 +------+-----------------------+-------------------------+

A Revision 2.0 Hypervisor API
May 29, 2008

28.2.2.3 Map table entry

For the export map table, each entry consists of a two 64bit words illustrated in the figure
above.

The map entry (word 0) bit fields are defined as follows:

• Bits 63-57 - reserved - Must be written as zero

• Bit 56 - In use - This bit is set by the hypervisor if a map-table entry is still in use by
the importing domain. It is also cleared by the hypervisor if the entry is no longer
mapped by the importing domain.

• Bits 55-13 - Real address (RA) - For page sizes larger than 8KB, the low order
address bits below the page size must be set to zero

• Bit 12 - SW1 - This bit is available for use by software.

• Bit 11 - SW2 - This bit is available for use by software.

• Bit 10 - Copy writeable (CPW) - If set to 1 the hypervisor ldc_copy API may be
used by the importing domain to write to this exported page.

• Bit 9 - Copy readable (CPR) - If set to 1 the hypervisor ldc_copy API may be used
by the importing domain to read from this exported page.

• Bit 8 - I/O writeable (IOW) - If set to 1 this exported page may be mapped by an
IOMMU for writing by an I/O DMA operation.

• Bit 7 - I/O readable (IOR) - If set to 1 this exported page may be mapped by an
IOMMU for reading by an I/O DMA operation.

• Bit 6 - e(X)ecute - If set to 1 instructions may be fetched and executed from this
page by the importing domain

• Bit 5 - (W)riteable - If set to 1 this page may be mapped and written to as shared
memory by the importing domain

• Bit 4 - (R)eadable - If set to 1 this page may be mapped and read from as shared
memory by the importing domain

• Bits 3-0 - Page size code (pgszc) - page size code

0 = 8KB, 1=64KB, 2=512KB, 3=4MB, 4=32MB, 5=256MB, 6=2GB, 7=16GB

Sizes 8 through 15 are reserved.

The permissions bits (bits 4 through 10) indicate the access permissions granted by the
exporting domain to the importer of the page described by the specific map table entry. If no
access permissions are granted, (bits 4 through 10 are all zero), the map table entry is
considered invalid.

Note: It is recommended that invalid map table entries have the entire 64bit word set to zero.

Page 220 of 293

 6 5 5 5 1 1 1 1
 3 7 6 5 3 2 1 0 9 8 7 6 5 4 0
 +----+-----+---------------+---+---+---+---+---+---+-+-+-+-------+
 |rsvd|inuse| raddr |sw1|sw2|cpw|cpr|iow|ior|x|w|r| pgszc |
 +----+-----+---------------+---+---+---+---+---+---+-+-+-+-------+
 | revocation cookie |
 +--+

Hypervisor API Revision 2.0
May 29, 2008

Map table entries must not contain overlapping or identical real address ranges - do so
yields undefined results for both exporter and importer - without guarantee that the exporter
will be able to revoke access permissions to the exported page.

28.2.2.4 Copying in and out of a peer's exported memory

Once a LDC peer has provided access to memory pages via it's map table, a guest
operating system can request the hypervisor to copy data into and out of those pages by
simply presenting cookies provided by the peer with the ldc_copy hypervisor API call.

Each time the call is made the hypervisor validates the presented cookie together with the
access permission provided in the exporter's map table to determine whether the copy should
indeed be allowed.

This is the simplest mechanism by which data may be transferred in bulk between guest
operating systems.

28.2.2.5 Mapping page use and restrictions

For a guest to use memory exported by one of it's LDC peers, it must ask the hypervisor to
provide access to the exported page. This is achieved using the ldc_mapin hypervisor API call.

The map-in call returns a real-address of where the imported shared memory page was
mapped within the importing guests virtual machine real address space. Shared memory is
un-imported using the ldc_unmap API call by passing the same real-address that was returned
from the ldc_mapin API call.

As part of the importer's real address space, the imported shared memory page may be
used for virtual memory mappings and IO MMU mappings with the same mechanisms as it's
own memory pages. However, imported shared-memory pages are not generally accessible
like normal memory pages, and the hypervisor enforces a number of restrictions upon their
use:

The guest exporting a shared memory page may only allow certain types of access to that
page (for example for reading only). For example, attempts to map a page without read or
write permission for load or store instructions will fail (or in the case of TSB use generate a
data or instruction access exception trap for an invalid real address).

In addition to the restrictions required by the exporting guest, the hypervisor itself
requires that importing pages are not aliased either by virtual memory mappings, or IO MMU
mappings. Virtual memory mappings are allowed only for context 0 but are available to all
virtual CPUs.

Imported shared memory must be unmapped and re-mapped in before a new virtual or
IOMMU address may be assigned - even if the old virtual address has been de-mapped with
the appropriate demap API call.

28.2.2.6 Mapping revocation

When a guest wishes to discontinue the export of a page to its LDC peer, it can do so by
simply denying further access by disabling the access permissions in the map entry word in
the corresponding map table entry. (It is recommended that an entry be disabled/invalidated)
by writing the value 0 to the whole map entry word (word 0).

Denying future accesses does not automatically revoke existing page mappings to which
the LDC peer may have access.

A Revision 2.0 Hypervisor API
May 29, 2008

Well behaved peers sharing exported memory are recommended to use a communication
protocol to determine when exported memory pages are available or no longer in use by a
peer. It is anticipated, therefore, that only in extra-ordinary circumstances will a guest that
exports memory need to forcibly deny (“revoke”) access to a previously exported memory
page.

To avoid the cost of an export revocation for well behaved peers, the hypervisor provides
an indication that an exported page is actually still in use by a peer in the form of a revocation
cookie in the second word of the map-table entry for the exported page. This revocation cookie
word must be initialized to zero when a page is exported, and will be over-written by the
hypervisor with a revocation cookie while the exported page is actually in use by the peer
guest.

When a page is no longer to be exported, the export mapping permissions should be
removed after which the revocation cookie word can be examined to see if the page is actually
still in use by the peer guest. A revocation cookie value of zero indicates the page is not in use -
at which point the map table entry may be re-used for exporting other pages.

A non-zero value for the revocation cookie indicates that the previously exported page is
still in use by the peer guest. It then becomes a matter of policy for the exporter as to whether it
wishes to forcibly revoke the access permissions for the importer, or simply wait for the
importer to clean-up itself.

To forcibly revoke access permission for the peer guest, the exporting guest simply uses
the ldc_revoke API call with the LDC cookie for the exported page, and the revocation cookie
provided in the export map table.

Removing individual permissions for exported pages must be done by unmapping or
revoking access to the exported page first, then re-exporting it with the new permissions
required.

Forcibly revoking access to an exported page, can have catastrophic consequences for the
importer - including failed memory accesses or failed device DMA transactions. Therefore, the
exporter should avoid revocation as far as possible.

Exit of the exporting guest will cause the hypervisor to automatically forcibly revoke
exported page mappings.

An importer of shared memory pages that is intended to be robust should be designed to
shield itself against exported mappings being forcibly revoked at any time either by the
exporter or automatically by the hypervisor if the exporter exits. Importers wishing to avoid
these issues may always use the ldc_copy capability to move data.

28.3 LDC virtual link layer

Logical domain channels provide a virtual link layer abstraction that are designed as
point-to-point communication channels between logical domains or between a logical domain
and an external entity such as a service processor or the Hypervisor itself. Logical domain
channels provide an encapsulation protocol onto which higher level transport can be built
such as TCP/IP and PPP.

Page 222 of 293

Hypervisor API Revision 2.0
May 29, 2008

28.3.1 Communication overview

Data transferred between domains can be encapsulated into LDC packets or transferred
directly from one domain's memory to another using the Hypervisor shared memory
communication support. The link layer protocol defined here provides clients the ability to
choose either mechanism for data transfer. The link layer will fragment and reassemble
messages as part of the transfer. It will insert additional header information as part of each
packet to indicate the start and end of a fragmented data transfer. The LDC link layer uses
network byte ordering to transfer all data. The actual details of the transfer protocol itself will
be invisible to the clients.

• Packet Based Transfer

Data can be transferred out of a virtual machine by encapsulating it into LDC packets or
transferring it directly from one domain's memory to another using the Hypervisor shared
memory communication support. The link layer protocol will provide client drivers the
ability to choose either mechanism for data transfer.

In the case of the packet based mechanism, the link layer protocol will fragment and
reassemble messages as part of the transfer. It will insert additional header information as
part of each packet to indicate the start and end of a fragmented data transfer. The actual
details of the transfer itself will be invisible to the client driver. It is recommended that this
approach be used only for short messages.

• Shared Memory Access

The shared memory access mechanism allows a client driver to make sections of its
memory visible to other domains. This support is build on top of the underlying
Hypervisor infrastructure for setting up memory map tables to share memory segments.
Client drivers will use the interface to obtain a cookie associated with the memory they
want to expose. The client can then send the cookie to a client driver in a remote domain
using the packet based transfer. The receiving client can then request its LDC framework to
consume the cookie and map the remote domain's memory into its address space. Once the
mapping is completed, clients can read, write these shared memory regions and also setup

Hypervisor (LDC framework)

Guest 1 Guest 2

LDC
virtual link layer

LDC
virtual link layer

VIO
client 1

VIO
client 2

Misc
in-kernel
clients

VIO
svc 1

VIO
svc 2

Misc
in-kernel
clients

A Revision 2.0 Hypervisor API
May 29, 2008

DMA operations to directly transfer data into or out of domain buffers.

A slight modification to the direct memory map is the copy option, where the data is
copied in to or out of the buffers that have been exposed by a virtual device client or server
via a Hypervisor API. In this approach, when a virtual device wants to send data, either the
device client or server will first copy the data from the exporter's memory to a local
memory buffer.

Both methods of data transfer is provided because all virtual machine client may not allow
shared memory communication either due to technology limitations or security concerns.

• Protocol modes

Clients of the LDC mechanism can either be clients that implement sophisticated transport
layer like capabilities i.e. virtual ethernet with a TCP/IP stack, or a simple client with no
special transport capability like the FMA daemon or a virtual console device. These clients
have different reliability requirements on the underlying virtual link layer protocol. The
virtual link layer protocol will meet the requirements of either type of client by
implementing three different types of data transfer protocol.

• Raw mode

The raw virtual link layer protocol protocol does not add any overhead by appending any
headers and sends only 64-byte packets at a time. It has no support for session
management, message fragmentation and re-assembly, or retransmissions. It provides a
very thin layer over the Hypervisor interface and mostly passes through read and write
requests to the Hypervisor.

• Unreliable mode

The unreliable link layer protocol will implement a communication mechanism that will
include support of connection establishment via a simple handshake protocol. It will also
implement support for negotiating a session and detecting session termination. It will only
implement support to detect either lost or out-of-order packets, and not reassemble out of
order packets and only stitch together packets received in order. The unreliable mode also
supports fragmentation and reassembly of LDC datagrams. Clients of this link layer
mechanism will need to implement their own error detection mechanism and do the
required retransmission.

• Reliable mode

The reliable link layer protocol implements all the support encompassed within the
unreliable link layer protocol. In addition, it implements support for streaming buffers,
detecting out-of-order packets and packet loss and acknowledges received packets. The
primary distinction of reliable mode is to provide an error detection capability via
packet ACKs and NACKs.

28.3.2 Packet formats

The Hypervisor LDC framework provides the capability to deliver 64-byte packets
between peer channel endpoints. It does not impose any predefined format for each word in
the 64-byte packet. Depending on whether the clients want to use a raw, reliable or unreliable
link mode, the link will utilize different formats for each LDC packet. In the case of the reliable
link each packet will consist of a 16-byte header, and 48-bytes of data payload. The unreliable
link will have a smaller 8-byte header, and contains 56-bytes of data payload. The raw link will
utilize the complete 64-bytes for the data payload. The high-level format of the raw, unreliable
and reliable packet is shown below:

Page 224 of 293

Hypervisor API Revision 2.0
May 29, 2008

Description:

• Packet Type (Word 0, Bits 0-7): Each packet sent from one LDC endpoint to
another can consist of either control, data or error information or a combination
there-of. The appropriate 'type' field bit(s) are set to indicate packet contents.
LDC_CTRL 0x01
LDC_DATA 0x02
LDC_ERR 0x10

• Packet Sub-Type (Word 0, Bits 8-15): The stype field contains values INFO, ACK or
NACK and defines the type of data, control or error message. The combination of
the type and stype fields define the nature of the message.
LDC_INFO 0x01
LDC_ACK 0x02
LDC_NACK 0x04

• Control Info (Word 0, Bits 16-23): The ctrl field contains either basic control
information and/or error information. The control info values currently
supported are listed below:

Basic Control Values :
LDC_VERS 0x01 Link Version
LDC_RTS 0x02 Request to Send
LDC_RTR 0x03 Ready To Receive
LDC_RDX 0x04 Ready for data exchange

• Packet Envelope (Word 0, Bits 24-31): The env field, depending on the packet type,
contains either control or data related information. If the packet contains a control
info of type RTS or RTR, the envelope contains protocol mode and will have one of
the following values:

Raw Datagram Packet:
 6
 3 0
 +--+
 word 0-7:| data payload |
 +--+

Unreliable Datagram Packet:
 6 3 3 2 2 1 1
 3 2 1 4 3 6 5 8 7 0
 +----------------------+-----+------+-------+------+
 word 0: | seqid | env | ctrl | stype | type |
 +----------------------+-----+------+-------+------+
 word 1-7: | data payload |
 +--+

Reliable Datagram Packet:
 6 3 3 2 2 1 1
 3 2 1 4 3 6 5 8 7 0
 +----------------------+-----+------+-------+------+
 word 0: | seqid | env | ctrl | stype | type |
 +----------------------+-----+------+-------+------+
 word 1: | ackid | (reserved) |
 +--+
 word 2-7: | data payload |
 +--+

A Revision 2.0 Hypervisor API
May 29, 2008

LDC_MODE_RAW 0x0 Raw Mode
LDC_MODE_UNRELIABLE 0x1 Unreliable Mode
(RESERVED) 0x2
LDC_MODE_RELIABLE 0x3 Reliable Mode

When using RAW mode, since there is no handshake as part of the protocol, the
RAW mode value specified above is never exchanged as part of the packet
envelope. It is only specified here for completeness.

In the case of packets containing data, the envelope contains the number of bytes
in the current packet. It also contains information pertaining to fragmented
transfers. The format of the envelope for a data packet is shown below:

When a message is fragmented, the first fragment has the start bit in the envelope
field, set to 1. The last fragment has the stop bit set to 1. Intermediate fragments
between a start and stop packet have neither bit set. In the case of a single packet
transfer (less than the max payload), both start and stop bits in the envelope are set
to 1.

• Sequence ID (Word 0, Bits 32-63): The seqID field is populated with an unique
sequential number for every packet sent from one endpoint to another. This is used
by the receiver to detect and enforce packet ordering, and acknowledging received
packets.

The AckID field below is only used for the reliable link implementationImplementation Note:
In order to generate a unique session ID, it is recommended that the link uses 32-bits from the
CPU tick register as the session ID.

• Acknowledgment ID (Word 1, Bits 31-63): An endpoint can acknowledge packets it
has received by sending an ACK back to its peer. The 'ackid' field contains the
sequence ID of the last packet received in correct order by an endpoint. The peer
may send separates messages to ACK received packets or embed
acknowledgments in data packets.

28.3.3 Communication protocol

The link layer implements a thin connection establishment, tear down and data transfer
protocol on top of the Hypervisor infrastructure. When clients opens a channel for
communication, the link allocates memory for transmit and receive queues and registers these
with the Hypervisor. Since neither endpoints have any knowledge about a endpoint's
capabilities and whether it is ready to receive data , a simple handshaking protocol is needed
to prior to starting the data transfer. This also ensures that clients can start and terminate their
sessions independent of each other, and reestablish a connection when necessary.

Implementation Note: In the case of a reliable connection, the link should buffer outgoing messages
for retransmission purposes. It will mark packets in the transmit queue as completed when it
receives ACKs. In the event of a packet loss / timeout, this allow the link to retransmit pkts.

• Session establishment

Page 226 of 293

 3 3 2 2
 1 0 9 4
 +--------------+----------------------------+
 | stop | start | pkt_size |
 +--------------+----------------------------+

Hypervisor API Revision 2.0
May 29, 2008

• After setting up the Tx and Rx queues, either endpoint will initiate a version
negotiation by sending a LDC_VERS message, with the version number it supports
in the second word of the message. The link will use a simple count down
algorithm so that both sides use to agree on a mutual version. If the peer endpoint
agrees with the same version or the same major but a lower minor version, it will
respond back with an ACK (same msg with the ACK bit set). If it does not support
the version, it will respond with an error message NACK and also set the version
field to the next lower version version it supports. If it does not support a lower
version, it will set the version fields to zero. The sender can then re-send another
VERS request with the received lower version or a new even lower version. This
will continue on until either the endpoint initiating the VERSION handshake
exhausts all the version it supports or the peer accepts a version or responds with
an NACK message with version set to zero.

• Following the version negotiation, either endpoints will negotiate a 3-way
handshake. As part of this handshake, the endpoints will exchange initial sequence
IDs for the session.

• The sending link endpoint aka endpoint_A will initiate an handshake with the
other side i.e. endpoint_B by sending an LDC_RTS message that contains the initial
seqID (if reliable), and the mode it would like to use for communication.

• If endpoint_B has setup a receive queue, it will either:

• respond back with a LDC_RTR message, that contains its initial seqID and
the matching link mode message.

• endpoint_A will then respond back with a LDC_RDX message. This will
mark the channel status as UP and data transfer can now commence.

• If endpoint_B has not setup a receive queue, the hypervisor send (hv_tx_set_qtail)
operation will fail.

6 3 3 2 2 1 1
3 2 1 4 3 6 5 8 7 0
+------------------------+-----+------+------+------+
| seqID | - | RTS/ | INFO | CTRL |
| | | RTR | | |
+------------------------+-----+------+------+------+

6 3 3 2 2 1 1
3 2 1 4 3 6 5 8 7 0
+------------------------+-----+------+------+------+
| peer_init_seqID + 1 | - | RDX | INFO | CTRL |
+------------------------+-----+------+------+------+

6 3 3 2 2 1 1
3 2 1 4 3 6 5 8 7 0
+------------------------+-----+------+------+------+
| | - | VERS | INFO | CTRL |
+------------------------+-----+------+------+------+
| | major | minor |
+------------------------+------------+-------------+

A Revision 2.0 Hypervisor API
May 29, 2008

Following a successful handshake, both sides can start transmitting data.

• Session termination

A session between two endpoints can be torn down either due to a packet error, repeated
packet loss, too many retransmissions or at the request of a client. A session is normally
terminated by either un-configuring or reconfiguring the receive queue. On receiving a
CHANNEL_DOWN or CHANNEL_RESET notification from the Hypervisor the receiver will
reset its internal state from which a version negotiation and handshake will need to occur
prior to fresh data transmission.

• Session status notification

A session is established when either endpoints initiate a handshake or is terminated
following an Rx queue un-configuration or reconfiguration. Following either events, the
link can notify its client about a change in session state via the callback registered by the
client.

• Data transfer

Packet format:

When sending data to its peer, depending on the size, a link will either send the data in one
packet or fragment the data into multiple packets. The type field in the msg pkt will be set
to DATA for all packet based transfers. The stype field will be of value INFO and the
envelope field will contain the number of bytes being sent in each packet. The start and stop
bits are used to indicate the start and end of a fragmented transfer. The first packet in the
transfer will have the start bit set to 1. Subsequent packets have neither the start nor stop bit
set. The last packet sent as part of a fragmented transfer will have have the stop bit set to 1.
If the data is transmitted in a single packet, both the start and stop bit will be set to 1.

Streaming support:

Page 228 of 293

 Endpoint A Endpoint B
 | |
 | |
 | CTRL/INFO/VERS(ver_3.x) |
 + -----------------------------> +
 | CTRL/NACK/VERS(ver_2.x) |
 version + <----------------------------- +
 negotiation | CTRL/INFO/VERS(ver_1.x) |
 + -----------------------------> +
 | CTRL/ACK/VERS(ver_1.x) |
 + <----------------------------- +
 . .
 . CTRL/INFO/RTS .
 | (seqid_A, mode) |
 + -----------------------------> +
 . .
 | CTRL/INFO/RTR |
 handshake | (seqid_B, mode) |
 + <----------------------------- +
 | |
 . CTRL/INFO/RDX .
 | (seqid_A+1, mode) |
 + -----------------------------> +
 | |
 data xmit data xmit
 | |

Hypervisor API Revision 2.0
May 29, 2008

The Reliable mode also implements support for streaming data transfers. It does this by
breaking each message into MTU size blocks, specified by the client at the time of channel
initialization. During send (ldc_write), each message is first broken up into MTU size
blocks before being transmitted using the packet transfer approach discussed above. On the
receiving end, the link layer passes data back to client in MTU size blocks without any
reassembly. Using streaming eliminates the need to allocate very large Tx and Rx queues in
the link layer as very large messages can be transferred in MTU size chunks.

Message ACKs:

Message ACKs are used in the case of reliable link mode to indicate data transfer progress.
A client can only queue a fixed number of packets, after which it will have to wait for an
ACK from the receiver before it can send more packets. The receiver will periodically
respond back with a DATA/ACK control message, and the 'ackid' field will contain the
sequence ID of the last packet it received in correct order. Since the packet control field bits
for an ACK message do not overlap with those of a regular data packet, a endpoint can
send an ACK message embedded in a data packet.

Transmit queues and retransmissions:

In the case of a reliable link, the link will retransmit the packets in the event of a data loss.
For each message sent by a client, the link will maintain it in a list of message segments.
Each segment corresponds to one more fragments i.e. packets in the transmit queue. It will
store the seqID corresponding to first fragment with the segment. It will initiate a send by
storing the fragmented packets in the transmit queue. At the same time it will start a timer
for the message. If a ACK for the packets are not received before the timer expires, the
sender will retransmit the message with the same set of start of end seqIDs. If an duplicate
ACK is received, it will discard it.

The sender will also maintain a head and tail pointer to keep track of the packets that have
been transmitted and the ones that have been ACKed. In the event of a timeout, the sender
will retransmit packets by copying over the packets into queue locations starting at tail
location. All packets in the queue will purged when a session is torn down and/or
established.

There are multiple retransmit scenarios and these are handled in the following manner:

• Packet loss

This is the simplest of all cases. In the event of packet loss, the receiver will discard
all future packets until it receives a packet in correct sequence. The sender will
initiate retransmission on timeout.

• Premature timeout / Delayed ACKs

There are cases when the receiver is backed up and does not respond to the sender
in a timely fashion. This will cause the sender to timeout prematurely and
retransmit the segment's packets to the receiver. It might either during the
retransmission or subsequently receive ACKs for the first transfer. When it receives
the ACK, it can mark the message segment as successfully sent. It will then ignore
any duplicate ACKs received as a result of the retransmission. Similarly, the
receiver will discard packets associated with the retransmission (same seqID
range), if it had previously received the message successfully. Even if the receiver
discards incoming messages as duplicates, it will need to ACK the messages as
earlier ACKs could have been lost.

• Lost ACKs

A Revision 2.0 Hypervisor API
May 29, 2008

In the event, the message was sent successfully, but the ACK was lost, the sender
will eventually timeout and retransmit the segment packets. Since receiver already
received the message, it will discard the message but still send an ACK. If there is
an error during retransmission, the receiver will discard the packets as before.

Link errors:

Either during the initial handshake or during the course of data transmission, either
endpoints can detect an error and take the corresponding action. The errors currently
detected and handled within the link are listed below:

• Packet error

During data transmission, packets can either get dropped or gets sent out of order.
When the receiver detects a packet that is out of order, it will purge all pending
packets in its transmit queue, until it finds a packet with the correct sequence. The
unreliable link does not support retransmissions, and packets are dropped on
error. Transmit sequence errors are detected via invalid start/stop bits in pkts.

In the case of reliable link mode, packet loss is detected using seqID. It will send an
ACK for the last packet that was received in correct order. This allows the sender to
determine what seqID to start the retransmission from. Since there might be
packets in flight (pkts between the ACKd pkt and the current TX tail ptr), the
receiver will have to continue dropping all future packets until it receives a packet
with the seqID that corresponds to the lost packet. The sender will eventually
timeout and recopy lost or unacknowledged packets starting from the current tail
location and initiate the retransmission of packets starting with the lost packet.

Link interrupt handler:

Links that are capable of handling interrupts can register an interrupt handler for each
LDC channel with a target CPU to which the interrupt should be delivered. The link should
allocate the CPU to channels in a round-robin manner. When a channel has pending data
in its LDC queue, the Hypervisor will send a dev_mondo interrupt to the link. The link will
either process the packet in the queue (if it is a control packet), or invoke the client's
callback (if it is a data packet) to let it know that there is pending data.

Page 230 of 293

Hypervisor API Revision 2.0
May 29, 2008

29 Virtual IO device protocols

29.1 Virtual IO communication protocol

Virtual devices, clients and/or services, at the most basic level rely on the underlying
Hypervisor LDC framework (section XX) and LDC transport layer (section 28) to transfer data.
Since both these layers only provide a basic communication mechanism, Virtual IO (VIO)
devices employ a basic handshake procedure to agree on transmission properties for the
channel, before meaningful data can be exchanged between the two channel endpoints. As
part of the handshake they negotiate a common version, device attributes, data transfer type,
and if necessary shared memory descriptor ring information. Following a successful
handshake, the devices can send and receive data. All VIO devices use the LDC unreliable
transport mode for all communication.

The figure below shows two logical domains with VIO device clients and services
communicating with each other using the VIO protocol and layered on top of the underlying
LDC framework. Domain A has exclusive access to local physical devices through native
device drivers and exports access to these devices over the LDC connection to domain B.

29.1.1 VIO data transfer

VIO devices will transfer data either using packet mode by storing the data in LDC
datagrams or sharing the data using the shared memory capability of the Hypervisor. A VIO
device that uses packet mode, will use either a single LDC datagram packet or use the
fragmentation-reassembly capabilities of the LDC transport layer to packetize and transfer
larger messages. The Hypervisor shared memory support allows guests to share memory
regions in their address space with another guest at the other end of a channel
(FWARC/2006/184). This capability allows VIO client drivers to share segments of memory
with a VIO client or service so that data can be transferred efficiently and much faster, instead
of transferring data over the channel by packetizing each transfer.

Domain A Domain B

LDC Transport

VIO Protocol VIO Protocol

Virtual
Disk

Server

Virtual
Network
Switch

Virtual
Network

Virtual
Disk

Block Device

Network Device

LDC Transport

N
at

iv
e

D
is

k
D

rv

N
at

iv
e

N
et

 D
rv

Hypervisor

A Revision 2.0 Hypervisor API
May 29, 2008

Like conventional IO devices, the virtual IO devices that use the Hypervisor shared
memory infrastructure for data transfer, will setup and use descriptor rings. The descriptor
ring is a contiguous circular ring buffer that IO devices use to queue requests, receive
responses and transfer associated data. VIO devices that use shared memory will either share
their descriptor rings or send the descriptors as in-band messages. The subsequent sections
describe the content of control and data packets, the transfer protocol and the structure of the
descriptor rings used by VIO devices. It also specifies the device specific content of the LDC
packets and descriptors for virtual network and disk devices.

29.1.2 VIO device message tag

All packets exchanged by VIO devices over a channel will use a common message tag as
the header for the message. The message tag uniquely identifies the session, the type and
subtype of the message. The subtype envelope contains message specific meta-data. All
packets sent/received by VIO devices will specify all message tag fields and no field is
optional. The format of the message tag along with values for the type, subtype and subtype_env
fields are shown below:

6 3 3 1 1
3 2 1 6 5 8 7 0
+----------------------------+---------------+-------+-------+
| SID | STYPE_ENV | STYPE | TYPE |
+----------------------------+---------------+-------+-------+

Messages Types: Sub-Message Types:
 VIO_TYPE_CTRL 0x01 VIO_SUBTYPE_INFO 0x01
 VIO_TYPE_DATA 0x02 VIO_SUBTYPE_ACK 0x02
 VIO_TYPE_ERR 0x04 VIO_SUBTYPE_NACK 0x04
Sub-Type Envelope :
 if type = VIO_TYPE_CTRL (0x0000 - 0x003f)
 VIO_VER_INFO 0x0001
 VIO_ATTR_INFO 0x0002
 VIO_DRING_REG 0x0003
 VIO_DRING_UNREG 0x0004
 VIO_RDX 0x0005
 (reserved) 0x0006 – 0x003f
 if type = VIO_TYPE_DATA (0x0040 - 0x007f)
 VIO_PKT_DATA 0x0040
 VIO_DESC_DATA 0x0041
 VIO_DRING_DATA 0x0042
 (reserved) 0x0043 – 0x007f
 if type = VIO_TYPE_ERR (0x0080 - 0x00ff)
 (reserved) 0x0080 – 0x00ff
device class specific sub-type envelopes
 VNET_xxx 0x0100 - 0x01ff
 VDSK_xxx 0x0200 - 0x02ff
 (reserved) 0x0300 - 0xffff

29.1.3 VIO device peer-to-peer handshake

For VIO devices, both the server and/or client has to successfully complete a handshake
before data transfer can commence. The handshake can be initiated by either parties. In the
description below each message sent or received is specified using the format <type> /
<subtype> / <subtype_env>.

29.1.3.1 Version negotiation

A handshake is initiated by one peer sending a CTRL/INFO/VER_INFO to the other
endpoint. This message consists of a 'dev_class' field identifying the type of the sending device,
and a 'major/minor' pair which specify the protocol version (the protocol version will

Page 232 of 293

Hypervisor API Revision 2.0
May 29, 2008

determine the type and amount of data that will be expected to be exchanged in later phases of
the handshake). It also sets the session ID (sid) to a random value by setting it to the lower 32-
bits of the CPU tick. The client will send a new session ID with each version negotiation
request. The session ID corresponding to the accepted version gets used as part of each
message sent as part of the session.

If the device class is recognized and the version major/minor numbers are acceptable then
the receiving endpoint responds back with a CTRL/ACK/VER_INFO message leaving all the
parameters unchanged. It also stores the sender's SID for use in future message exchanges.

If the major version is not supported, then the peer sends back a
CTRL/NACK/VER_INFO message containing the next lower major version it supports. If it
does not support any lower major numbers, it will NACK with the version major and minor
values set to zero. The initiating endpoint can then if it wishes send another
CRTL/INFO/VER_INFO message either with the major number it received from its peer, if it
is acceptable, or with its next lower choice of version. If the major version is supported but not
at the specified minor version level, the receiver will ACK back with a lower supported minor
version number.

Similarly, if the 'dev_class' is unrecognized, the receiver will respond back with
CTRL/NACK/VER_INFO with the parameters unchanged and the handshake is deemed to
have failed. The format of the version exchange packet to shown below:

The currently supported devices types are listed below:
VDEV_NETWORK 0x1
VDEV_NETWORK_SWITCH 0x2
VDEV_DISK 0x3
VDEV_DISK_SERVER 0x4

NOTE: Irrespective of what state the receiving endpoint believes the channel to be in,
receipt of a CTRL/INFO/VER_INFO message at any time will cause the endpoint to reset any
internal state it may be maintaining for that channel and restart the handshake.

29.1.3.2 Attribute exchange

Following the initial version negotiation phase, VIO device clients/services will exchange
device specific attribute information, depending on the device class and the agreed upon API
version. Each attribute information packet is of the type CTRL/INFO/ATTR_INFO and
contains parameters like transfer mode, maximum transfer size, and other device specific
attributes. A ACK response is an acknowledgment by the peer that it will use these attributes
in future transfer. A NACK response is an indication of mismatched attributes. It is up to the
particular device class whether it restarts the handshake or exchanges other attributes. The
device specific section for virtual disk and network devices contains more information about
the exchanged attributes.

 6 3 3 3 1 1
 3 9 2 1 6 5 8 7 0
 +----------------------------+---------------+-------+---------+
word 1: | SID | VER_INFO | I/A/N |TYPE_CTRL|
 +------------------+---------+---------------+-------+---------+
word 2: | rsvd |DEV_CLASS| MINOR | MAJOR |
 +------------------+---------+---------------+-----------------+

A Revision 2.0 Hypervisor API
May 29, 2008

29.1.3.3 Descriptor ring registration

Most virtual devices will use the shared memory capabilities of the Hypervisor LDC
framework to send and receive data. Like conventional IO devices, the virtual IO devices will
use descriptor rings to keep track of all transactions being performed by the device. Prior to
using a descriptor ring, and following version negotiation, and other device specific attribute
exchange, VIO clients will register shared descriptor ring information with its channel peer.

A VIO client will register a descriptor ring by sending a CTRL/INFO/DRING_REG
message to its peer. The message will contain information about the number of descriptors in
the ring, the descriptor size, the LDC transport cookie(s) associated with the descriptor ring
memory and the number of cookies. The options field allows certain VIO clients to specify
descriptor ring properties that describe its intended use. The supported values in v1.0 of the
VIO protocol are:

VIO_TX_DRING 0x1 /* Tx descriptor ring */
VIO_RX_DRING 0x2 /* Rx descriptor ring */

On receiving the registration message, the receiver will ACK the message, and in the ACK
provide the sender an unique dring_ident. The dring_ident will be used by the sender to either
unregister the ring or refer to the descriptor ring during data transfer. A NACK to this
message from the receiving end is regarded as a fatal error and the entire session is deemed to
have failed and a new session has to be established by re-initiating a handshake. The
dring_ident field is not used in the registration message and only used during the ACK.

• LDC transport cookie:

A LDC transport cookie (LDC_TRANSPORT_COOKIE) is 16-bytes in size and consists of
cookie_addr and cookie_size fields. The cookie_addr field corresponds to the Hypervisor LDC
shared memory cookie for each page (see FWARC/2006/184) and the cookie_size corresponds
to the actual number of bytes that is shared within the page pointed to by the cookie. If the
descriptor ring memory segment spans multiple pages, an unique transport cookie is used to
refer to each page within the segment. The format of the LDC transport cookie is shown
below:

Page 234 of 293

 6 3 3 1 1
 3 2 1 6 5 8 7 0
 +--------------------------------+-----------+-------+----------+
 word 1: | SID | DRING_REG | I/A/N |TYPE_CTRL |
 +--------------------------------+-----------+-------+----------+
 word 2: | DRING_IDENT |
 +--------------------------------+------------------------------+
 word 3: | DESCRIPTOR_SIZE | NUM_DESCRIPTORS |
 +--------------------------------+-----------+------------------+
 word 4: | NCOOKIES | reserved | OPTIONS |
 +--------------------------------+-----------+------------------+
word 5-n: | (LDC_TRANSPORT_COOKIE * NCOOKIES) |
 +---+

 6 3 3 1 1
 3 2 1 6 5 8 7 0
 +----------------------------+--------------+-------+-----------+
 word 1: | SID | ATTR_INFO | I/A/N | TYPE_CTRL |
 +----------------------------+--------------+-------+-----------+
word 2-7: | (device specific attributes) |
 +---+

Hypervisor API Revision 2.0
May 29, 2008

When two or more successive pages in the descriptor ring memory segment are stored in
consecutive entries in the LDC map table, a single transport cookie can be used refer to all
these page entries. The cookie_addr in this case will still point to first page in the set, but the
cookie_size will correspond to the size spanning all consecutive entries.

A VIO device might typically share multiple descriptor rings with its peer and can choose
to register all descriptor rings with its peer at the time of the initial handshake or at any point
after data transfer has commenced. If a device intends to do all its data transfer using
descriptor rings, it will have to register at least one descriptor ring before data transfer can
commence.

A VIO client can unregister a descriptor ring by sending a CTRL/INFO/DRING_UNREG
message to its peer. It will specify the dring_ident it received from the peer at the time of
registration. The peer will ACK a successful unregister request and NACK the request if the
dring_ident specified is invalid. If subsequent data transfers refer to an unregistered descriptor
ring, the DRING_DATA requests will be NACKd.

29.1.3.4 Handshake completion

After successful completion of all negotiations and required information exchange, an
endpoint will send a RDX message to its peer to indicate that it can now receive data from it.
An endpoint initiates this by sending a CTRL/INFO/RDX message to the receiving end. The
receiver acknowledges the message by sending CTRL/ACK/RDX. Because LDC connections
are duplex, each endpoint has to send a RDX message to its peer before data transfer can
commence in both directions. When a RDX is sent by an endpoint, the endpoint is explicitly
enabling a simplex communication path, whereby it announces that it can now receive data
from its peer. It is VIO device specific whether they require the establishment of a duplex
connection before data transfer can commence. There is no payload associated with a RDX
message and they are not NACKed.

 6 3 3 1 1
 3 2 1 6 5 8 7 0
 +----------------------------+---------------+-------+----------+
 word 1: | SID | DRING_UNREG | I/A/N |TYPE_CTRL |
 +----------------------------+---------------+-------+----------+
 word 2: | DRING_IDENT |
 +---+

 6 3 3 1 1
 3 2 1 6 5 8 7 0
 +----------------------------+----------+----------+------------+
word 1: | SID | RDX | INFO/ACK | TYPE_CTRL |
 +----------------------------+----------+----------+------------+

 6
 3 0
 +---+
 | HV shared memory cookie (cookie_addr) |
 +---+
 | cookie_size |
 +---+

A Revision 2.0 Hypervisor API
May 29, 2008

Once the channel has been established (indicated by the receipt of a RDX message) in
either simplex or duplex mode further informational messages may be sent by the initiating
endpoint or requested by the receiving endpoint as time goes by. The content and effect these
messages have on the session is device specific. These messages are also regarded as in-band
notifications.

29.1.4 VIO data transfer modes

VIO devices can send data to their peers over a channel using different transfer modes.
During the handshake, each device will specify to its peer the transfer mode (xfer_mode) it
intends to use as part of the attribute info message. The device specific attribute message
format specifies the location of the xfer_mode field in the message. The supported transfer
modes in versions 1.0 and 1.1 of the VIO protocol are:

VIO_PKT_MODE 0x1 /* packet based transfer */
VIO_DESC_MODE 0x2 /* in-band descriptors */
VIO_DRING_MODE 0x3 /* descriptor rings */

In version 1.2, the VIO protocol will allow concurrent use of the different transfer modes,
specifically packet based transfer and descriptor ring modes. In order to do this, the
xfer_mode field in the attribute info message will be changed to a bit mask with the following
values:

VIO_PKT_MODE 0x1 /* packet based transfer */
VIO_DESC_MODE 0x2 /* in-band descriptors */
VIO_DRING_MODE 0x4 /* descriptor rings */

In version 1.2, the virtual network and switch clients will use the packet transfer mode in
addition to the descriptor ring mode (xfer_mode=0x5) to send high priority ethernet frames as
data packets for faster out-of-band processing.

29.1.4.1 Packet based transfer

As discussed in the earlier section, VIO packets always consist of a generic message tag
header and a sequence id (which is incremented with each packet sent). Additionally, if a VIO
device intends to use packet mode for sending data, it can use up to 40 bytes of a LDC
datagram without using LDC transport's packet fragmentation capability. Larger transfers will
require the use of the fragmentationreassembly support provided by the underlying LDC
transport. The format of a LDC packet containing data is shown above.

29.1.4.2 Descriptor rings

As mentioned in the earlier section, a descriptor ring is a contiguous circular ring buffer
VIO devices use to queue requests, receive responses and transfer associated data. Each
descriptor in the ring holds request and response parameters specific to the particular device
along with opaque cookies that point to the page(s) of memory that are being shared for
reading and/or writing. The descriptor ring will utilize Hypervisor shared memory support,
so that clients at both ends of the channel can modify the contents of the descriptor(s).

Page 236 of 293

 6 3 3 1 1
 3 2 1 6 5 8 7 0
 +----------------------------+------------+-------+----------+
 word 1: | SID | PKT_DATA | I/A/N |TYPE_DATA |
 +----------------------------+------------+-------+----------+
 word 2: | SEQ_NO |
 +--+
word 3-7: | DATA_PAYLOAD |
 +--+

Hypervisor API Revision 2.0
May 29, 2008

Each VIO client will specify that it intends to use descriptor rings, as part of the attribute
info exchange. It will also specify whether or not it intends to share the descriptors using
shared memory or send each descriptor as an in-band message. If it shares the descriptor ring
using shared memory, it will register at least one descriptor ring with its peer at the other end.

Each entry in a descriptor ring consists of a common descriptor ring entry header and the
descriptor payload as shown in the figure below. The descriptor payload consists of fields that
are device class specific and are discussed in more detail in sec 1.1.6 and 1.1.7.

The descriptor dstate specifies the state of the the descriptor. The valid state values are:
VIO_DESC_FREE 0x1
VIO_DESC_READY 0x2
VIO_DESC_ACCEPTED 0X3
VIO_DESC_DONE 0x4

Initially when a descriptor ring is allocated, all entries in the ring are marked with value of
VIO_DESC_FREE. When a client queues one or more requests, it will change the flags value
for the corresponding descriptor(s) to VIO_DESC_READY. It will then send a message to its
peer requesting it to process the descriptors. The client that is processing the descriptor will
first change the state to VIO_DESC_ACCEPTED, acknowledging receipt of the request and
prior to processing the request.

On completing the request, it will update the descriptor with its response and change the
value of the flag to VIO_DESC_DONE. The client that initiated the request, will take the
appropriate action after seeing the request as been marked as VIO_DESC_DONE and then
change it to VIO_DESC_FREE. If the state of a descriptor transitions to an unexpected state,
the behavior is undefined. A VIO device under these circumstances, might either reset the
session and restart the handshake, or send an error message to its peer.

When the requesting client updates one or more descriptors and marks them as ready for
processing, it will send a DATA/INFO/DRING_DATA message to its peer at the other end of
the channel. The message will contain the dring_ident the requester received at the time of
registering the descriptor ring. It also specifies the start and end index corresponding to the
descriptors that have been updated. If end index value specified is -1, the receiver will process
all descriptors starting with the start index and continue until it does not find a descriptor
marked VIO_DESC_READY. The receiver at this point will send an implicit ACK to the sender
to let it know that it is done processing all requests. Subsequently, if the sender marks
additional entries as VIO_DESC_READY, it will reinitiate processing by sending another
DRING_DATA request.

If the start and end index, either overlap with requests sent earlier or correspond to
descriptors not in VIO_DESC_READY state, the request will be NACKed by the receiver.

 6
 3 9 8 7 0
+---+---+-----------+
| reserved | A | DSTATE |
+---+---+-----------+
| (descriptor payload) |
+---+

A Revision 2.0 Hypervisor API
May 29, 2008

The requester can also request an explicit acknowledgment from the client processing the
request (to track progress) by setting the (A)cknowledge field in the descriptor. The client, after
processing the descriptor (changes state as VIO_DESC_DONE), will send a
DATA/ACK/DRING_DATA message with the dring_ident for this descriptor ring and
end_idx equal to this descriptor.

When the requester sends requests with an end_idx = -1, the proc_state field in the
ACK/NACK message, is used by the receiver to indicate its current processing state. The valid
proc_state field values are:

VIO_DP_ACTIVE 0x1 /* active processing req */
VIO_DP_STOPPED 0x2 /* stopped processing req */

If the receiver continues to process requests or is waiting for more descriptors to be
marked VIO_DESC_READY, it will ACK with proc_state set to VIO_DP_ACTIVE. Instead, if
the receiver stops after processing the last ACK/NACK, and is waiting for an explicit
DATA/INFO/DRING_DATA message, it will set the proc_state set to VIO_DP_STOPPED.
The proc_state value is then used by the requester to determine when the receiver's state, and
accordingly sends an explicit DRING_DATA message when more requests are queued.

It is not always necessary that clients need to register a shared descriptor ring to make use
of the HV shared memory infrastructure. A simpler client can still use the shared memory
capabilities and instead of sharing the descriptor ring, it will send the descriptor itself as in-
band data. The DESC_HANDLE in the pkt is an opaque handle that corresponds to the
descriptor in the sender's ring.

The content of the in-band descriptor packet is shown below:

In case of both a DRING_DATA and DESC_DATA message, if the receiver gets a data
packet out of order (as indicated by a non-consecutive sequence number) then it will NACK
the packet and will not process any further data packets from this client. If there are no errors
the receiver will ACK the receipt of descriptor ring or descriptor data packets if there is an
explicit request by the sender to ACK a data packet by setting the (A)cknowledge bit in the
descriptor.

Page 238 of 293

 6 3 3 1 1
 3 2 1 6 5 8 7 0
 +----------------------------+------------+-------+------------+
 word 1: | SID | DRING_DATA | I/A/N | TYPE_DATA |
 +----------------------------+------------+-------+------------+
 word 2: | SEQ_NO |
 +--+
 word 3: | DRING_IDENT |
 +----------------------------+---------------------------------+
 word 4: | END_IDX | START_IDX |
 +----------------------------+--------------------+------------+
 word 5: | reserved | PROC_STATE |
 +---+------------+

 6 3 3 1 1
 3 2 1 6 5 8 7 0
 +----------------------------+------------+-------+----------+
 word 1: | SID | DESC_DATA | I/A/N |TYPE_DATA |
 +----------------------------+------------+-------+----------+
 word 2: | SEQ_NO |
 +--+
 word 3: | DESC_HANDLE |
 +--+
 | (descriptor payload) |
 +--+

Hypervisor API Revision 2.0
May 29, 2008

Implementation Note: Upon receipt of a NACK, the sending client can either try to recover
or stop sending data and return to initial state and restart the channel negotiation again.

29.1.5 Virtual IO Dynamic Device Service (DDS)

Virtual IO devices following the initial handshake, send and receive data using the packet
and/or descriptor based modes as described in the earlier sections. This forms the under
pinnings of the virtual IO data transfer infrastructure in a LDoms environment. While
compelling for a variety of application workloads, virtualized I/O still does not provide high
performance I/O capabilities that certain I/O oriented workloads require. The Hybrid I/O
model provides the opportunity to share device resources across multiple client domains with
better granularity while overcoming the performance bottlenecks of virtualized I/O.

A new control message type will be added in VIO protocol versions 1.3 and higher to
support the Hybrid IO model. The new Dynamic Device Service (DDS) control message, with
a subtype envelope value of VIO_DDS_INFO, will provide virtual IO devices and services the
ability to exchange and share physical device resource information with their peers.

VIO_DDS_INFO 0x6 /* DDS information */

Each DDS control message will allow a device to share or reclaim a resource, or change the
properties of a resource. A peer on receiving a CTRL/INFO/DDS_INFO message, will take
necessary action and then either ACK or NACK the message depending on whether the
requested operation was successful or not.

Each VIO_DDS_INFO message, in addition to the VIO msg header, includes a DDS
message header consisting of a DDS class, subclass, and request_id fields. Though the format of the
DDS message header itself is generic to the VIO protocol, the DDS message class and sub-class
values are specified by the virtual network or disk devices. The DDS request ID in the header
will used to correlate the INFO requests with ACK and NACK responses. The DDS msg
format is shown below:

Device specific class and subclass values, including contents of the DDS message is
discussed in section 1.1.7.5. The class value ranges reserved for various VIO device classes is
specified below:

DDS_GENERIC_XXX 0x0 - 0xf /* Generic DDS class */
DDS_VNET_XXX 0x10 – 0x1f /* vNet DDS class */
DDS_VDSK_XXX 0x20 – 0x2f /* vDisk DDS class */
reserved 0x30 – 0xff /* reserved */

 6 3 3 1 1
 3 2 1 6 5 8 7 0
 +----------------------------+------------+--------+----------
+
 word 1: | SID | DDS_INFO | I/A/N |TYPE_DATA
|
 +----------------------------+------------+--------+----------
+
 word 2: | DDS_REQUEST_ID | reserved |SUBCLASS| CLASS
|
 +----------------------------+--------------------------------
+
 word 3-7:| (dds message payload)
|
 +---
+

A Revision 2.0 Hypervisor API
May 29, 2008

29.2 Virtual disk protocol

In the protocol outlined above, the attribute exchange and descriptor payload contents are
undefined and left to be specified by the VIO devices. This section describes the contents of
these packets for use by both the virtual disk client and server to exchange data. The vDisk
client, following an attribute exchange, will send to the server block disk read and write
requests, in addition to disk control requests. The server will export each block device over an
unique channel, and accept requests from the client, once a session has been established.

29.2.1 Attribute information

During the initial handshake, as part of the CTRL/INFO/ATTR_INFO message, the
virtual disk server and client exchange information about the transfer protocol and the
physical device itself. The format of the attribute contents is shown below:

The vDisk client will provide the server with the transfer mode (xfer_mode) and the
requested maximum transfer size (max_xfer_sz) it intends to use for sending disk requests to
the server.

The vdisk_block_size is specified in bytes. The vdisk_size and max_xfer_sz are specified in
multiples of the vdisk_block size.

For version 1.0 of the vDisk protocol the client's request must set vdisk_block_size to the
minimum block size the client wishes to handle, and specify the max_xfer_size. If the server
cannot support the requested vdisk_block_size or max_xfer_sz requested by the client, but can
support a lower size, it will specify its vdisk_block_size and/or a lower max_xfer_sz in its
ACK. If the client has no minimum block size requirement it may use the value of 0 as its
requested vdisk_block_size, in this case the max_xfer_size in the client's attribute request to
the server is interpreted as being specified in bytes. Either client or server may simply reset the
LDC connection if they fail to agree on communication attributes.

For version 1.1 of the vDisk protocol, the vDisk server can set vdisk_size to -1 if it can not
obtain the size at the time of the handshake. This can happen when the underlying disk has
been reserved by another system. Under these circumstances, the vDisk client can retrieve the
size at a later time, after the completion of the handshake, using the VD_OP_GET_CAPACITY
operation.

If either client or server cannot support the specified transfer mode, the connection will be
reset and the handshake may be restarted. The server in its ACK message will also provide the
vdisk type (vd_type), vdisk_block_size and vdisk_size to the client. The supported types are:

VD_DISK_TYPE_SLICE 0x1 /* slice in blk device */
VD_DISK_TYPE_DISK 0x2 /* entire blk device */

Page 240 of 293

 6 3 3 2 2 1 1
 3 2 1 4 3 6 5 8 7 0
 +-------------------------+------+----------+-------+---------+
word 1: | SID | ATTR_INFO | I/A/N |TYPE_CTRL|
 +-------------------------+------+----------+-------+---------+
word 2: | VDISK_BLOCK_SIZE | rsvd | VD_MTYPE |VD_TYPE|XFER_MODE|
 +-------------------------+------+----------+-------+---------+
word 3: | OPERATIONS |
 +---+
word 4: | VDISK_SIZE |
 +---+
word 5: | MAX_XFER_SZ |

 +---+

Hypervisor API Revision 2.0
May 29, 2008

All other disk types are reserved and for version 1.0 of the vdisk protocol should be
considered as an error.

Only in protocol versions 1.1 and higher of the vdisk protocol, the server in its ACK
message will provide the client the vdisk_size (specified as a multiple of the block size), and
the vdisk media type (vdisk_mtype). The supported vdisk media types are:

VD_MEDIA_TYPE_FIXED 0x1 /* Fixed device */
VD_MEDIA_TYPE_CD 0x2 /* CD device */
VD_MEDIA_TYPE_DVD 0x3 /* DVD device */

All other disk media types are reserved and for version 1.1 of the vdisk protocol should be
considered as an error.

Both these fields are reserved and not available in version 1.0 of the vdisk protocol. Clients
should use the disk geometry information (see section 1.1.5.11) to compute the vdisk size.

The operations field is a bit-mask specifying all the disk operations supported by the
server, where each bit position, if set, corresponds to the operation command supported by the
server. The list of supported operations encodings is described in section 1.1.6.2.

29.2.2 vDisk descriptors

Virtual disk clients will send their disk requests by queueing them in descriptors as part of
a shared descriptor ring.

As requests are initiated only by the client, and the buffers pointed to by each descriptor
are used for both writing and reading disk blocks, the vDisk client will register the descriptor
ring as both a Tx and Rx ring. In the case of descriptor rings that are not shared, the virtual
disk client will send the requests as in-band descriptor messages.

The descriptor payload is formatted as follows:

The payload contains the operation being performed.

The offset field specifies the relative disk block address when doing a block read or write
operation to the disk. This corresponds to the block offset from the start of the disk, or the disk
slice as appropriate. It is specified in terms of the vdisk_block_size received from the server.

The size field specifies the number of blocks being read or written when doing a
VD_OP_BREAD or VD_OP_BWRITE operation. In the case where the vdisk_block_size in the
client's attribute request is zero the size is interpreted as being specified in bytes.

 6 3 3 2 2 1 1
 3 2 1 4 3 6 5 8 7 0

 +------------------------------+-----+-----+-------+---------+
 | REQ_ID |
 +------------------------------+-----------+-------+---------+
 | STATUS | reserved | SLICE |OPERATION|
 +------------------------------+-----------+-------+---------+
 | OFFSET |
 +--+
 | SIZE |
 +------------------------------+-----------------------------+
 | reserved | NCOOKIES |
 +------------------------------+-----------------------------+
 | LDC_COOKIE * NCOOKIES |
 +--+

A Revision 2.0 Hypervisor API
May 29, 2008

29.2.3 Disk operations

For each client request sent to the server, the server will process the descriptor contents
and submit the request to the device. Each virtual disk request is identified by an unique
req_id. The operation field specifies the operation being done on the device. The server will
then return the status of the operation in the same descriptor but with the 'status' field
containing the outcome of the operation. The supported values in version 1.0 of the vdisk
protocol are:

VD_OP_BREAD 0x01 /* Block Read */
VD_OP_BWRITE 0x02 /* Block Write */
VD_OP_FLUSH 0x03 /* Flush disk contents */
VD_OP_GET_WCE 0x04 /* Get W$ status */
VD_OP_SET_WCE 0x05 /* Enable/Disable W$ */
VD_OP_GET_VTOC 0x06 /* Get VTOC */
VD_OP_SET_VTOC 0x07 /* Set VTOC */
VD_OP_GET_DISKGEOM 0X08 /* Get disk geometry */
VD_OP_SET_DISKGEOM 0x09 /* Set disk geometry */
VD_OP_GET_DEVID 0x0b /* Get device ID */
VD_OP_GET_EFI 0x0c /* Get EFI */
VD_OP_SET_EFI 0x0d /* Set EFI */
VD_OP_xxx 0x0e - 0xff /* reserved for 1.0 */

In addition, the following values are supported in version 1.1 of the vDisk protocol:
VD_OP_SCSICMD 0x0a /* SCSI control command */
VD_OP_RESET 0x0e /* Reset disk */
VD_OP_GET_ACCESS 0x0f /* Get disk access */
VD_OP_SET_ACCESS 0x10 /* Set disk access */
VD_OP_GET_CAPACITY 0x11 /* Get disk capacity */
VD_OP_xxx 0x12 - 0xff /* reserved for 1.1 */

As mentioned before, the vDisk server at the time of the initial attribute exchange will
specify the bit mask of operations it supports. If the server does not support a required
operation, it is up to the specific client implementation to decide whether it returns an error or
internally implements the operation. All operations can be optionally implemented by a
particular vDisk server implementation.

If an operation is supported by the server, the outcome of the operation will be always
available in the descriptor ring entry status field.

The ncookies and ldc_cookie fields refer to the segment of memory from/to which data is being
read/written. See sec 1.1.3.3 for more information about the LDC transport cookie.

29.2.3.1 Disks and slices

A vdisk server may export either an entire disk device, or a simple slice (or partition) of a
disk to a client as configured by the administrator. In the event that an entire disk is exported
to a client, it is client policy as to how it determines the partitioning information or re-
partitions that whole virtual disk.

To enable a server to potentially mount or examine a disk created by a client, the server
may elect to offer the VD_OP_GET/SET_VTOC operations to its client. If the client elects to
use these operations to retrieve partition information, the client when it reads or writes to the
disk must specify the slice being accessed - in this case the offset field for those transactions is
specified relative to the start of the referenced slice (not the start of the disk).

A client is not required to use the VTOC operations, and the server is not required to
support them. In either of these events, if the client wishes to use the disk exported by the
server it must read (and write - if re-partitioning) its own partition table at some client specific
location on the disk.

Page 242 of 293

Hypervisor API Revision 2.0
May 29, 2008

Attempts to mix reads and writes with get and set VTOC operations to read/manipulate
disk partition information have undefined results, and clients are required (though this may
only be optionally enforced by the server) to use a consistent approach to discovering or
modifying disk partition information.

The slice field is currently only used for VD_OP_BREAD and VD_OP_BWRITE. For all
other operations it is ignored, and should be set to zero. If the disk served is of type

VD_DISK_TYPE_SLICE the slice field is treated as reserved; i.e. must be set to zero, and
ignored by the consumer. For a VD_DISK_TYPE_DISK the slice field refers to the disk slice or
partition on which a specific operation is being done - the field only has meaning for disk
servers that export a GET_VTOC service so that clients know which slice corresponds to which
partition.

If the vDisk client does not use the VTOC service, it must specify a value of 0xff for the
slice field for read and write transactions so that the server knows that the offset specified is
the absolute offset relative to the start of a disk. Mixing read and write transactions to specific
slices together with absolute disk transactions has undefined results, and clients must not do
this. A client must close the disk channel and re-negotiate the vDisk service if it wishes to
switch between using slice based access (explicitly passing the value of the slice being
accessed) and absolute access (where slice is 0xff) when the server offers a disk type of
VD_DISK_TYPE_DISK.

29.2.3.2 VDisk Block Read command (VD_OP_BREAD)

This command performs a basic read of a block from the device service. The decriptor ring
entry for this command contains the offset and number of blocks to read together with the
LDC cookies for the data buffers.

Once completed the status field in the descriptor is updated with the completion status of
the operation.

29.2.3.3 VDisk Block Write command (VD_OP_BWRITE)

This command performs a basic write of a block from the device service. The decriptor
ring entry for this command contains the offset and number of blocks to write together with
the LDC cookies for the data buffers.

Once completed the status field in the descriptor is updated with the completion status of
the operation.

29.2.3.4 VDisk Flush command (VD_OP_FLUSH)

This command performs a barrier and synchronisation operation with the disk service.
There are no additional parameters in the decriptor entry for this command.

Before completing this command, the disk service will ensure that all previously executed
write operations are flushed to their respective disk devices, and all previously executed reads
are completed and their data returned to the client.

29.2.3.5 VDisk Get Write Cache enablement status (VD_OP_GET_WCE)

This command is used by a virtual disk client to query whether write-caching has been
enabled on the disk being exported by the vDisk server. The payload is a single 32 bit unsigned
integer. A value of 0 means write caching is not enabled, a value of 1 means write-caching is
enabled (a flush operation should be used as a barrier to ensure writes are forced to non-
volatile storage). All other values are reserved and have undefined meaning.

A Revision 2.0 Hypervisor API
May 29, 2008

29.2.3.6 VDisk Enable/Disable Write Cache (VD_OP_SET_WCE)

This command is used a virtual disk client to enable or disable the write cache on the disk
being exported by the vDisk server. The payload is a single 32 bit integer. A value of zero
disables writecaching on the server side. A value of 1 enables write caching on the server side.
All other values are reserved and are treated as errors by the vDisk server.

29.2.3.7 VDisk Get Volume Table of Contents (VD_OP_GET_VTOC)

This command is used to return information about the table of contents for the disk
volume a client is attached to. The successful result of this command includes the following
data structure being returned to the client in the buffer described by the LDC cookie(s) in the
descriptor ring.

The returned data structure has the following header format:

The volume name is an 8 character ASCII name for the volume.

The ASCII label is a 128 character ASCII label assigned to this disk volume. This is distinct
from the actual volume name.

The field sector_size is the size in bytes of each sector of the disk volume.

The field num_partitions is the number of partitions on this disk volume. The header
described above is immediately followed by the structure below repeated once for each of the
number of partitions specified by the header:

Reserved fields should be ignored.

29.2.3.8 VDisk Set Volume Table of Contents (VD_OP_SET_VTOC)

This command is used by a virtual disk client to set the table of contents for the disk
volume the client is attached to.

The supplied data structure has the same format as for the get VTOC command
(VD_OP_GET_VTOC). Reserved fields must be set to zero.

Page 244 of 293

 6 3 3 1 1
 3 2 1 6 5 0

 +----------------------------+----------------+--------------+
 word X+0: | reserved | perm flags |ID tag of part|
 +----------------------------+----------------+--------------+
 word X+1: | start block number of partition |
 +--+
 word X+2: | number of blocks in partition |
 +--+

 6 3 3 1 1
 3 2 1 6 5 0
 +--+
 word 0: | Volume name |
 +----------------------------+----------------+--------------+
 word 1: | reserved | num_partitions | sector_size |
 +----------------------------+----------------+--------------+
 word 2: | ASCII Label |
 +--+
 word 3: | ASCII Label continued |
 +--+

Hypervisor API Revision 2.0
May 29, 2008

29.2.3.9 VDisk Get Disk Geometry (VD_OP_GET_DISKGEOM)

This command is used to return the geometry information about the disk volume a client
is attached to. The successful result of this command includes the following data structure
being returned to the client in the buffer described by the LDC cookie(s) in the descriptor ring.

The returned data structure has the following format:

Byte offset Size in bytes Field name Description

0 2 ncyl Number of data cylinders

2 2 acyl Number of alternate cylinders

4 2 bcyl Cylinder offset for fixed head area

6 2 nhead Number of heads

8 2 nsect Number of sectors

10 2 intrlv Interleave factor

12 2 apc Alternative sectors per cylinder (SCSI only)

14 2 rpm Revolutions per minute

16 2 pcyl Number of physical cylinders

18 2 write_reinstruct Number of sectors to skip for writes

20 2 read_reinstruct Number of sectors to skip for reads

29.2.3.10 VDisk Set Disk Geometry (VD_OP_SET_DISKGEOM)

This command is used by a virtual disk client to set the geometry information for the disk
volume the client is attached to.

The supplied data structure has the same format as the get disk geometry command
(VD_OP_GET_DISKGEOM).

29.2.3.11 VDisk SCSI Command (VD_OP_SCSICMD)

This command is used to deliver a SCSI packet to the vDisk server. It is implementation
specific as to whether the server passes the received packet directly to a SCSI drive or whether
it chooses to simulate the SCSI protocol itself. A server must not advertise this command if it
does not support either capability.

The LDC cookie in the descriptor ring should point to the following data structure which
describes the command arguments. The same buffer is also used to return the result of the
command to the vDisk client.

The cstat field reports to the vDisk client the SCSI command completion status. SCSI
command completion status are described in the SCSI Architecture Model documents3.

A Revision 2.0 Hypervisor API
May 29, 2008

The sstat field reports to the vDisk client the SCSI command completion status of the SCSI
sense request. SCSI command completion status are described in the SCSI Architecture Model
documents3.

The sstat field is defined only if a SCSI sense buffer was provided and if the SCSI
command completion status indicates that sense data should be available.

The tattr field defines the task attribute of the SCSI command to execute. The possible
attributes are:

• 0x00 no task attribute defined

• 0x01 SIMPLE

• 0x02 ORDERED

• 0x03 HEAD OF QUEUE

• 0x04 ACA

Task attributes are defined in the SCSI Architecture Model documents3. The vDisk server
may ignore the task attribute.

The tprio field is a 4-bit value defining the task priority assigned to the SCSI command to
execute. The task priority is defined in the SCSI Architecture Model documents3. The vDisk
server may ignore the task priority.

The crn field is a command reference number (CRN). SCSI command reference numbers
are defined in the SCSI Architecture Model documents3. The vDisk server may ignore the
CRN.

The reserved field is reserved and should not be used.

The timeout field is the time in seconds that the vDisk server should allow for the completion of
the command. If it is set to 0 then no timeout is required.

Page 246 of 293

 6 4 4 4 3 3 3 2 2 1 1
 3 8 7 0 9 2 1 4 3 6 5 8 7 0
 +----------------+--------+--------+--------+--------+--------+--------+
word 0: | TIMEOUT |reserved| CRN | TPRIO | TATTR | SSTAT | CSTAT |
 +----------------+--------+--------+--------+--------+--------+--------+
word 1: | OPTIONS |
 +--+
word 2: | CDB LENGTH |
 +--+
word 3: | SENSE LENGTH |
 +--+
word 4: | DATA-IN SIZE |
 +--+
word 5: | DATA-OUT SIZE |
 +--+
word 6: | CDB DATA |
 : : :
word I: | |
 +--+
word I+1 | SENSE DATA |
 : : :
word J: | |
 +--+
word J+1: | DATA-IN |
 : : :
word K: | |
 +--+
word K+1: | DATA-OUT |
 : : :
word L: | |

 +--+

Hypervisor API Revision 2.0
May 29, 2008

The options field is a bitmask specifying options for the SCSI command to execute. The
possible bitmask values are:

• 0x01 (CRN)

This bitmask indicates that a command reference number (CRN) is specified in the
request.

• 0x02 (NORETRY)

This bitmask indicates that the vDisk server should not attempt any retry or other
recovery mechanisms if the SCSI command terminates abnormally in any way.

The Command Descriptor Block (CDB) length field is set by the vDisk client and indicates
the number of bytes available in the CDB field.

The sense length field is initially set by the vDisk client and indicates the number of bytes
available in the sense field for storing sense data for SCSI commands returning with a SCSI
command completion status indicating that sense data should be available. After the execution
of the SCSI command, the vDisk server sets the sense length field to the number of bytes
effectively returned in the sense field, or 0 if no sense data were returned.

The data-in size field is initially set by the vDisk client and indicates the number of bytes
available for data transfers to the data-in field. After the execution of the SCSI command, the
vDisk server sets the data-in size field to the number of bytes effectively transfered to the data-
in field, or 0 if no data were transfered.

The data-out size field is initially set by the vDisk client and indicates the number of bytes
available for data transfers from the data-out field. After the execution of the SCSI command,
the vDisk server sets the data-out size field to the number of bytes effectively transfered from
the data-out field, or 0 if no data were transfered.

The CDB field contains the SCSI Command Descriptor Block (CDB) which defines the
SCSI operation to be performed by the vDisk server. The structure of the CDB is part of the
SCSI Standart Architecture3. The size of the CDB field should be equal to the number of bytes
indicated by the vDisk client in the CDB length field rounded up to a multiple of 8 bytes.

The sense field contains sense data for SCSI commands returning with a SCSI command
completion status indicating that sense data should be available.. The structure of sense data is
described in the SCSI Primary Commands documents3. The size of the sense field should be
equal to the number of bytes indicated by the vDisk client in the sense length field rounded
up to a multiple of 8 bytes.

The data-in field contains command specific information returned by the vDisk server at
the time of command completion. The validity of the returned data depends on the SCSI
command completion status. The size of the data-in field should equal to the number of bytes
indicated by the vDisk client in the data-in size field rounded up to a multiple of 8 bytes.

The data-out field contains command specific information to be sent to the vDisk server.
The size of the data-out field should be equal to the number of bytes indicated by the vDisk
client in the dataout size field rounded up to a multiple of 8 bytes.

29.2.3.12 VDisk Get Device ID (VD_OP_GET_DEVID)

Device IDs1 are persistent unique identifiers for devices in Solaris, and provide a means for
identifying a device, independent of device's current name or instance number. This command
is used to return the device ID of a disk volume backing a virtual disk. A successful
completion of this command will result in the following data structure being returned to the
client in the buffer described by the LDC cookie(s) in the descriptor ring.

A Revision 2.0 Hypervisor API
May 29, 2008

The field devid contains the ID of the disk volume. The field length in the request should
be set to the size of the buffer allocated by the vdisk client for storing the device ID. The vdisk
server will then set it to the size of the returned devid in its response. The returned device ID
value will be truncated if the provided space is not large enough to store complete ID. The
field type specifies the type of device ID. Please refer to PSARC cases 1995/352, 2001/559,
2004/504, for a description of device IDs along and a list of the device ID type values.

29.2.3.13 VDisk Get EFI Data (VD_OP_GET_EFI)

This command is used to get EFI data for the disk volume a client is attached to. A
successful completion of this command will result in the following data structure with the EFI
data in the data field being returned to the client in the buffer described by the LDC cookie(s)
in the descriptor ring. The returned data structure has the following format:

The field LBA is the logical block address of the disk volume to get EFI data. Data returned
in the EFI data field is determined by the value specified in the LBA field:

• If LBA is equal to 1, then the vdisk server should return the GUID Partition Table Header
(GPT).

• If LBA is equal to the PartitionEntryLBA field from the GUID Partition Table Header,
then the vdisk server should return the GUID Partition Entry array (aka GPE).

If the EFI data buffer is not large enough to return the request data then the vdisk server
should return an error. The field length is the maximum number of bytes that can be stored in
the data field of the provided structure.

The format of the GUID Partition Table Header and GUID Partition Entry are beyond the
scope of this document and are defined in the Extensible Firmware Interface Specification2.

29.2.3.14 VDisk Set EFI Data (VD_OP_SET_EFI)

This command is used by a virtual disk client to set EFI data for the disk volume the client
is attached to. The supplied data structure has the same format as for the get EFI command
(VD_OP_GET_EFI).

The value of the LBA field determines the content of the EFI data field and the action taken
by the vdisk server.

• If LBA = 1, then the vdisk server should use the contents of the EFI data field to set the
GUID Partition Table Header (aka GPT).

Page 248 of 293

 6 4 4 3 3
 3 8 7 2 1 0
 +--------------+---+
 word 0: | reserved | type | length |
 +--------------+-------------+-------------------------------+
 word 1: | devid |
 +--+

 6
 3 0
 +--+
 word 0: | LBA |
 +--+
 word 1: | length |
 +--+
 word 2-N:| EFI data |
 +--+

Hypervisor API Revision 2.0
May 29, 2008

• If LBA is equal to the PartitionEntryLBA field from the GUID Partition Table Header,
then the vdisk server should the contents of the EFI data field to set the GUID Partition Entry
array (aka GPE).

The format of the GUID Partition Table Header and GUID Partition Entry are beyond the
scope of this document and are defined in the Extensible Firmware Interface Specification2.

29.2.3.15 VDisk Reset (VD_OP_RESET)

This command is used by the vDisk client to request the vDisk server to reset the disk or
device being exported by it. It is implementation independent as to whether the server
physically resets the underlying device or it chooses to only simulate a device reset.

Following a reset, any exclusive access rights or options that might have been set using the
VD_OP_SET_ACCESS operation should be cleared in a way similar to receiving a
VD_OP_SET_ACCESS operation with the CLEAR option.

In the event of a connection loss between the vDisk client and server, the vDisk server
should behave as if it has received a VD_OP_RESET operation. It should clear any exclusive
access rights or options set using the VD_OP_SET_ACCESS operation. A vDisk server
implementing the disk reset is required to complete the operation prior to reestablishing the
connection with the vDisk client.

29.2.3.16 VDisk Get Access (VD_OP_GET_ACCESS)

This command is used by the vDisk client to query whether it has access to the disk being
exported by the vDisk server. The response has a payload of a single 64 bit unsigned integer,
and may contain the following values:

• 0x00 (DENIED)

The access to the disk is not allowed.

• 0x01 (ALLOWED)

The access to the disk is allowed.

29.2.3.17 VDisk Set Access (VD_OP_SET_ACCESS)

This command is used by the vDisk client to request exclusive access to the disk being
exported by the vDisk server. The payload is a single 64 bit unsigned integer. It can either
contain a value of 0, or a bitmask of the following non-zero values:

• 0x00 (CLEAR)

The vDisk server should clear any exclusive access rights, and restore non-
exclusive, nonpreserved access rights. In particular, the vDisk server should relinquish
any exclusive access rights that have been acquired with the EXCLUSIVE flag, and
disable any mechanism to preserve exclusive access rights enabled with the
PRESERVE flag.

• 0x01 (EXCLUSIVE)

The vDisk server should acquire exclusive access rights to the disk. When the
vDisk server has exclusive access rights to the disk then any access to the disk from
another host should fail. If another host already has acquired exclusive access rights to
the disk then the vDisk server should fail to acquire exclusive access rights.

• 0x02 (PREEMPT)

A Revision 2.0 Hypervisor API
May 29, 2008

The vDisk server can forcefully acquire exclusive access rights to the disk. If
another host has already acquired exclusive access rights to the disk, then the vDisk
server can preempt the other host and acquire exclusive access rights.

• 0x04 (PRESERVE)

The vDisk server should try to preserve exclusive access rights to the disk. The
vDisk server should try to restore exclusive access rights if exclusive access rights are
broken via random events (for example disk resets). When restoring the exclusive
access rights, the vDisk server should not preempt any other host having exclusive
access rights to the disk.

The PREEMPT and PRESERVE flags are only valid when the EXCLUSIVE flag is set.

In the event of a connection loss between the vDisk client and server, the vDisk server
should perform the equivalent operation to a vDisk Reset Command (VD_OP_RESET)
received from the client, and exclusive access rights and options should be cleared.

If the vDisk client still requires exclusive access rights following a connection reset, then it
should send a new VD_OP_SET_ACCESS operation to the vDisk server and request exclusive
access.

29.2.3.18 VDisk Get Capacity (VD_OP_GET_CAPACITY)

This command is used to get information about the capacity of the disk volume export by
the vDisk server. A successful completion of this command will result in the following data
structure being returned to the client in the buffer described by the LDC cookie(s) in the
descriptor ring:

The vdisk_block_size field contains the length in byte of the logical block of the vDisk. The
vdisk_block_size should be the same value as the vdisk_block_size returned during the initial
handshake as part of the attribute exchange.

The vdisk_size field contains the size of the vDisk in blocks specified as a multiple of
vdisk_block_size.

If the vDisk server is unable to obtain the vDisk size, it should set the vdisk_size to -1.
Under these circumtances, the vDisk client can retry the operation later to check if the size is
available.

29.3 Virtual network protocol

This section describes the packet formats and protocol used for the virtual networking
infrastructure between logical domains.

29.3.1 Attribute information

During the initial handshake, as part of the CTRL/INFO/ATTR_INFO message, the
virtual network device will exchange information with the virtual switch and other vNetwork
devices about the transfer protocol, its address and MTU. The format of the attribute payload
is shown below:

Page 250 of 293

 6 3 3
 3 2 1 0
 +----------------------------+-------------------------------+
 word 0: | reserved | VDISK_BLOCK_SIZE |
 +----------------------------+-------------------------------+
 word 1: | VDISK_SIZE |
 +--+

Hypervisor API Revision 2.0
May 29, 2008

The sending client, be it a virtual network device and/or virtual switch will provide its
peer with the transfer mode, acknowledgment frequency, address, address type and MTU it
intends to use for sending network packets. The peer ACKs the attribute message if it agrees to
all the parameters.

Currently the only supported address type is:
VNET_ADDR_ETHERMAC 0x1 /* Ethernet MAC Address */

The addr field contains the mac address of the client sending the attribute information.

29.3.1.1 Multicast information

Virtual network devices can set/unset the multicast groups they are interested in to a
virtual network switch at any point after a succesful handshake and during normal data
transfer. Each packet sent by a vnet device is of type CTRL/INFO/MCAST_INFO.

VNET_MCAST_INFO 0x101 /* Multicast information */

If the set field is equal to '1', then the corresponding mcast addresses are being set by the vnet
device, or else the switch assumes that the specified address(es) are being removed. The peer
will ACK the info packet if it successfully registered or removed the specified multicast mac
addresses. If the multicast address was already set earlier or if the network device tries to unset
an address that was not set earlier, the virtual switch will NACK the request. The MCAST_ADDR
field can contain a max of VNET_NUM_MCAST=7 multicast addresses, where each address is
ETHERADDRL=6 bytes in length. The count field specifies the actual number of multicast addresses
in the packet.

29.3.2 vNet descriptors

Virtual network and switch device clients that use HV shared memory will send /
forward Ethernet frames by specifying the length of the data and the LDC memory cookie(s)
corresponding to the page(s) containing the frame in each descriptor. The descriptor payload
will be of the following format:

The nbytes field specifies the number of bytes being transmitted. The ncookies and
ldc_cookie fields refer to the segment of memory from/to which data is being read/written.

 6 3 3 1 1
 3 2 1 6 5 8 7 0
 +---------------------------+--------------+-------+---------+
 word 1: | SID | MCAST_INFO | I/A/N |TYPE_CTRL|
 +---------------------------+--------------+-------+---------+
 word 2: | MCAST_ADDR[0] | COUNT | SET |
 +--+-------+---------+
word 3-7: | MCAST_ADDR[1-6] |
 +--+

 6 3 3 1 1
 3 2 1 6 5 8 7 0
 +----------------------------+-----------+---------+---------+
 word 1: | SID | ATTR_INFO | I/A/N |TYPE_CTRL|
 +----------------------------+-----------+---------+---------+
 word 2: | reserved | ACK_FREQ |ADDR_TYPE|XFER_MODE|
 +----------------------------+-----------+---------+---------+
 word 3: | ADDR |
 +--+
 word 4: | MTU |
 +--+

A Revision 2.0 Hypervisor API
May 29, 2008

In the current implementation, since each request/payload contained within a descriptor
corresponds to an Ethernet frame being transmitted by either a vNet or vSwitch device, the
vNet and vSwitch will register the descriptor ring as a transmit ring. Future implementations
of the protocol might use the descriptor rings as receive rings.

29.3.3 Virtual LAN (VLAN) support

The VIO protocol for virtual network and switch devices will be extended in version 1.3 to
include support for virtual LANs (VLANs) as specified by the IEEE 802.1Q4 specification. A
VLAN aware network or switch device will be capable of sending, receiving or switching
ethernet frames that contain a VLAN tagged header. If a network/switch device negotiates
version 1.3 or higher with its peer, the MTU size it specifies in the attribute info message (sec
1.1.7.1) should correspond to the size of a tagged ethernet frame. Similarly, if a peer negotiates
version 1.2 or lower, sending/receiving tagged frames can result in undefined behavior
including the frames being dropped.

29.3.4 Network Device Resource Sharing via DDS

The VIO DDS control message provides the capability to share device resources between
VIO device peers. The DDS framework will be primarily used by a vSwitch device to share the
underlying physical network device's resources with a vNet device.

All DDS messages for vNet and vSwitch devices will contain a class field that uniquely
identifies the type of device from which the resources are being shared. In version v1.3 of the
VIO protocol, the vNet device will define a new DDS message class DDS_VNET_NIU for
sharing the resources of a Niagara-2 NIU device.

DDS_VNET_NIU 0x10 /* NIU vNet class */

Each DDS message of class VNET_NIU sent by a vSwitch or a vNet will contain a
subclass field that specifies the requested operation. The DDS subclass values for a
VNET_NIU class are:

DDS_VNET_ADD_SHARE 0x1 /* Add a device share */
DDS_VNET_DEL_SHARE 0x2 /* Delete a device share */
DDS_VNET_REL_SHARE 0x3 /* Release a device share */
DDS_VNET_MOD_SHARE 0x4 /* Modify a device share */

The DDS_VNET_(ADD/DEL/REL)_SHARE messages subclasses are used when adding
or deleting a resource to a domain or releasing a resource from a domain.

The ADD_SHARE message is used by the vSwitch device to add a virtual region resource
uniquely identified by its cookie to a vNet device identified by its macaddr. The DEL_SHARE
message is similarly used by the vSwitch to remove a virtual region resource that was
previously added using the ADD_SHARE operation. The REL_SHARE message is used by the
vNet device to inform the vSwitch device that it is no longer using a previously added shared
resource. The vSwitch on receiving a REL_SHARE message can reclaim and reassign the
resource to another vNet. A vNet device should not attempt to use a resource that it had
previously released via the REL_SHARE operation. The message format for the add, delete
and release operations is identical and is shown below:

Page 252 of 293

 6 3 3
 3 2 1 0
 +-------------------------------+----------------------------+
 | ncookies | nbytes |
 +--+
 | ldc_cookie * ncookies |
 +--+

Hypervisor API Revision 2.0
May 29, 2008

The resource modification operation allows a vSwitch device to modify the contents of a
shared virtual region. In addition to the macaddr and cookie fields, the message also contains
a updated map of TX and RX resources assigned to the virtual region resource. The format of
the modify message is shown below:

In addition to the different CTRL/INFO/DDS_INFO request messages, the vNet and
vSwitch devices will also ACK and NACK all received DDS requests. The ACK and NACK
responses will contain a STATUS field that specify the outcome of the requested operation.
The format of the ACK/NACK response message is below:

The currently defined ACK and NACK status values are:
DDS_VNET_SUCCESS 0x0 /* Operation was successful */
DDS_VNET_FAIL 0x1 /* Operation failed */

 6 4 4 3 3 1 1
 3 8 7 2 1 6 5 8 7 0
 +----------------------------+------------+------------+---------+
word 1: | SID | DDS_INFO | INFO |TYPE_CTRL|
 +----------------------------+------------+------------+---------+
word 2: | DDS_REQUEST_ID | reserved | MOD_SHARE |VNET_NIU |
 +--------------+-------------+------------+------------+---------+
word 3: | reserved | MACADDR |
 +--------------+---+
word 4: | COOKIE |
 +--+
word 5: | TX_RES_MAP |
 +--+
word 6: | RX_RES_MAP |
 +--+

 6 3 3 1 1
 3 2 1 6 5 8 7 0
 +----------------------------+----------+-------------+---------+
word 1: | SID | DDS_INFO | A/N |TYPE_CTRL|
 +----------------------------+----------+-------------+---------+
word 2: | DDS_REQUEST_ID | reserved |A/D/R/M_SHARE|VNET_NIU |
 +----------------------------+----------+-------------+---------+
word 3: | STATUS |
 +---+

 6 4 4 3 3 1 1
 3 8 7 2 1 6 5 8 7 0
 +----------------------------+------------+------------+---------+
word 1: | SID | DDS_INFO | INFO |TYPE_CTRL|
 +----------------------------+------------+------------+---------+
word 2: | DDS_REQUEST_ID | reserved |A/D/R_SHARE |VNET_NIU |
 +--------------+-------------+------------+------------+---------+
word 3: | reserved | MACADDR |
 +--------------+---+
word 4: | COOKIE |
 +--+

A Revision 2.0 Hypervisor API
May 29, 2008

Page 254 of 293

Hypervisor API Revision 2.0
May 29, 2008

30 Domain services

30.1 Overview

In a Logical Domain environment the ability to discover whether a guest operating system
has various capabilities, and be able to remotely direct it to perform various operations is
important. Similarly it is equally important for a guest operating system to be able to discover
and communicate with its various support services.

Specifically, each guest domain can offer a number of capabilities to its service entity, and
similarly the service entity can offer a set of capabilities for use by the guest domain.

Capabilities may include things such as the ability to perform dynamic reconfiguration, or
be directed to perform a graceful shutdown or reboot by a service entity.

As a domain transitions through various operational phases, (for example while booting)
its capabilities may change. The capabilities of a simple guest OS like OpenBoot are not the
same as those of a full blown operating system such as Linux or Solaris. Similarly services that
are offered to a domain by its service entity/entities may come and go if, for example, a service
processor re-boot occurs.

Consequently it is a requirement that the mechanism for capability discovery and
communication must be able to cope with the dynamic nature of both a guest domain and its
service entities.

This section describes the protocol by which a guest OS may register its capabilities with
its service entity/entities, and vice-versa. The registration process includes independent
version negotiation between client and service for each capability

Once a capability has been registered, the domain services protocol then provides a data
transport for client and service to communicate directly with each other independently of
other capability services which may be using the same channel.

30.1.1 Communication Stack

The domain services (DS) mechanism is layered on top of domain channels to facilitate
communication between a guest domain and its service entities. The reliable mode protocol of
the Logical Domain Channel (LDC) framework is leveraged to ensure in-order guaranteed
packet delivery as well as detection of faults on the communication channel - including loss of
connection due to, say, the communication peer crashing or re-booting.

On top of the LDC reliable protocol the DS protocol handles the registration of provider
capabilities with their consumer(s), and subsequently the routing of data messages for those
registered capabilities.

The content of transported messages is specific to the higher-level protocol between the
particular DS service and its client. The DS communication stack is illustrated in figure 1.

Figure 1: Communication Stack

...

LDC Reliable Datagram Layer

Domain Services Layer

Capability
Provider

Capability
Consumer

A Revision 2.0 Hypervisor API
May 29, 2008

By analogy, just as LDC provides a low level transport, like IP, the domain services
protocol provides a name service and connection transport protocol, like TCP, to facilitate
communication between a capability provider and its consumer.

Messages for a set of registered capabilities are multiplexed over a shared LDC channel.
This basic communication flow is illustrated in Figure 2.

Figure 2: Domain Services Communication Path Example

Page 256 of 293

vBSC/LDM

LDC LDC domain-shutdown

dr-cpu

md-updateds

...

Hypervisor

Service Entity Guest Domain

Hypervisor API Revision 2.0
May 29, 2008

30.2 Domain Services Protocol

30.2.1 Definitions

Unless otherwise stated, each of the fields and sizes specified herein are given in bytes
(octets). Byte ordering for multi-byte fields is network byte order (big-endian). All variable
length character array definitions are assumed to be NUL terminated sequences of ASCII
values, with a maximum length (including the terminating NUL) less than or equal to the
constant MAX_STR_LEN, defined as:

MAX_STR_LEN 1024 /* MAXPATHLEN */

30.2.2 DS Message Header

All DS messages consist of a fixed sized header followed by a variable length data
payload. The header format is as follows;

Offset Size Field name Description

0 4 msg_type Message type

4 4 payload_len Payload length

The data payload content is defined according to the msg_type field.

30.2.3 DS protocol fixed message types

The DS protocol always supports three message types and payloads, as described below,
independent of the current version of the protocol. The type-specific payload is described
below each type.

The message types described in this section are intended for version negotiation of the
basic DS protocol. All other message types are undefined until the DS protocol version has
been negotiated.

The underlying LDC reliable protocol layer will ensure error-free packet delivery, so
corrupted packets will already have been dropped. However, receipt of unknown packet types
may still occur as a result of bugs or due to malicious guest OS behavior. Upon the receipt of
an unknown or undefined (for the currently negotiated DS protocol version) packet type, the
recipient should discard the datagram, and close the LDC channel. This action resets the
domain services channel connection. Re-opening the channel again should ensure complete
end-to-end protocol negotiation and re-registration of capabilities.

30.2.4 Initiate DS connection

 msg_type:
DS_INIT_REQ 0x0

Payload:

Offset Size Field name Description

0 2 major_vers Requested major number

2 2 minor_vers Requested minor number

A Revision 2.0 Hypervisor API
May 29, 2008

30.2.5 Initiation acknowledgment

 msg_type:
DS_INIT_ACK 0x1

Payload:

Offset Size Field name Description

0 2 minor_vers Highest supported minor version

30.2.6 Initiation negative acknowledgment

msg_type:
DS_INIT_NACK 0x2

Payload:

Offset Size Field name Description

0 2 major_vers Alternate supported major version

30.2.7 DS protocol version negotiation

The DS protocol negotiation involves a countdown algorithm in an attempt to agree on a
common major number. Major numbers correspond to incompatible changes; both sides must
agree on a major version number for the version negotiation to proceed. As part of agreeing on
a major number agreement, each side learns of the other's highest supported corresponding
minor number. Minor numbers correspond to back-compatible changes; the two sides
implicitly agree to use the lower of the two minor numbers exchanged, and the negotiation is
successfully completed.

Specifically, the negotiation is initiated by the guest sending the DS_INIT_REQ message to
the service entity listening on the other end of the domain channel. This message includes
major and minor version numbers supported by the guest.

If the service entity can't support the major version number sent from the guest, it
responds with the DS_INIT_NACK message, specifying the closest major version number it
can support. The guest can then initiate a new negotiation if it wants (i.e. if it can support the
alternate major number returned by the service entity). However, if the service entity's
DS_INIT_NACK message includes a major number of zero, the service entity should assume
that the guest does not support any version of the DS protocol in common with it.

If the major number sent in the DS_INIT_REQ message is one the service entity supports,
it returns a DS_INIT_ACK message specifying the highest minor number of the protocol
version it supports. Since minor number changes correspond to compatible protocol changes,
once the guest receives the DS_INIT_ACK message, both sides can communicate using the
version of the protocol corresponding to the major number agreed to, and the lower of the two
minor numbers exchanged The version negotiation is now successfully completed.

Page 258 of 293

Hypervisor API Revision 2.0
May 29, 2008

30.3 DS protocol version 1.0

30.3.1 Service Handles

A service handle (svc_handle) is an opaque 64 bit descriptor that uniquely identifies an
instance of a service. It is analogous to a TCP port number, and is specified as part of the
DS_REG_REQ message (described in section 30.3.4.1), sent to begin the
negotiation/registration process for a capability. It is used during this phase to identify the
specific negotiation in progress (there could be more than one). Once a capability has been
registered, it is used to identify the entity to be notified on receipt of a message. Similarly,
when a capability sends a message to a client, the handle identifies the sender. It also identifies
the target service during the unregistration process.

30.3.2 Service Identifier

The DS_REG_REQ message also specifies a service identifier (svc_id), a NUL-terminated
character string naming the service. The format and restrictions on the svc_id string are
identical to the PROP_STR type's data field as defined in the Machine Description
Specification [md].

30.3.3 Result Codes

Some of the response message types defined herein include a result field in their payload
to indicate a reason for failure. The complete list of such failure codes is presented here. The
definition of each is included in the section describing the response message type to which it
belongs.

DS_REG_VER_NACK 0x1
DS_REG_DUP 0x2
DS_INV_HDL 0x3
DS_TYPE_UNKNOWN 0x4

30.3.4 DS Message types defined for v.1.0 of the DS protocol

30.3.4.1 Register Service

msg_type:
DS_REG_REQ 0x3

Payload:

Offset Size Field name Description

0 8 svc_handle Service handle

8 2 major_vers Requested major version

10 2 minor_vers Requested minor version

12 Variable length svc_id Service name

30.3.4.2 Register Acknowledgment

msg_type:
DS_REG_ACK 0x4

Payload:

A Revision 2.0 Hypervisor API
May 29, 2008

Offset Size Field name Description

0 8 svc_handle Service handle sent in DS_REG_REQ

8 2 minor_vers Highest supported minor version

30.3.4.3 Register Failed

msg_type:
DS_REG_NACK 0x5

Payload:

Offset Size Field name Description

0 8 svc_handle Service handle sent in DS_REG_REQ

8 8 result Reason for the failure

16 2 major_vers Alternate supported major version

A DS_REG_NACK message can return the following result codes:
DS_REG_VER_NACK Cannot support requested major version
DS_REG_DUP Duplicate registration attempted

30.3.4.4 Unregister Service

msg_type:
DS_UNREG 0x6

Payload:

Offset Size Field name Description

0 8 svc_handle Service handle to unregister

30.3.4.5 Unregister OK

msg_type:
DS_UNREG_ACK 0x7

Payload:

Offset Size Field name Description

0 8 svc_handle Service handle sent in DS_UNREG

Page 260 of 293

Hypervisor API Revision 2.0
May 29, 2008

30.3.4.6 Unregister Failed

msg_type:
DS_UNREG_NACK0x8

Payload:

Offset Size Field name Description

0 8 svc_handle Service handle sent in DS_UNREG

1.1.1.1 Data Message

msg_type:
DS_DATA 0x9

Payload:

Offset Size Field name Description

0 8 svc_handle Service handle that is the destination of the data message

Note: The ds_data_handle_t header is defined so that when combined with the basic DS
header the final payload delivered a service is aligned on a 64bit boundary with regard to the
entire DS datagram delivered by LDC.

This alignment is to enable an implementation to potentially utilize an optimized copy
when/if creating a message buffer for the final destination service.

1.1.1.2 Data Error

msg_type:
DS_NACK 0xa

Payload:

Offset Size Field name Description

0 8 svc_handle Service handle sent in DS_DATA

8 8 result Reason for failure

A DS_NACK message can return the following result codes:
DS_INV_HDL Service handle not valid
DS_TYPE_UNKNOWN Unknown msg_type received

30.3.5 DS Capability Version Negotiation & Registration

Version negotiation for DS capabilities utilizes exactly the same countdown algorithm as
used in the DS Protocol version negotiation, with the same semantics for major & minor
numbers, and corresponding message types for implementation. The details of that portion of
the protocol are not repeated here.

The registration process is the way in which DS capabilities advertise their availability. A
registration is initiated by the service sending a DS_REG_REQ message containing both a
service handle and a service identifier.

A Revision 2.0 Hypervisor API
May 29, 2008

In response to a successful registration, the other side sends back a DS_REG_ACK
message that includes the same service handle provided in the original message. Until this
response is received, the DS service interface for this client is not available.

A DS_REG_NACK message is returned if the protocol major version numbers do not
match (result: DS_REG_VER_NACK) or if a service with the same service ID is already
registered (result: DS_REG_DUP).

This negotiation/registration handshake must occur whenever the underlying LDC comes
up. If there is an event that causes the LDC to go down, all services are automatically
unregistered. When the channel comes back up, all services must therefore re-register
themselves.

30.3.6 Service Requests

Once the registration handshake has occurred, a DS client can send data messages to any
of the registered servers by sending a DS_DATA message.

The data message payload includes the 'svc_handle' of the service that is the intended
recipient of the message. Following that is any service-specific payload; the 'payload_len'
field of the header is the length of the entire payload.

The final recipient of the message payload does not receive the DS header or the
svc_handle. It only receives the remainder of the payload and an indication of the length of
that portion of the payload.

If there is an error in the message that results in the inability of DS to forward the message
to the intended recipient, a DS_NACK reply message is sent back with an error indication of
either DS_INV_HDL (invalid svc_handle) or DS_TYPE_UNKNOWN (unknown msg_type
received) in the result field. Note that the original payload is not returned.

If the message is forwarded all the way to the service successfully, the higher level
protocol implemented by that service determines what if any reply message is sent.

30.3.7 Unregistration

In the event that a capability becomes unavailable, such as if the kernel module that
provides it is unloaded, a DS_UNREG message is sent.

The 'svc_handle' field of the DS header is filled with the service handle that uniquely
identifies the registered service. There is no payload to this message.

Once the first message is received, the service handle is invalidated and connections to
that service are closed.

If the DS LDC channel goes down, all registered services are forced to the unregistered
state by one or both sides that are still running. Before a service can be used again, both the DS
infrastructure handshake and the service registration handshake must be re-negotiated.

Service handles should not be reused after a service is unregistered. This prevents
successful use of a stale handle. Service handles may be re-used after the basic LDC connection
is taken down and then up, and the overall DS framework is reset as a result.

30.4 DS Capabilities

A DS capability is defined as any service provided by one subsystem on behalf of another.
Capabilities are based on functionality rather than software module boundaries. Thus, a
module can register multiple capabilities if it provides multiple features that are logically
grouped together. Associated with a capability are a service identifier and a service handle.

Page 262 of 293

Hypervisor API Revision 2.0
May 29, 2008

The following sections describe the core DS capabilities supported in a Logical Domain
environment.

A Revision 2.0 Hypervisor API
May 29, 2008

30.5 MD Update Notification version 1.0

The MD update capability allows a service entity to notify a guest when the entity has
modified the guest's Machine Description. It is the responsibility of the MD update capability
to parse the new MD, determine what has changed, and initiate the steps required to adjust the
guest configuration accordingly. The exact steps taken upon receiving an MD update
notification may vary depending on the type of guest running in the domain.

30.5.1 Service ID

The following service ID should should be added to the Domain Services registry for the
MD Update capability.

Service ID Description

"md-update" Notification of MD updates

30.5.2 MD Update Request

Payload:

Offset Size Field name Description

0 8 req_num Request number

The req_num field is used to match up request & response messages; the same number is
used in the request and its associated response; the value itself is opaque to the clients of the
protocol.

30.5.3 MD Update Response

Payload:

Offset Size Field name Description

0 8 req_num Request number

8 4 result Result of operation

/* MD update result */
MD_UPDATE_SUCCESS 0x0
MD_UPDATE_FAILURE 0x1
MD_UPDATE_INVALID_MSG 0x2

Page 264 of 293

Hypervisor API Revision 2.0
May 29, 2008

30.6 Domain Shutdown version 1.0

The Domain Shutdown capability allows a service entity to send a DS_DATA message
requesting a guest to gracefully shutdown. The response indicates whether the request was
successful (i.e. initiation of shutdown has occurred). If the request is denied, the response can
include an informational message, encoded as a NUL-terminated ASCII string, describing the
reason for denying the request (e.g. something like “DR in progress”).

30.6.1 Service ID

The following service ID should should be added to the Domain Services registry for the
Domain Shutdown capability.

Service ID Description

"domain-shutdown" Request a graceful shutdown

30.6.2 Domain Shutdown Request

Offset Size Field name Description

0 8 req_num Request number

8 4 ms_delay ms. to delay

ms_delay specifies a time delay in milliseconds before initiation of the shutdown
operation.

30.6.3 Domain Shutdown Response

Offset Size Field name Description

0 8 req_num Request number

8 4 result Result of operation

12 Variable reason ASCII String (NUL terminated)

reason is a NUL-terminated ASCII string.
/* Domain shutdown result */
DOMAIN_SHUTDOWN_SUCCESS 0x0
DOMAIN_SHUTDOWN_FAILURE 0x1
DOMAIN_SHUTDOWN_INVALID_MSG 0x2

A Revision 2.0 Hypervisor API
May 29, 2008

30.7 Domain Panic version 1.0

The Domain Panic capability allows a service entity to send a DS_DATA message
requesting a guest to panic and cause a crash dump to be created. The response indicates
whether the request was successful (i.e. initiation of panic processing has occurred). If the
request is denied, the response can include an informational message, encoded as a NUL-
terminated ASCII string, describing the reason for denying the request (e.g. something like
“DR in progress”).

30.7.1 Service ID

The following service ID should should be added to the Domain Services registry for the
Domain Panic capability.

Service ID Description

"domain-panic" Request a panic

30.7.2 Domain Panic Request

Offset Size Field name Description

0 8 req_num Request number

30.7.3 Domain Panic Response

Offset Size Field name Description

0 8 req_num Request number

8 4 result Result of operation

12 Variable reason ASCII String (NUL terminated)

reason is a NUL terminated ASCII string.
/* Domain panic result */
DOMAIN_PANIC_SUCCESS 0x0
DOMAIN_PANIC_FAILURE 0x1
DOMAIN_PANIC_INVALID_MSG 0x2

Page 266 of 293

Hypervisor API Revision 2.0
May 29, 2008

30.8 CPU DR Version 1.0

The ability to add or remove virtual CPUs from a logical domain is driven from the LDom
manager through this domain service.

30.8.1 Service ID

The following service ID should should be added to the Domain Services registry for the
CPU DR capability.

Service ID Description

"dr-cpu" Dynamic reconfiguration for virtual CPUs

Each DR service message consists of a fixed message header and packet payload as
described below. The overall payload length is determined by subtracting the size of the CPU
DR message header (4 bytes) from the entire domain services packet size.

30.8.2 CPU DR Message Header

All CPU DR messages begin with the same header. The payload that follows the header is
specific to a particular message type.

Offset Size Field name Description

0 8 req_num Request number

8 4 msg_type Message type

12 4 num_records Number of records for message

The overall CPU DR protocol consists of a command sent to the client guest that then
responds with a reply indicating the overall success of the request. An error response indicates
that the operation was not attempted due to an invalid request. An OK response indicates that
the requested operation was attempted and the response record for each cpu indicates the
effect of the attempt for that particular cpu.

The message types identify either a request or a response to a request.

30.8.3 Message types

The following constants are defined for CPU DR domain service command identifier
values:

Request message types:

Type Value ASCII
value

Definition

DR_CPU_CONFIGURE 0x43 'C' Configure new CPU(s)

DR_CPU_UNCONFIGURE 0x55 'U' Unconfigure CPU(s)

DR_CPU_FORCE_UNCONFIG 0x46 'F' Forcibly Unconfigure CPU(s)

DR_CPU_STATUS 0x53 'S' Request the status of CPU(s)

Response message types:

A Revision 2.0 Hypervisor API
May 29, 2008

Type Value ASCII
value

Definition

DR_CPU_OK 0x6f 'o' Request completed OK

DR_CPU_ERROR 0x65 'e' Request failed (not attempted)

30.8.3.1 CPU DR Request records payload

The CPU DR requests all use the same message payload format, which is a list of records
of virtual CPU IDs within a guest. The number of records of IDs is specified by the
num_records field in the packet header. Each ID is given as a single 4 byte value:

The payload layout is as follows:

Offset Size Field name Description

0 4 id0 Virtual CPU ID

4 4 id1 Virtual CPU ID

8 4 id2 Virtual CPU ID

... etc.

Note: IDs should be provided in ascending numerical order, and should not be duplicated.
An implementation may not assume that IDs are arranged in a specific order, and may not
assume that IDs are not duplicated.

30.8.3.2 Request number

The request number in the message header is a monotonically increasing number that
uniquely identifies each request message.

Responses to requests are expected to use the same request number so that they can be
paired with their original request.

New requests may be issued without waiting for a response to a preceding request. The
underlying transport protocol is responsible to ensure reliable, in-order and un-duplicated
message packets.

Requests are to be processed in the order received.

30.8.3.3 CPU_CONFIGURE request

This command requests that a guest providing this service attempt to configure and bring
online a set of CPUs that have been dynamically reconfigured into the guest's logical domain.
The response to this request indicates success of failure for each individually specified CPU.

Before a configure request, a CPU must be part of the logical domain in the hypervisor
and must be present in the guest's Machine Description. If either of these conditions is not
satisfied, the configure response will indicate that the particular CPU is in the
DR_CPU_STAT_NOT_PRESENT state. No other assumptions may be made about the state of
the CPU before a configure request. In particular, attempts to configure a CPU already in the
configured state must succeed.

If the guest provides a service for registering a Machine Description update, that update
notification must be provided to the guest prior to the configure request being given.

Page 268 of 293

Hypervisor API Revision 2.0
May 29, 2008

After a successful configure request, a CPU is in the configured state, which means that it
is available for general use by the guest. The CPU enters the guest from the HV by means of
the CPU_START hypervisor API (FWARC 2005/116). Further steps required to reach the
configured state is guest operating system specific. See [dr] for details on the Solaris specific
implementation of the configure request.

30.8.3.4 CPU_UNCONFIGURE request

This command requests that a guest take offline and unconfigure the specified set of
CPUs. The response to this request indicates success or failure for each individually specified
CPU.

Before an unconfigure request, a CPU must be part of the logical domain in the hypervisor
and must be present in the guest's Machine Description. If either of these conditions are not
satisfied, the unconfigure response will indicate that the particular CPU is in the
DR_CPU_STAT_NOT_PRESENT state. No other assumptions may be made about the state of
the CPU before an unconfigure request. In particular, attempts to unconfigure a CPU already
in the unconfigured state must succeed.

After a successful unconfigure request, the CPU is in the unconfigured state, which means
that it is no longer available for general use by the guest operating system. The CPU is still part
of the logical domain in the hypervisor and is still present in the guest's Machine Description.
The CPU enters the HV from the guest by means of the CPU_STOP hypervisor API (FWARC
2005/116). Further steps required to reach the unconfigured state is guest operating system
specific. See [dr] for details on the Solaris specific implementation of the unconfigure request.

If the guest provides a service for registering a Machine Description update, that update
notification will be provided only after steps have been taken to remove the CPU from the
logical domain in the hypervisor and from the guest's Machine Description.

30.8.3.5 CPU_FORCE_UNCONFIG request

This request is equivalent to CPU_UNCONFIGURE in that it requests that a guest take
offline and unconfigure the specified set of CPUs. In addition however, the guest may choose
to implement an override to conditions that may have caused failure for any step of a
CPU_UNCONFIGURE operation.

Note: For example, whereas Solaris may elect to fail a CPU_UNCONFIGURE for a CPU to
which certain processes are bound, it may elect to override and unbind those processes in
response to the CPU_FORCE_UNCONFIG request in order to complete the unconfigure or
offline operation. Such policy decisions are guest operating system specific.

The response to this request indicates success or failure for each individually specified
CPU.

If the guest provides a service for registering a Machine Description update, that update
notification will be provided only after steps have been taken to remove the CPU from the
logical domain in the hypervisor and from the guest's Machine Description.

30.8.3.6 CPU_STATUS

This command requests the configuration status of specific CPU(s). The response to this
request is guest policy specific and is provided upon this request for informational purposes.

A Revision 2.0 Hypervisor API
May 29, 2008

30.8.4 CPU DR OK response payload

The CPU_DR_OK response uses the following format. The response header is followed by
an array of num_records status reports, one for each CPU included in the command request.
Each status report provides information on the result of the requested operation.

The data payload length can be computed from the overall packet length minus the
header length and minus the total size of the num_records status report records.

Following the array of status reports is a variable length data section that may be used to
hold additional string information specific to a particular CPU. Each status report contains an
offset into that data section identifying an additional human readable NUL terminated ASCII
string when relevant. The offset is specified as the byte offset into the string data section
relative to the first byte of the overall CPU DR packet header. The domain services header
indicates the overall CPU DR packet length.

The CPU status reports have the following format:

Offset Size Field name Description

0 4 cpu_id Virtual CPU ID

4 4 result Result of the operation

8 4 status Status of the CPU

12 4 string_off String offset relative to start of CPU DR response packet

30.8.4.1 CPU DR OK Result codes

The result field in the per CPU DR OK response record details the result of the requested
operation on the specified CPU within each status record of the CPU DR OK response.

The result codes are defined as follows

Name Value Definition

DR_CPU_RES_OK 0x0 Operation succeeded

DR_CPU_RES_FAILURE 0x1 Operation failed

DR_CPU_RES_BLOCKED 0x2 Operation was blocked

DR_CPU_RES_CPU_NOT_RESPONDING 0x3 CPU was not responding

DR_CPU_RES_NOT_IN_MD 0x4 CPU not defined in MD

For DR_CPU_UNCONFIGURE the result code DR_CPU_RES_BLOCKED is equivalent to
DR_CPU_RES_FAILURE except that the guest is indicating that the operation may succeed
with a subsequent DR_CPU_FORCE_UNCONFIG operation.

30.8.4.2 CPU DR OK status codes

The status field in the per CPU DR OK response record details the resulting status of the
specified CPU after the requested operation.

The status codes are defined as follows

Name Value Definition

DR_CPU_STAT_NOT_PRESENT 0x0 CPU ID does not exist even in MD

Page 270 of 293

Hypervisor API Revision 2.0
May 29, 2008

Name Value Definition

DR_CPU_STAT_UNCONFIGURED 0x1 CPU ID exists in MD, but CPU is not configured for
use by guest

DR_CPU_STAT_CONFIGURED 0x2 CPU is configured for use by the guest.

30.8.4.3 CPU DR OK response string

Each response record may optionally include a human readable string so that the guest
may return a NUL terminated ASCII string relevant to each CPU with regard to the requested
operation.

If no string is provided the string_off field in the response record for a cpu has the
value of zero.

30.8.5 CPU DR Error response

The message type DR_CPU_ERROR is returned as a response to a malformed request
message. No additional payload is provided with this message type.

A Revision 2.0 Hypervisor API
May 29, 2008

30.9 VIO DR service version 1.0

This service provides ability for the logical domain manager to request the addition or
removal of virtual devices. The service is called Virtual I/O Dynamic Reconfiguration (VIO
DR).

This mechanim - if supported by the guest operating system in a virtual machine - allows
the logical domain manager to remotely reconfigure the virtual IO resources provided by and
used by a guest domain without that guest domain needing to be rebooted to “discover” those
resources.

30.9.1 Service ID

The following service ID if exported by a guest domain indicates that the guest supports
VIO DR and the domain service described in this section.

Service ID Description

"dr-vio" Dynamic Reconfiguration for virtual I/O devices

30.9.2 Message format

Offset Size Field name Description

0 8 req_num Request number

8 8 dev_id Device ID

16 4 msg_type Message type

20 Variable name Device name

30.9.3 Message types

The message type (msg_type) field contains a value indicating the type of operation being
requested. The following constants are defined for VIO DR Domain Service as message type
values:

Type Value ASCII Definition

DR_VIO_CONFIGURE 0x494f43 'IOC' Configure a new device

DR_VIO_UNCONFIGURE 0x494f55 'IOU' Unconfigure a device

DR_VIO_FORCE_UNCONFIG 0x494f46 'IOF' Forcibly unconfigure a device

DR_VIO_STATUS 0x494f53 'IOS' Request the status of a device

30.9.3.1 DR_VIO_CONFIGURE request

This command requests that a guest providing this service attempt to configure and bring
online a virtual I/O device that has been dynamically added or configured into the logical
domain. The response to this request indicates success or failure for this attempt.

Before a configure request, the selected device must be part of the logical domain's
machine description. No other assumptions may be made about the state of the device before
a configure request. In particular, attempts to configure a device already in the configured
state must succeed. This service supports adding new virtual IO devices under the channel-
devices node of the MD, but not directly under its parent, the virtual-devices node.

Page 272 of 293

Hypervisor API Revision 2.0
May 29, 2008

If the guest registers a service for notifying it of a Machine Description update, that update
notification must be provided to the guest prior to the configure request being given.

After a successful configure request, the device is in the configured state, which means
that it is available for general use by the guest. Further steps required to reach the configured
state is guest operating system specific.

30.9.3.2 DR_VIO_UNCONFIGURE request

This command requests that a guest take offline and unconfigure the specified device. The
response to this request indicates success or failure of the request.

Before an unconfigure request, a device must be part of the logical domain's machine
description. No other assumptions may be made about the state of the device before an
unconfigure request. In particular, attempts to unconfigure a device already in the
unconfigured state must succeed.

After a successful unconfigure request, the device is in the unconfigured state, which
means that it is no longer available for general use by the guest operating system. The device is
still present in the guest's Machine Description. The steps required to reach the unconfigured
state is guest operating system specific.

If the guest provides a service for registering a Machine Description update that update
notification will be provided only after steps have been taken to remove the device from the
logical domain in the hypervisor and from the guest's Machine Description.

30.9.3.3 DR_VIO_FORCE_UNCONFIG request

This request is equivalent to DR_VIO_UNCONFIGURE in that it requests that a guest take
offline and unconfigure the specified device. In addition however, the guest may choose to
implement an override to conditions that may have caused failure for any step of a
DR_VIO_UNCONFIGURE operation.

The response to this request indicates success or failure of the request.

If the guest provides a service for registering a Machine Description update, that update
notification will be provided only after steps have been taken to remove the device from the
logical domain in the hypervisor and from the guest's Machine Description.

30.9.3.4 DR_VIO_STATUS request

This command requests the configuration status of a specific device. The response to this
request indicates the current state of the device, which can include an optional descriptive
string.

30.9.3.5 Request number

The request number in the message header is a monotonically increasing number that
uniquely identifies each request message.

Responses to requests are expected to use the same request number so they can be paired
with their original request.

New requests may be issued without waiting for a response to a preceding request. The
underlying transport protocol is responsible to ensure reliable, in-order and unduplicated
message packets.

Requests are to be processed in the order received.

A Revision 2.0 Hypervisor API
May 29, 2008

30.9.3.6 Device Name

This element of the request message identifies the type of the device which is the target of
the request. The Device Name name field in the request message corresponds to the name
property of the virtual-device node in the Machine Description. It consists of a nul-terminated
string. The maximum length of this string is 256 characters, including the terminating NUL.

30.9.3.7 Device ID

The Device ID dev_id field in the request message correponds to the cfg-handle of the
virtual-device node in the guest's Machine Description.

30.9.4 VIO DR response message

The overall VIO DR protocol consists of a command sent to the client guest which then
responds with a reply indicating the result of the request.

30.9.4.1 VIO DR response message format

The VIO DR response message has the following format.

Offset Size Field name Description

0 8 req_num Request number

8 4 result Result code

12 4 status Status code

16 Variable reason reason string (cause of error)

1.1.1.1 VIO DR Result codes

The result field in the above message indicates the result of the requested operation on the
specified device. The result codes are defined as follows:

Type Value Definition

DR_VIO_RES_OK 0x0 Operation succeeded

DR_VIO_RES_FAILURE 0x1 Operation failed

DR_VIO_RES_BLOCKED 0x2 Operation was blocked

DR_VIO_RES_NOT_IN_MD 0x3 Device undefined in MD

For a DR_VIO_UNCONFIGURE request the result code DR_VIO_RES_BLOCKED is
equivalent to DR_VIO_RES_FAILURE except that the guest is indicating that the operation
may succeed with a subsequent DR_VIO_FORCE_UNCONFIG operation.

30.9.4.2 VIO DR status codes

The status field in the response message indicates the resulting status of the specified
device after the requested operation. For the response message to a configure or unconfigure
request, the result field indicates the outcome of the operation. The status field contains one of
the status codes below to indicate state of the device after the attempted operation.

For the response message corresponding to a successful DR_VIO_STATUS request, the
status field will contain one of the codes below, and the result field will contain
DR_VIO_RES_OK. If the DR_VIO_STATUS operation fails, the result field will contain
DR_VIO_RES_FAILURE and the status field will not be meaningful.

The status codes are defined as follows:

Page 274 of 293

Hypervisor API Revision 2.0
May 29, 2008

Name Value Definition

DR_VIO_STAT_NOT_PRESENT 0x0 Device does not exist in MD

DR_VIO_STAT_UNCONFIGURED 0x1 Device exists in MD, but is not configured for use by guest

DR_VIO_STAT_CONFIGURED 0x2 Device is configured for use by the guest.

A VIO device in the DR_VIO_STAT_UNCONFIGURED state may be safely removed from
the domain configuration. Conversely, a VIO device in the DR_VIO_STAT_CONFIGURED
state must not be removed from the domain configuration as the guest may be accessing it.

30.9.4.3 VIO DR 'reason' string

The response message may optionally include a human-readable string so that the guest
may return a NUL-terminated ASCII string containing additional information regarding the
requested operation. The maximum length of this string is 1024 characters including the
terminating NUL.

If there is no 'reason' string, this field shall contain a single NUL character at the start of
the field. In the case of a successful operation no response string will be returned.

A Revision 2.0 Hypervisor API
May 29, 2008

30.10 Crypto DR service version 1.0

The ability to dynamically add or remove hardware crypto providers from a logical
domain is driven from the LDom manager through this domain service. Separate services will
be defined for the Modular Arithmetic Unit (MAU) and the Control Word Queue (CWQ)
hardware components.

30.10.1 Service ID

The following service IDs correspond to the cryptographic unit dynmaic reconfiguration
capabilities of a guest operating system.

Service ID Description

“dr-crypto-mau” Dynamic Reconfiguration for MAU

“dr-crypto-cwq” Dynamic reconfiguration for CWQ

30.10.2 Message format header

Offset Size Field name Description

0 8 req_num Request number

8 4 msg_type Message type

12 4 num_records Number of records

The same DR service messages are used for both services. Each message consists of a fixed
message header and payload as described below. Overall, the Crypto DR service messages are
very similar to the CPU DR messages.

All Crypto DR messages begin with the same header. The payload that follows the header
is specific to a particular message type. The Crypto DR protocol consists of a command sent to
the client guest which then responds with a reply indicating the success or failure of the
request.

30.10.3 Message Types

The following message types are defined for the Crypto DR domain service:

30.10.3.1 Request messages
Type Value ASCII Definition

DR_CRYPTO_CONFIG 0x43 'C' configure new crypto unit

DR_CRYPTO_UNCONFIG 0x55 'U' unconfigure crypto unit

DR_CRYPTO_FORCE_UNCONFIG 0x46 'F' forcibly unconfigure crypto unit

DR_CRYPTO_STATUS 0x53 'S' request status for a crypto unit

1.1.1.1 Response messages
Type Value ASCII Definition

DR_CRYPTO_OK 0x6f 'o' request completed OK

Page 276 of 293

Hypervisor API Revision 2.0
May 29, 2008

Type Value ASCII Definition

DR_CRYPTO_ERROR 0x65 'e' request failed

30.10.4 Request Payload

The Crypto DR requests all use the same payload format, which is a list of records of
virtual CPU IDs within a guest. Because there is no crypto unit ID defined in the guest, a
virtual CPU ID which maps to the desired crypto unit is passed as the identifier. There should
be one virtual CPU ID specified per targeted crypto unit.

The payload is as follows:

Offset Size Field name Description

0 4 id0 Virtual CPU ID

4 4 id1 Virtual CPU ID

8 4 id2 Virtual CPU ID

... etc.

30.10.5 Request Number

The request number is a monotonically increasing value that uniquely identifies each
request. Responses to requests are expected to use the same request number so they can be
paired with the original request. Requests are to be processed in the order received.

30.10.6 DR_CRYPTO_CONFIG request

This command requests that a guest attempt to configure and bring online the crypto units
associated with the set of virtual CPU ID supplied in the request message. In order to be
successful, the crypto unit and associated virtual CPUs must already exist in the guest's
Machine Description (MD). If both of these conditions are not satisfied, an error is returned.

30.10.7 DR_CRYPTO_UNCONFIG request

This command requests that the guest attempt to offline and unconfigure the targeted
crypto units. An associated virtual CPU ID is supplied in the request message to identify the
crypto unit. In order to be successful, the crypto unit and associated virtual CPUs must
already exist in the guest's Machine Description (MD). If both of these conditions are not
satisfied, an error is returned.

30.10.8 DR_CRYPTO_FORCE_UNCONFIG request

This command requests that the guest forcibly attempt to offline and unconfigure the
targeted crypto units. However, there is no still guarantee that the guest will be able to
successfully complete the request.

30.10.9 DR_CRYPTO_STATUS

The command requests the configuration status for specific crypto units.

A Revision 2.0 Hypervisor API
May 29, 2008

30.10.10 DR CRYPTO OK response payload

The DR CRYPTO OK response uses the following format. The response header is followed
by an array of status reports, one for each crypto unit targeted in the command request. Each
status report provides information on the result of the requested operation. Because there is no
crypto unit ID, the virtual CPU ID is carried in the status report. The crypto unit status reports
have the following format:

Offset Size Field name Description

0 4 cpuid Virtual CPU ID

4 4 result Result of the operation

8 4 status Status of the crypto unit

30.10.11 DR CRYPTO OK result codes

The result field in the per crypto unit response record conveys the result of the requested
operation for that crypto unit. The result codes are defined as follows:

Name Value Definition

DR_CRYPTO_RES_OK 0x0 Operation succeeded

DR_CRYPTO_RES_FAILURE 0x1 Operation failed

DR_CRYPTO_RES_BAD_CPU 0x2 CPU not in MD

DR_CRYPTO_RES_BAD_CRYPTO 0x3 Crypto unit not in MD

30.10.12 DR CRYPTO OK status codes

The status field in the per crypto unit response record conveys the configuration status for
the targeted crypto unit. The status codes are defined as follows:

Name Value Definition

DR_CRYPTO_STAT_NOT_PRESENT 0x0 Crypto unit not in MD

DR_CRYPTO_STAT_UNCONFIGURED 0x1 Crypto unit is not configured

DR_CRYPTO_STAT_CONFIGURED 0x2 Crypto unit is configured

30.10.13 DR Crypto Error Response

The message type DR_CRYPTO_ERROR is returned as the response to a malformed
request message. No additional payload is provided.

30.10.14 Operational Overview

30.10.14.1 Offlining a Crypto Unit

When the LDom manager decides to offline a crypto unit (or multiple crypto units), it will
build DR_CRYPTO_UNCONFIG domain service messages, including a list of virtual CPU IDs,
each associated with the specific crypto unit being taken offline. This message must be sent
and acknowledged in advance of any change to the machine description.

The domain service peers in the guest must guarantee that all jobs have completed for that
crypto unit and that no additional work will be scheduled before responding successfully.

Page 278 of 293

Hypervisor API Revision 2.0
May 29, 2008

30.10.14.2 Onlining a Crypto Unit

When the LDom manager decides to online a crypto unit, if it is a new crypto unit, the
guest must first gets an MD update which includes information about the new crypto unit.
Once that has occurred, the LDom manager will build DR_CRYPTO_CONFIG domain service
messages, including a list of virtual CPU IDs, each associated with the specific crypto unit
being brought online.

The domain service peers in the guest will re-read the MD and configure in the new crypto
unit based on the virtual CPU IDs included in the DR_CRYPTO_CONFIG message payload.
Once the configuration has completed, the response will be returned to the LDom manager.

A Revision 2.0 Hypervisor API
May 29, 2008

30.11 Variable Configuration version 1.0

The Variable Configuration capability provides the ability for a guest to update the LDom
variable store that is managed by the LDom manager or SP.

30.11.1 Service IDs

There are two service IDs defined to support LDom variable updates, one that describes a
primary service and one that describes a backup service. In the event that the primary service
is not available, the guest can fall back to using the backup service. The backup service uses
the identical protocol as the primary service but is subordinate in priority to the primary
service.

Implementation Note: The LDom manager provides the primary service. In the case
where the LDom manager has not been started, or is not currently running, variable updates
can be communicated to the SP using the backup service. OpenBoot in the control domain will
use the backup service since the LDom manager will not be running. OpenBoot in all other
domains will use the primary service as long as the LDom manager is available.

The following service IDs should should be added to the Domain Services registry for the
LDom variables capability.

Service ID Description

"var-config" Primary LDom variable management

“var-config-backup” Secondary LDom variable management

30.11.2 Message Header

Offset Size Field name Description

0 4 cmd Command

30.11.3 Message types

The following constants are defined for Variable Configuration domain service command
identifier values:

Type Value Definition

VAR_CONFIG_SET_REQ 0x0 Request setting a variable

VAR_CONFIG_DELETE_REQ 0x1 Request deleting a variable

VAR_CONFIG_SET_RESP 0x2 Response to a set request

VAR_CONFIG_DELETE_RESP 0x3 Response to a delete request

30.11.4 Set Variable Payload

The set command updates the variable in the store. If the variable already exists in the
store, the new value replaces the old value. If the variable does not exist in the store, it is
added.

The Variable Configuration header is followed by two NUL terminated strings. The first
represents the name of the variable to set. The second represents the value to set it to.

Page 280 of 293

Hypervisor API Revision 2.0
May 29, 2008

Offset Size Field name Description

0 Variable name Name of variable to set

Variable Variable value Value of variable

30.11.5 Delete Variable Payload

The delete command removes a variable from the store. The Variable Configuration
header is followed by one NUL terminated string. The string represents the name of the
variable to delete.

Offset Size Field name Description

0 Variable name Name of variable to delete

30.11.6 Response Payload

Responses to set and delete commands share the same format. The Variable Configuration
header is followed by the following response payload:

Offset Size Field name Description

0 4 result Result of operation

30.11.6.1 Response Result Codes

The result field in the response payload details the result of the requested operation. The
result codes are defined as follows:

Type Value Definition

VAR_CONFIG_SUCCESS 0x0 Operation succeeded

VAR_CONFIG_NO_SPACE 0x1 Variable Store Full

VAR_CONFIG_INVALID_VAR 0x2 Invalid Variable Format

VAR_CONFIG_INVALID_VAL 0x3 Invalid Value Format

VAR_CONFIG_VAR_NOT_PRESENT 0x4 Variable not present to delete

A Revision 2.0 Hypervisor API
May 29, 2008

30.12 Security key domain service version 1.0

The Security Key storage domain service provides the ability for a guest to update the
Security Key storage that is managed by the LDom manager or system controller (SC) (aka
service processor).

30.12.1 Service IDs

There are two service IDs defined to support Security key storage, one that describes a
primary service and one that describes a backup service. In the event that the primary service
is not available, the control domain can fall back to using the backup service. The backup
service uses the identical protocol as the primary service but is subordinate in priority to the
primary service.

Service ID Description

"keystore Primary Security Key management

“keystore-backup” Secondary Security Key management

30.12.1.1 Programming Note

The LDom manager typically provides the primary service and the SC can provide the
backup service. For example, OpenBoot in the Control Domain can use the backup service to
the SC as the LDom manager will typically not be running when OpenBoot is active. All other
domains will use the primary service as long as the LDom manager is available.

30.12.2 Message Header

Offset Size Field name Description

0 4 cmd Command

30.12.3 Message types

The following constants are defined for Security Key Store domain service command
identifier values:

Type Value Definition

KEYSTORE_SET_REQ 0x0 Request setting a Security Key

KEYSTORE_DELETE_REQ 0x1 Request deleting a Security Key

KEYSTORE_SET_RESP 0x2 Response to a set request

KEYSTORE_DELETE_RESP 0x3 Response to a delete request

30.12.3.1 Set keystore Payload

The set command updates the security key in the store. If the security key already exists in
the store, the new value replaces the old value. If the security key does not exist in the store, it
is added. The Security Key header is followed by two NUL terminated strings. The first
represents the name of the Security Key to set. The second represents the value to set it to.

Offset Size Field name Description

0 Variable name Name of Security Key to set

Variable Variable value Value of Security Key

Page 282 of 293

Hypervisor API Revision 2.0
May 29, 2008

30.12.3.2 Delete keystore Payload

The delete command removes a Security Key from the store. The Security Key header is
followed by one NUL terminated string. The string represents the name of the Security Key to
delete.

Offset Size Field name Description

0 Variable name Name of Security Key to delete

30.12.4 Response Payload

Responses to set and delete commands share the same format. The Security Key header is
followed by the following response payload:

Offset Size Field name Description

0 4 result Result of operation

30.12.4.1 Response Result Codes

The result field in the response payload details the result of the requested operation.

The result codes are defined as follows:

Type Value Definition

KEYSTORE_SUCCESS 0x0 Operation succeeded

KEYSTORE_NO_SPACE 0x1 Security Key Store Full

KEYSTORE_INVALID_NAME 0x2 Invalid Security Key name

KEYSTORE_INVALID_VAL 0x3 Invalid Security Key value

KEYSTORE_KEY_NOT_PRESENT 0x4 Security Key not present to delete

 Name Value Definition

 -------------------- ----- ---------------------------------

 KEYSTORE_SUCCESS 0x0 Operation succeeded

 KEYSTORE_NO_SPACE 0x1 Security Key Store Full

 KEYSTORE_INVALID_NAME 0x2 Invalid Security Key name Format

 KEYSTORE_INVALID_VAL 0x3 Invalid Security Key value Format

 KEYSTORE_NOT_PRESENT 0x4 Security Key not present to delete

A Revision 2.0 Hypervisor API
May 29, 2008

30.13 SNMP service version 1.0

This case describes the domain service interface through which a client communicates
with the system controller (SC) (aka service processor) using the SNMP protocol. This service
can be used to access environmental data and other information that may be exported from
the system controller. This information can be dynamically updated - it is the responsibility of
a guest operating system to monitor and provide access to this information to it's users if so
desired. Such presentation interfaces are beyond the scope of this document.

Each of the SNMP Messages consists of a header and a payload. The headers are defined
by this specification and the payloads consist of data encoded according to the SNMP
protocol, as defined by a number of IETF RFC's. The SNMP protocol versions supported and
their message formats are not part of this specification. The version support is negotiated
between the guest oeprating system's driver and the SNMP Agent resident on the SC. The
SNMP PDUs are simply encapsulated by the SNMP Domain Service that is the subject of this
specification. The length of the SNMP PDU is encoded in the message itself and is not part of
the header. It is left to the consumers at the endpoints on this domain service to send and
receive and detect properly formed SNMP messages.

The domain service described below is version 1.0.

30.13.1 Service ID

Service ID Description

"snmp" SNMP domain service

30.13.2 Message header

Offset Size Field name Description

0 8 number Message number

8 8 type Message type

16 Variable payload Message dependent payload

All SNMP messages have the same header format consisting of a message number and a
message type.

The message number is a monotonically increasing number that uniquely identifies each
message. Responses to messages are expected to use the same message number so that they
can be paired with their original message. The message number may also be used to
distinguish betweenmultiple instances of the same message type.

New messages may be issued without waiting for a response to a preceding message. The
underlying transport protocol is responsible for ensuring reliable, in-order and unduplicated
message packets.

Messages are to be processed in the order received.

30.13.3 Message types

The message type is used to distinguish the different message types. There are three types
defined in this initial version of the protocol specification.

Type Value Definition

SNMP_REQUEST 0x0 SNMP Request to SNMP agent

SNMP_REPLY 0x1 Message from SNMP agent

Page 284 of 293

Hypervisor API Revision 2.0
May 29, 2008

Type Value Definition

SNMP_ERROR 0x2 Error message from SNMP agent

30.13.3.1 SNMP Request Message

An SNMP_REQUEST Message is sent by the client carrying a payload to be delivered to
the snmp agent.

The message number value will be used in the SNMP_REPLY message sent in response to
this request.

The message type field should indicate an SNMP_REQUEST.

The payload field has variable length depending on the SNMP data sent as part of the
request.

30.13.3.2 SNMP Reply Message

An SNMP_REPLY message is sent by the server in response to a request from the client. It
carries a payload whose content is determined by the SNMP agent acting on the request.

The number field contains the value in the number field of the original request being
serviced.

The message type field should indicate an SNMP_REPLY.

The payload field has variable length depending on the SNMP data.

30.13.3.3 SNMP Error Message

An SNMP_ERROR message is sent by the server in response to a request from the client
that cannot be serviced. These include errors such as being unable to contact the SNMP Agent
or timing out waiting for a reply from the SNMP agent.

The SNMP_ERROR message has no payload.

The message number field contains the value in the message number field of the request
that could not be serviced.

The message type field should indicate an SNMP_ERROR.

A Revision 2.0 Hypervisor API
May 29, 2008

31 Appendix A: Number Registry

This appendix provides a registry of API services, their assigned trap and function
numbers, and currently defined version groups and version numbers.

The definitions of the API groupings for the versioning API (§11) are as follows:

Group Number

(api_group)

Group Definition

Common 0x0 sun4v platform

Common 0x1 core APIs

Technology 0x100 PCI

Technology 0x101 Logical Domain Channels

Technology 0x102 Service Channels (*)

Performance
measurement

0x200 UltraSPARC T1 performance counters

Test &
Development

0x300 Platform specific optional test interfaces

(*) These calls have now been deprecated, and are described only for compatibility with
old platform firmware.

31.1 Hyper-fast Trap numbers

For hyper-fast traps, the sw_trap_numbers are encoded in the Tcc instruction that enters the
hypervisor:

Un-assigned trap numbers result in EBADTRAP being returned in %o0 as described in
section 2.3.

31.2 FAST_TRAP Function numbers

Function numbers for fast-traps are provided in %o5 as a 64-bit value.

Un-assigned function numbers used for fast-traps result in EBADTRAP being returned in
%o0 as described in section 2.3.

31.3 CORE_TRAP Function numbers

CORE_TRAP APIs are defined and guaranteed present for all sun4v hypervisor versions.
These APIs follow the same calling conventions as FAST_TRAP API services. Four
CORE_TRAP functions are currently defined as follows;

API_VERSION defined in section 11.1.1.

API_PUTCHAR an alias for FAST_TRAP function CONS_PUTCHAR .

API_EXIT an alias for FAST_TRAP function MACH_EXIT.

API_GET_VERSION defined in section 11.1.2.

31.4 Summary of trap and function numbers

Page 286 of 293

Hypervisor API Revision 2.0
May 29, 2008

Trap# Func# Versioning
Group#

Vers# Name Defined in
section

0x80 -- N/A N/A FAST_TRAP -

0x83 -- 0x001 1.0 MMU_MAP_ADDR 14.7.6

0x84 -- 0x001 1.0 MMU_UNMAP_ADDR 14.7.8

0x85 -- 0x001 1.0 TTRACE_ADDENTRY 21.3.5

0xff -- N/A N/A CORE_TRAP -

0x80 0x00 0x001 1.0 MACH_EXIT 12.1.1

0x80 0x01 0x001 1.0 MACH_DESC 12.1.2

0x80 0x02 0x001 1.0 MACH_SIR 12.1.3

0x80 0x05 0x001 1.1 * MACH_SET_WATCHDOG 12.1.4

0x80 0x10 0x001 1.0 CPU_START 13.2.1

0x80 0x11 0x001 1.1 * CPU_STOP 13.2.2

0x80 0x12 0x001 1.0 CPU_YIELD 13.2.5

0x80 0x14 0x001 1.0 CPU_QCONF 13.2.6

0x80 0x15 0x001 1.0 CPU_QINFO 13.2.7

0x80 0x16 0x001 1.0 CPU_MYID 13.2.9

0x80 0x17 0x001 1.0 CPU_STATE 13.2.10

0x80 0x18 0x001 1.0 CPU_SET_RTBA 13.2.3

0x80 0x19 0x001 1.0 CPU_GET_RTBA 13.2.4

0x80 0x20 0x001 1.0 MMU_TSB_CTX0 14.7.1

0x80 0x21 0x001 1.0 MMU_TSB_CTXNON0 14.7.2

0x80 0x22 0x001 1.0 MMU_DEMAP_PAGE 14.7.3

0x80 0x23 0x001 1.0 MMU_DEMAP_CTX 14.7.4

0x80 0x24 0x001 1.0 MMU_DEMAP_ALL 14.7.5

0x80 0x25 0x001 1.0 MMU_MAP_PERM_ADDR 14.7.7

0x80 0x26 0x001 1.0 MMU_FAULT_AREA_CONF 14.7.10

0x80 0x27 0x001 1.0 MMU_ENABLE 14.7.11

0x80 0x28 0x001 1.0 MMU_UNMAP_PERM_ADDR 14.7.9

0x80 0x29 0x001 1.0 MMU_TSB_CTX0_INFO 14.7.12

0x80 0x2a 0x001 1.0 MMU_TSB_CTXNON0_INFO 14.7.13

0x80 0x2b 0x001 1.0 MMU_FAULT_AREA_INFO 14.7.14

0x80 0x31 0x001 1.0 MEM_SCRUB 15.1.1

0x80 0x32 0x001 1.0 MEM_SYNC 15.1.2

0x80 0x42 0x001 1.0 CPU_MONDO_SEND 13.2.8

0x80 0x50 0x001 1.0 TOD_GET 17.1.1

0x80 0x51 0x001 1.0 TOD_SET 17.1.2

0x80 0x60 0x001 1.0 CONS_GETCHAR 18.1.1

A Revision 2.0 Hypervisor API
May 29, 2008

Trap# Func# Versioning
Group#

Vers# Name Defined in
section

0x80 0x61 0x001 1.0 CONS_PUTCHAR 18.1.2

0x80 xxx xxx xxx CONS_READ 18.1.3

0x80 xxx xxx xxx CONS_WRITE 18.1.4

0x80 0x70 0x003 1.0 SOFT_STATE_SET 19.1.1

0x80 0x71 0x003 1.0 SOFT_STATE_GET 19.1.2

0x80 0x80 0x102 1.0 SVC_SEND (*)

0x80 0x81 0x102 1.0 SVC_RCV (*)

0x80 0x82 0x102 1.0 SVC_GETSTATUS (*)

0x80 0x83 0x102 1.0 SVC_SETSTATUS (*)

0x80 0x84 0x102 1.0 SVC_CLRSTATUS (*)

0x80 0x90 0x001 1.0 TTRACE_BUF_CONF 21.3.1

0x80 0x91 0x001 1.0 TTRACE_BUF_INFO 21.3.2

0x80 0x92 0x001 1.0 TTRACE_ENABLE 21.3.3

0x80 0x93 0x001 1.0 TTRACE_FREEZE 21.3.4

0x80 0x94 0x001 1.0 DUMP_BUF_UPDATE 20.1.1

0x80 0x95 0x001 1.0 DUMP_BUF_INFO 20.1.2

0x80 0xa0 0x002 1.0 INTR_DEVINO2SYSINO (deprecated) 16.3.1

0x80 0xa1 0x002 1.0 INTR_GETENABLED (deprecated) 16.3.2

0x80 0xa2 0x002 1.0 INTR_SETENABLED (deprecated) 16.3.3

0x80 0xa3 0x002 1.0 INTR_GETSTATE (deprecated) 16.3.4

0x80 0xa4 0x002 1.0 INTR_SETSTATE (deprecated) 16.3.5

0x80 0xa5 0x002 1.0 INTR_GETTARGET (deprecated) 16.3.6

0x80 0xa6 0x002 1.0 INTR_SETTARGET (deprecated) 16.3.7

0x80 0xa7 0x002 2.0 VINTR_GETCOOKIE 16.2.1

0x80 0xa8 0x002 2.0 VINTR_SETCOOKIE 16.2.2

0x80 0xa9 0x002 2.0 VINTR_GETENABLED 16.2.3

0x80 0xaa 0x002 2.0 VINTR_SETENABLED 16.2.4

0x80 0xab 0x002 2.0 VINTR_GETSTATE 16.2.5

0x80 0xac 0x002 2.0 VINTR_SETSTATE 16.2.6

0x80 0xad 0x002 2.0 VINTR_GETTARGET 16.2.7

0x80 0xae 0x002 2.0 VINTR_SETTARGET 16.2.8

0x80 0xb0 0x100 1.0 PCI_IOMMU_MAP 23.4.1

0x80 0xb1 0x100 1.0 PCI_IOMMU_DEMAP 23.4.3

0x80 0xb2 0x100 1.0 PCI_IOMMU_GETMAP 23.4.4

0x80 0xb3 0x100 1.0 PCI_IOMMU_GETBYPASS 23.4.6

0x80 0xb4 0x100 1.0 PCI_CONFIG_GET 23.4.8

Page 288 of 293

Hypervisor API Revision 2.0
May 29, 2008

Trap# Func# Versioning
Group#

Vers# Name Defined in
section

0x80 0xb5 0x100 1.0 PCI_CONFIG_PUT 23.4.10

0x80 0xb6 0x100 1.0 PCI_PEEK 23.4.11

0x80 0xb7 0x100 1.0 PCI_POKE 23.4.13

0x80 0xb8 0x100 1.0 PCI_DMA_SYNC 23.4.15

0x80 0xc0 0x100 1.0 PCI_MSIQ_CONF 24.4.1

0x80 0xc1 0x100 1.0 PCI_MSIQ_INFO 24.4.2

0x80 0xc2 0x100 1.0 PCI_MSIQ_GETVALID 24.4.3

0x80 0xc3 0x100 1.0 PCI_MSIQ_SETVALID 24.4.4

0x80 0xc4 0x100 1.0 PCI_MSIQ_GETSTATE 24.4.5

0x80 0xc5 0x100 1.0 PCI_MSIQ_SETSTATE 24.4.6

0x80 0xc6 0x100 1.0 PCI_MSIQ_GETHEAD 24.4.7

0x80 0xc7 0x100 1.0 PCI_MSIQ_SETHEAD 24.4.8

0x80 0xc8 0x100 1.0 PCI_MSIQ_GETTAIL 24.4.9

0x80 0xc9 0x100 1.0 PCI_MSI_GETVALID 24.4.10

0x80 0xca 0x100 1.0 PCI_MSI_SETVALID 24.4.11

0x80 0xcb 0x100 1.0 PCI_MSI_GETMSIQ 24.4.12

0x80 0xcc 0x100 1.0 PCI_MSI_SETMSIQ 24.4.13

0x80 0xcd 0x100 1.0 PCI_MSI_GETSTATE 24.4.14

0x80 0xce 0x100 1.0 PCI_MSI_SETSTATE 24.4.15

0x80 0xd0 0x100 1.0 PCI_MSG_GETMSIQ 24.4.16

0x80 0xd1 0x100 1.0 PCI_MSG_SETMSIQ 24.4.17

0x80 0xd2 0x100 1.0 PCI_MSG_GETVALID 24.4.18

0x80 0xd3 0x100 1.0 PCI_MSG_SETVALID 24.4.19

0x80 0xe0 0x101 1.0 LDC_TX_QCONF 22.4.1

0x80 0xe1 0x101 1.0 LDC_TX_QINFO 22.4.2

0x80 0xe2 0x101 1.0 LDC_TX_GET_STATE 22.4.3

0x80 0xe3 0x101 1.0 LDC_TX_SET_QTAIL 22.4.4

0x80 0xe4 0x101 1.0 LDC_RX_QCONF 22.4.5

0x80 0xe5 0x101 1.0 LDC_RX_QINFO 22.4.6

0x80 0xe6 0x101 1.0 LDC_RX_GET_STATE 22.4.7

0x80 0xe7 0x101 1.0 LDC_RX_SET_QHEAD 22.4.7

0x80 0x110 0x103 1.0 NCS_REQUEST

0x80 0x100 0x200 1.0 NIAGARA_GET_PERFREG 27.1.1

0x80 0x101 0x200 1.0 NIAGARA_SET_PERFREG 27.1.2

0x80 0x102 0x200 1.0 NIAGARA_MMUSTAT_CONF 27.2.2

0x80 0x103 0x200 1.0 NIAGARA_MMUSTAT_INFO 27.2.3

A Revision 2.0 Hypervisor API
May 29, 2008

Trap# Func# Versioning
Group#

Vers# Name Defined in
section

0x80 0x104 0x202 1.0 NIAGARA2_GET_PERFREG 27.4.4

0x80 0x105 0x202 1.0 NIAGARA2_SET_PERFREG 27.4.5

0x80 0x111 0x103 2.0 NCS_QCONF 25.2.3

0x80 0x112 0x103 2.0 NCS_QINFO 25.2.4

0x80 0x113 0x103 2.0 NCS_GETHEAD 25.2.5

0x80 0x114 0x103 2.0 NCS_GETTAIL 25.2.7

0x80 0x115 0x103 2.0 NCS_SETTAIL 25.2.8

0x80 0x116 0x103 2.0 NCS_QHANDLE_TO_DEVINO 25.2.9

0x80 0x117 0x103 2.0 NCS_SETHEAD_MARKER 25.2.6

0x80 0x120 0x201 1.0 FIRE_GET_PERFREG 27.3.2

0x80 0x121 0x201 1.0 FIRE_SET_PERFREG 27.3.3

0x80 0x130 0x104 1.0 RNG_GET_DIAG_CONTROL 25.1.6

0x80 0x131 0x104 1.0 RNG_CTL_READ 25.1.7

0x80 0x132 0x104 1.0 RNG_CTL_WRITE 25.1.8

0x80 0x133 0x104 1.0 RNG_DATA_READ_DIAG 25.1.9

0x80 0x134 0x104 1.0 RNG_DATA_READ 25.1.10

0x80 0x140 0x203 1.0 N2PIU_GET_PERF_REG 27.4.7

0x80 0x141 0x203 1.0 N2PIU_SET_PERF_REG 27.4.8

0x80 0x142 0x204 1.0 N2NIU_RX_LP_SET 26.4.1

0x80 0x143 0x204 1.0 N2NIU_RX_LP_GET 26.4.2

0x80 0x144 0x204 1.0 N2NIU_TX_LP_SET 26.4.3

0x80 0x145 0x204 1.0 N2NIU_TX_LP_GET 26.4.4

0x80 0x146 0x204 1.0 N2NIU_VR_ASSIGN 26.6.1

0x80 0x147 0x204 1.0 N2NIU_VR_UNASSIGN 26.6.2

0x80 0x148 0x204 1.0 N2NIU_VR_GETINFO 26.6.3

0x80 0x149 0x204 1.0 N2NIU_VR_RX_DMA_ASSIGN 26.7.1

0x80 0x14a 0x204 1.0 N2NIU_VR_RX_DMA_UNASSIGN 26.7.2

0x80 0x14b 0x204 1.0 N2NIU_VR_TX_DMA_ASSIGN 26.7.1

0x80 0x14c 0x204 1.0 N2NIU_VR_TX_DMA_UNASSIGN 26.7.2

0x80 0x14d 0x204 1.0 N2NIU_VR_GET_RX_MAP 26.7.3

0x80 0x14e 0x204 1.0 N2NIU_VR_GET_TX_MAP 26.7.3

0x80 0x150 0x204 1.0 N2NIU_VRRX_SET_INO 26.7.4

0x80 0x151 0x204 1.0 N2NIU_VRTX_SET_INO 26.7.4

0x80 0x152 0x204 1.0 N2NIU_VRRX_GET_INFO 26.7.5

0x80 0x153 0x204 1.0 N2NIU_VRTX_GET_INFO 26.7.5

0x80 0x154 0x204 1.0 N2NIU_VRRX_LP_SET 26.7.6

Page 290 of 293

Hypervisor API Revision 2.0
May 29, 2008

Trap# Func# Versioning
Group#

Vers# Name Defined in
section

0x80 0x155 0x204 1.0 N2NIU_VRRX_LP_GET 26.7.7

0x80 0x156 0x204 1.0 N2NIU_VRTX_LP_SET 26.7.6

0x80 0x157 0x204 1.0 N2NIU_VRTX_LP_GET 26.7.7

0x80 0x158 0x204 1.0 N2NIU_VRRX_PARAM_GET 26.8.1

0x80 0x159 0x204 1.0 N2NIU_VRRX_PARAM_SET 26.8.2

0x80 0x15a 0x204 1.0 N2NIU_VRTX_PARAM_GET 26.8.1

0x80 0x15b 0x204 1.0 N2NIU_VRTX_PARAM_SET 26.8.2

0x80 0x200 0x300 1.0 DIAG_RA2PA

0x80 0x201 0x300 1.0 DIAG_HEXEC

0xff 0x00 N/A N/A API_SET_VERSION 11.1.1

0xff 0x01 N/A N/A API_PUTCHAR 18.1.2

0xff 0x02 N/A N/A API_EXIT 12.1.1

0xff 0x03 N/A N/A API_GET_VERSION 11.1.2

* These version numbers are provisional

31.5 Error codes

When a hypervisor API returns, unless explicitly described by the API service, the 64-bit
value in %o0 will be one of the following error identification values.

A Revision 2.0 Hypervisor API
May 29, 2008

Value Mnemonic Comment

0 EOK Successful return

1 ENOCPU Invalid CPU id

2 ENORADDR Invalid real address

3 ENOINTR Invalid interrupt id

4 EBADPGSZ Invalid pagesize encoding

5 EBADTSB Invalid TSB description

6 EINVAL Invalid argument

7 EBADTRAP Invalid function number

8 EBADALIGN Invalid address alignment

9 EWOULDBLOCK Cannot complete operation without blocking

10 ENOACCESS No access to specified resource

11 EIO I/O Error

12 ECPUERROR CPU is in error state

13 ENOTSUPPORTED Function not supported

14 ENOMAP No mapping found

15 ETOOMANY Too many items specified / limit reached

16 ECHANNEL Invalid LDC channel

17 EBUSY Operation failed as resource is otherwise busy

Page 292 of 293

Hypervisor API Revision 2.0
May 29, 2008

32 Appendix B: Domain service registry

This table lists the capabilities described in this document, and which need to be added to
a Domain Services registry.

Service ID Description

md-update Notification of MD updates

domain-shutdown Request graceful shutdown

domain-panic Request a panic

dr-cpu Dynamic Reconfiguration for Virtual CPUs

dr-vio Dynamic Reconfiguration for virtual IO

var-config Primary LDom variable management

var-config-backup Secondary LDom variable management

snmp SNMP service

keystore Primary keystore for WANBoot service

keystore-backup Secondary keystore for WANBoot service

	0 Foreward
	0.1 Related specifications
	0.2 Architect's notes
	0.2.1 History
	0.2.2 Acknowledgments

	1 Overview
	1.1 Architectural requirements
	1.2 The hypervisor and sun4v architecture
	1.3 Privilege, isolation and virtualization
	1.4 Direct I/O
	1.5 Logical Domain Channels
	1.5.1 Stateless connections
	1.5.2 LDC security

	1.6 Machine descriptions
	1.7 Virtual I/O
	1.7.1 Abstraction
	1.7.2 Stateless connections & multi-pathed I/O
	1.7.3 Virtual disk services
	1.7.4 Scalable virtual networking services
	1.7.5 Virtual IO Limits

	1.8 Hybrid I/O
	1.9 Logical Domain Manager
	1.9.1 Domain roles
	1.9.1.1 IO domain
	1.9.1.2 Service domain
	1.9.1.3 Control domain

	1.9.2 Domain dependencies
	1.9.3 Domain manager operation
	1.9.3.1 Constraint engine
	1.9.3.2 Transactional updates
	1.9.3.3 Sequencer

	1.10 Domain service infrastructure
	1.11 OpenBoot firmware
	1.12 Error Handling
	1.13 Advanced LDom features
	1.13.1 Dynamic reconfiguration
	1.13.2 Logical domain migration

	2 Hypervisor call conventions
	2.1 Hyper-fast traps
	2.2 Fast traps
	2.3 Post hypervisor trap processing

	3 State definitions
	3.1 Guest states
	3.2 Initial guest environment
	3.3 Privileged registers
	3.3.1 Non-Privileged Registers
	3.3.2 Ancillary State Registers
	3.3.3 Internal memory-mapped registers
	3.3.4 CPU-specific Registers

	3.4 Other initial guest state

	4 Addressing Models
	4.1 Background
	4.2 Address types
	4.3 Address spaces
	4.4 Address space identifiers
	4.4.1 ASI 0x14 & 0x1c : REAL_MEM{_LITTLE}
	4.4.2 ASI 0x15 & 0x1d : REAL_IO{_LITTLE}
	4.4.3 ASI 0x26 & 0x2E : REAL_QUAD{_LITTLE}
	4.4.4 ASI 0x21 : MMU
	4.4.4.1 Programming note
	4.4.4.2 Translation conflicts
	4.4.4.3 Barrier rules

	4.5 Translation mappings
	4.6 MMU Demap support
	4.7 MMU traps
	4.8 MMU fault status area

	5 Trap model
	5.1 Privilege mode trap processing
	5.2 Trap levels
	5.2.1 Privilege mode TL overflow

	5.3 Sun4v privilege mode trap table

	6 Interrupt model
	6.1 Definitions
	6.2 Interrupt reports
	6.3 Interrupt queues
	6.3.1 Queue support registers
	6.3.1.1 *_QUEUE_HEAD and *_QUEUE_TAIL

	6.4 Interrupt traps
	6.4.1 CPU mondo interrupts
	6.4.1.1 Sending CPU mondos
	6.4.1.2 Receiving CPU mondos

	6.4.2 Device mondo interrupts

	6.5 Device interrupts
	6.5.1 Device handles and devinos

	6.6 Sysinos and cookies
	6.6.1 Legacy use (the sysino)
	6.6.2 Interrupt cookies

	7 Error model
	7.1 Definitions
	7.2 Error classes
	7.2.1 Resumable error
	7.2.2 Non-resumable error

	7.3 Error reports
	7.4 Error queues
	7.4.1 *_QUEUE_HEAD and *_QUEUE_TAIL

	7.5 Error traps

	8 Machine description
	8.1 Requirements
	8.2 Sections
	8.3 Encoding
	8.4 Header
	8.4.1 Version numbering
	8.4.2 Size fields

	8.5 Name Block
	8.6 Data Block
	8.7 Node Block
	8.7.1 Element format
	8.7.2 Tag definitions

	8.8 Nodes
	8.9 Node definitions
	8.9.1 Node categories

	8.10 Content versions
	8.11 Common data definitions
	8.11.1 String array

	8.12 How to use a machine description
	8.12.1 Using the MD as a list

	8.13 Accelerating string lookups
	8.14 Directed Acyclic Graph
	8.14.1 Graph nodes

	8.15 DAG construction
	8.16 Required nodes
	8.17 The vanilla MD
	8.18 Formation and meaning of a DAG
	8.19 Generic nodes
	8.19.1 Root node
	8.19.1.1 Description
	8.19.1.2 Properties
	8.19.1.3 Programming note

	8.19.2 Cpus node
	8.19.2.1 Description
	8.19.2.2 Properties

	8.19.3 Cpu node
	8.19.3.1 Properties

	8.19.4 Memory node
	8.19.4.1 Description
	8.19.4.2 Properties

	8.19.5 Mblock node
	8.19.5.1 Description
	8.19.5.2 Properties

	8.19.6 Platform node
	8.19.6.1 Description
	8.19.6.2 Properties
	8.19.6.3 Programming notes

	8.19.7 Domain services node
	8.19.7.1 Description

	8.19.8 Domain services port node
	8.19.8.1 Description
	8.19.8.2 Properties

	8.20 Memory hierarchy nodes
	8.20.1 Cache node
	8.20.1.1 Description
	8.20.1.2 Properties

	8.20.2 Exec-unit node
	8.20.2.1 Description
	8.20.2.2 Properties
	8.20.2.3 Programming Note

	8.20.3 TLB node
	8.20.3.1 Description
	8.20.3.2 Properties

	8.21 Variables
	8.21.1 Description
	8.21.1.1 Properties

	8.22 Keystore
	8.22.1 Description
	8.22.1.1 Properties

	8.23 Virtual Devices
	8.23.1 Descriptions for virtual devices
	8.23.2 Virtual devices node
	8.23.2.1 Description
	8.23.2.2 Properties

	8.23.3 Channel devices node
	8.23.3.1 Description
	8.23.3.2 Properties

	8.23.4 Virtual device node
	8.23.4.1 Description
	8.23.4.2 Common properties
	8.23.4.3 Virtual device classes
	8.23.4.4 Device class specific properties

	8.23.5 Virtual device port node
	8.23.5.1 Description
	8.23.5.2 Common properties
	8.23.5.3 Device class specific port properties
	8.23.5.4 Virtual-device-port class table

	8.23.6 Channel endpoints node
	8.23.7 Description
	8.23.8 Channel endpoint node
	8.23.8.1 Description
	8.23.8.2 Properties

	8.23.9 RNG virtual-device node
	8.23.9.1 Properties

	8.23.10 Crypto virtual-device node
	8.23.10.1 Properties

	8.23.11 MAC-addresses node
	8.23.11.1 Description
	8.23.11.2 Properties

	8.23.12 MAC-address node
	8.23.12.1 Description
	8.23.12.2 Properties

	8.24 Latency nodes
	8.24.1 Programming notes and accuracy
	8.24.2 Memory latency group node
	8.24.2.1 Description
	8.24.2.2 Properties
	8.24.2.3 Programming note on RA and physical address congruence
	8.24.2.4 Page coloring

	8.24.3 Programmed I/O latency group
	8.24.3.1 Description
	8.24.3.2 Properties

	8.24.4 I/O DMA latency group
	8.24.4.1 Description
	8.24.4.2 Properties

	8.24.5 I/O Interrupt latency group node
	8.24.5.1 Description
	8.24.5.2 Properties

	8.24.6 Latency groups node
	8.24.6.1 Description
	8.24.6.2 Properties

	9 Logical domain variables
	9.1 Overview
	9.2 LDom variable store
	9.3 LDom variables and automatic reboot
	9.3.1 Format of reboot-command variable
	9.3.2 Guest OS management of LDom variables

	10 Security keys
	11 API versioning
	11.1 API call
	11.1.1 api_set_version
	11.1.1.1 Errors
	11.1.1.2 Usage Notes:

	11.1.2 api_get_version
	11.1.2.1 Errors

	12 Core services
	12.1 API calls
	12.1.1 mach_exit
	12.1.1.1 Errors

	12.1.2 mach_desc
	12.1.2.1 Errors

	12.1.3 mach_sir
	12.1.3.1 Errors

	12.1.4 mach_watchdog

	13 CPU services
	13.1 CPU id and CPU list
	13.2 API calls
	13.2.1 cpu_start
	13.2.1.1 Errors

	13.2.2 cpu_stop
	13.2.2.1 Errors

	13.2.3 cpu_set_rtba
	13.2.3.1 Errors

	13.2.4 cpu_get_rtba
	13.2.4.1 Errors

	13.2.5 cpu_yield
	13.2.5.1 Programming note:
	13.2.5.2 Errors

	13.2.6 cpu_qconf
	13.2.6.1 Errors

	13.2.7 cpu_qinfo
	13.2.7.1 Errors

	13.2.8 cpu_mondo_send
	13.2.8.1 Errors

	13.2.9 cpu_myid
	13.2.9.1 Errors

	13.2.10 cpu_state
	13.2.10.1 Errors

	14 MMU services
	14.1 Translation Storage Buffer (TSB) specification
	14.1.1 Page sizes
	14.1.2 Context index

	14.2 MMU flags
	14.3 Translation table entries
	14.3.1 TSB entry tag word
	14.3.2 TSB entry data word

	14.4 Translation storage buffer (TSB) configuration
	14.5 Permanent and non-permanent mappings
	14.6 MMU Fault status area
	14.7 API calls
	14.7.1 mmu_tsb_ctx0
	14.7.1.1 Errors

	14.7.2 mmu_tsb_ctxnon0
	14.7.2.1 Errors

	14.7.3 mmu_demap_page
	14.7.3.1 Errors

	14.7.4 mmu_demap_ctx
	14.7.4.1 Errors

	14.7.5 mmu_demap_all
	14.7.5.1 Errors

	14.7.6 mmu_map_addr
	14.7.6.1 Errors

	14.7.7 mmu_map_perm_addr
	14.7.7.1 Errors

	14.7.8 mmu_unmap_addr
	14.7.8.1 Errors

	14.7.9 mmu_unmap_perm_addr
	14.7.9.1 Errors

	14.7.10 mmu_fault_area_conf
	14.7.10.1 Errors

	14.7.11 mmu_enable
	14.7.11.1 Errors

	14.7.12 mmu_tsb_ctx0_info
	14.7.12.1 Errors

	14.7.13 mmu_tsb_ctxnon0_info
	14.7.13.1 Errors

	14.7.14 mmu_fault_area_info
	14.7.14.1 Errors

	15 Cache and Memory services
	15.1 API calls
	15.1.1 mem_scrub
	15.1.1.1 Errors

	15.1.2 mem_sync
	15.1.2.1 Errors

	16 Device interrupt services
	16.1 Definitions
	16.2 API calls
	16.2.1 vintr_getcookie
	16.2.1.1 Errors

	16.2.2 vintr_setcookie
	16.2.2.1 Errors

	16.2.3 vintr_getenabled
	16.2.3.1 Errors

	16.2.4 vintr_setenabled
	16.2.4.1 Errors

	16.2.5 vintr_getstate
	16.2.5.1 Errors

	16.2.6 vintr_setstate
	16.2.6.1 Programming note
	16.2.6.2 Errors

	16.2.7 vintr_gettarget
	16.2.7.1 Errors

	16.2.8 vintr_settarget
	16.2.8.1 Errors

	16.3 Deprecated API calls
	16.3.1 intr_devino_to_sysino
	16.3.1.1 Errors

	16.3.2 intr_getenabled
	16.3.2.1 Errors

	16.3.3 intr_setenabled
	16.3.3.1 Errors

	16.3.4 intr_getstate
	16.3.4.1 Errors

	16.3.5 intr_setstate
	16.3.5.1 Errors

	16.3.6 intr_gettarget
	16.3.6.1 Errors

	16.3.7 intr_settarget
	16.3.7.1 Errors

	16.4 Interrupt API version control

	17 Time of day services
	17.1 API calls
	17.1.1 tod_get
	17.1.1.1 Errors

	17.1.2 tod_set
	17.1.2.1 Errors

	18 Console services
	18.1 API calls
	18.1.1 cons_getchar
	18.1.1.1 Errors

	18.1.2 cons_putchar
	18.1.2.1 Errors

	18.1.3 cons_read
	18.1.3.1 Machine description properties
	18.1.3.2 Errors

	18.1.4 cons_write
	18.1.4.1 Machine description properties
	18.1.4.2 Errors

	19 Domain state services
	19.1 API calls
	19.1.1 soft_state_set
	19.1.1.1 Errors
	19.1.1.2 Programming Notes

	19.1.2 soft_state_get
	19.1.2.1 Errors

	20 Core dump services
	20.1 API calls
	20.1.1 dump_buf_update
	20.1.1.1 Errors

	20.1.2 dump_buf_info
	20.1.2.1 Errors

	21 Trap trace services
	21.1 Trap trace buffer control structure
	21.2 Trap trace buffer entry format
	21.3 API calls
	21.3.1 ttrace_buf_conf
	21.3.1.1 Errors

	21.3.2 ttrace_buf_info
	21.3.2.1 Errors

	21.3.3 ttrace_enable
	21.3.3.1 Errors

	21.3.4 ttrace_freeze
	21.3.4.1 Errors

	21.3.5 ttrace_addentry
	21.3.5.1 Errors

	22 Logical Domain Channel services
	22.1 Endpoints
	22.2 LDC queues
	22.3 LDC interrupts
	22.4 API calls
	22.4.1 ldc_tx_qconf
	22.4.1.1 Errors

	22.4.2 ldc_tx_qinfo
	22.4.2.1 Errors

	22.4.3 ldc_tx_get_state
	22.4.3.1 Errors

	22.4.4 ldc_tx_set_qtail
	22.4.4.1 Errors

	22.4.5 ldc_rx_qconf
	22.4.5.1 Errors

	22.4.6 ldc_rx_qinfo
	22.4.6.1 Errors

	22.4.7 ldc_rx_get_state
	22.4.7.1 Errors

	22.4.8 ldc_rx_set_qhead
	22.4.8.1 Errors

	23 PCI I/O Services
	23.1 Introduction.
	23.1.1 External documents

	23.2 IO Data Definitions
	23.3 PCI IO Data Definitions
	23.4 API calls
	23.4.1 pci_iommu_map
	23.4.1.1 Errors

	23.4.3 pci_iommu_demap
	23.4.3.1 Errors

	23.4.4 pci_iommu_getmap
	23.4.4.1 Errors

	23.4.6 pci_iommu_getbypass
	23.4.6.1 Errors

	23.4.8 pci_config_get
	23.4.8.1 Errors

	23.4.10 pci_config_put
	23.4.10.1 Errors

	23.4.11 pci_peek
	23.4.11.1 Errors

	23.4.13 pci_poke
	23.4.13.1 Errors

	23.4.15 pci_dma_sync
	23.4.15.1 Errors

	24 MSI Services
	24.1 Message Signaled Interrupt (MSI)
	24.2 MSI Event Queue (MSI EQ)
	24.3 Definitions
	24.4 API calls
	24.4.1 pci_msiq_conf
	24.4.1.1 Errors

	24.4.2 pci_msiq_info
	24.4.2.1 Errors

	24.4.3 pci_msiq_getvalid
	24.4.3.1 Errors

	24.4.4 pci_msiq_setvalid
	24.4.4.1 Errors

	24.4.5 pci_msiq_getstate
	24.4.5.1 Errors

	24.4.6 pci_msiq_setstate
	24.4.6.1 Errors

	24.4.7 pci_msiq_gethead
	24.4.7.1 Errors

	24.4.8 pci_msiq_sethead
	24.4.8.1 Errors

	24.4.9 pci_msiq_gettail
	24.4.9.1 Errors

	24.4.10 pci_msi_getvalid
	24.4.10.1 Errors

	24.4.11 pci_msi_setvalid
	24.4.11.1 Errors

	24.4.12 pci_msi_getmsiq
	24.4.12.1 Errors

	24.4.13 pci_msi_setmsiq
	24.4.13.1 Errors

	24.4.14 pci_msi_getstate
	24.4.14.1 Errors

	24.4.15 pci_msi_setstate
	24.4.15.1 Errors

	24.4.16 pci_msg_getmsiq
	24.4.16.1 Errors

	24.4.17 pci_msg_setmsiq
	24.4.17.1 Errors

	24.4.18 pci_msg_getvalid
	24.4.18.1 Errors

	24.4.19 pci_msg_setvalid
	24.4.19.1 Errors

	25 Cryptographic services
	25.1 Random Number Generation
	25.1.1 Trusted Domains
	25.1.2 RNG Control Register data structure
	25.1.3 RNG State
	25.1.4 Maximum Data Read Length
	25.1.5 RNG Mutual Exclusion
	25.1.6 rng_get_diag_control
	25.1.6.1 Errors

	25.1.7 rng_ctl_read
	25.1.7.1 Programming note
	25.1.7.2 Errors

	25.1.8 rng_ctl_write
	25.1.8.1 Programming note
	25.1.8.2 Errors

	25.1.9 rng_data_read_diag
	25.1.9.1 Programming Note
	25.1.9.2 Errors

	25.1.10 rng_data_read
	25.1.10.1 Errors

	25.2 Niagara crypto services
	25.2.1 Versioning
	25.2.2 Work queues
	25.2.2.1 Queue Type:
	25.2.2.2 MAU queue
	25.2.2.3 CWQ queue	(UltraSPARC-T2 only)

	25.2.3 ncs_qconf
	25.2.3.1 Programming note
	25.2.3.2 Errors

	25.2.4 ncs_qinfo
	25.2.4.1 Errors

	25.2.5 ncs_gethead
	25.2.5.1 Errors

	25.2.6 ncs_sethead_marker
	25.2.6.1 Errors

	25.2.7 ncs_gettail
	25.2.7.1 Errors

	25.2.8 ncs_settail
	25.2.8.1 Programming note
	25.2.8.2 Errors

	25.2.9 ncs_qhandle_to_devino
	25.2.9.1 Errors

	26 UltraSPARC-T2 Network Interface Unit
	26.1 Introduction
	26.2 Definitions
	26.3 Version 1.0 and version 1.1 APIs
	26.4 Version 1.0 APIs
	26.4.1 niu_rx_logical_page_set
	26.4.1.1 Errors

	26.4.2 niu_rx_logical_page_get
	26.4.2.1 Errors

	26.4.3 niu_tx_logical_page_set
	26.4.3.1 Errors

	26.4.4 niu_tx_logical_page_get
	26.4.4.1 Errors

	26.5 Version 1.1 APIs
	26.6 NIU Virtual Region(VR) Specific APIs
	26.6.1 vr_assign
	26.6.1.1 Errors

	26.6.2 vr_unassign
	26.6.2.1 Errors

	26.6.3 vr_getinfo
	26.6.3.1 Errors

	26.7 NIU DMA Channel (DMAC) Specific APIs
	26.7.1 vr_rx_dma_assign and vr_tx_dma_assign
	26.7.1.1 Programming Note:
	26.7.1.2 Errors

	26.7.2 vr_rx_dma_unassign and vr_tx_dma_unassign
	26.7.2.1 Programming Note:
	26.7.2.2 Errors

	26.7.3 vr_get_rx_map and vr_get_tx_map
	26.7.3.1 Errors

	26.7.4 vrrx_set_ino and vrtx_set_ino
	26.7.4.1 Programming Note:
	26.7.4.2 Errors

	26.7.5 vrrx_get_info and vrtx_get_info
	26.7.5.1 Errors

	26.7.6 vrrx_lp_set and vrtx_lp_set
	26.7.6.1 Errors

	26.7.7 vrrx_lp_get and vrtx_lp_get
	26.7.7.1 Errors

	26.8 Virtualized Access to Non-virtualized NIU registers
	26.8.1 vrrx_param_get and vrtx_param_get
	26.8.1.1 Errors

	26.8.2 vrrx_param_set and vrtx_param_set
	26.8.2.1 Errors

	27 Chip and platform specific performance counters
	27.1 UltraSPARC T1 performance counters
	27.1.1 niagara_get_perfreg
	27.1.1.1 Errors

	27.1.2 niagara_set_perfreg
	27.1.2.1 Errors:

	27.2 UltraSPARC-T1 MMU statistics counters
	27.2.1 Hypervisor API for UltraSPARC-T1 MMU statistics collection
	27.2.1.1 MMU statistic buffer format

	27.2.2 niagara_mmustat_conf
	27.2.2.1 Errors

	27.2.3 niagara_mmustat_info
	27.2.3.1 Errors

	27.3 Fire performance counter APIs
	27.3.1 Definitions
	27.3.2 fire_get_perf_reg
	27.3.2.1 Errors

	27.3.3 fire_set_perf_reg
	27.3.3.1 Errors

	27.4 UltraSPARC T2 performance counters
	27.4.1 Strand performance instrumentation
	27.4.2 DRAM Performance Instrumentation
	27.4.3 API calls for SPARC and DRAM performance counters
	27.4.4 niagara2_get_perfreg
	27.4.4.1 Errors

	27.4.5 niagara2_set_perfreg
	27.4.5.1 Errors

	27.4.6 API calls for PCI-Express interface unit performance counters
	27.4.7 n2piu_get_perf_reg
	27.4.7.1 Errors

	27.4.8 n2piu_set_perf_reg
	27.4.8.1 Errors

	28 Logical Domain Channel (LDC) infrastructure
	28.1 Overview
	28.1.1 Packet based communication
	28.1.2 Shared memory communication

	28.2 Hypervisor infrastructure
	28.2.1 Packet delivery
	28.2.2 Shared memory
	28.2.2.1 Map table
	28.2.2.2 Map table cookies
	28.2.2.3 Map table entry
	28.2.2.4 Copying in and out of a peer's exported memory
	28.2.2.5 Mapping page use and restrictions
	28.2.2.6 Mapping revocation

	28.3 LDC virtual link layer
	28.3.1 Communication overview
	28.3.2 Packet formats
	28.3.3 Communication protocol

	29 Virtual IO device protocols
	29.1 Virtual IO communication protocol
	29.1.1 VIO data transfer
	29.1.2 VIO device message tag
	29.1.3 VIO device peer-to-peer handshake
	29.1.3.1 Version negotiation
	29.1.3.2 Attribute exchange
	29.1.3.3 Descriptor ring registration
	29.1.3.4 Handshake completion

	29.1.4 VIO data transfer modes
	29.1.4.1 Packet based transfer
	29.1.4.2 Descriptor rings

	29.1.5 Virtual IO Dynamic Device Service (DDS)

	29.2 Virtual disk protocol
	29.2.1 Attribute information
	29.2.2 vDisk descriptors
	29.2.3 Disk operations
	29.2.3.1 Disks and slices
	29.2.3.2 VDisk Block Read command (VD_OP_BREAD)
	29.2.3.3 VDisk Block Write command (VD_OP_BWRITE)
	29.2.3.4 VDisk Flush command (VD_OP_FLUSH)
	29.2.3.5 VDisk Get Write Cache enablement status (VD_OP_GET_WCE)
	29.2.3.6 VDisk Enable/Disable Write Cache (VD_OP_SET_WCE)
	29.2.3.7 VDisk Get Volume Table of Contents (VD_OP_GET_VTOC)
	29.2.3.8 VDisk Set Volume Table of Contents (VD_OP_SET_VTOC)
	29.2.3.9 VDisk Get Disk Geometry (VD_OP_GET_DISKGEOM)
	29.2.3.10 VDisk Set Disk Geometry (VD_OP_SET_DISKGEOM)
	29.2.3.11 VDisk SCSI Command (VD_OP_SCSICMD)
	29.2.3.12 VDisk Get Device ID (VD_OP_GET_DEVID)
	29.2.3.13 VDisk Get EFI Data (VD_OP_GET_EFI)
	29.2.3.14 VDisk Set EFI Data (VD_OP_SET_EFI)
	29.2.3.15 VDisk Reset (VD_OP_RESET)
	29.2.3.16 VDisk Get Access (VD_OP_GET_ACCESS)
	29.2.3.17 VDisk Set Access (VD_OP_SET_ACCESS)
	29.2.3.18 VDisk Get Capacity (VD_OP_GET_CAPACITY)

	29.3 Virtual network protocol
	29.3.1 Attribute information
	29.3.1.1 Multicast information

	29.3.2 vNet descriptors
	29.3.3 Virtual LAN (VLAN) support
	29.3.4 Network Device Resource Sharing via DDS

	30 Domain services
	30.1 Overview
	30.1.1 Communication Stack

	30.2 Domain Services Protocol
	30.2.1 Definitions
	30.2.2 DS Message Header
	30.2.3 DS protocol fixed message types
	30.2.4 Initiate DS connection
	30.2.5 Initiation acknowledgment
	30.2.6 Initiation negative acknowledgment
	30.2.7 DS protocol version negotiation

	30.3 DS protocol version 1.0
	30.3.1 Service Handles
	30.3.2 Service Identifier
	30.3.3 Result Codes
	30.3.4 DS Message types defined for v.1.0 of the DS protocol
	30.3.4.1 Register Service
	30.3.4.2 Register Acknowledgment
	30.3.4.3 Register Failed
	30.3.4.4 Unregister Service
	30.3.4.5 Unregister OK
	30.3.4.6 Unregister Failed
	1.1.1.1 Data Message
	1.1.1.2 Data Error

	30.3.5 DS Capability Version Negotiation & Registration
	30.3.6 Service Requests
	30.3.7 Unregistration

	30.4 DS Capabilities
	30.5 MD Update Notification version 1.0
	30.5.1 Service ID
	30.5.2 MD Update Request
	30.5.3 MD Update Response

	30.6 Domain Shutdown version 1.0
	30.6.1 Service ID
	30.6.2 Domain Shutdown Request
	30.6.3 Domain Shutdown Response

	30.7 Domain Panic version 1.0
	30.7.1 Service ID
	30.7.2 Domain Panic Request
	30.7.3 Domain Panic Response

	30.8 CPU DR Version 1.0
	30.8.1 Service ID
	30.8.2 CPU DR Message Header
	30.8.3 Message types
	30.8.3.1 CPU DR Request records payload
	30.8.3.2 Request number
	30.8.3.3 CPU_CONFIGURE request
	30.8.3.4 CPU_UNCONFIGURE request
	30.8.3.5 CPU_FORCE_UNCONFIG request
	30.8.3.6 CPU_STATUS

	30.8.4 CPU DR OK response payload
	30.8.4.1 CPU DR OK Result codes
	30.8.4.2 CPU DR OK status codes
	30.8.4.3 CPU DR OK response string

	30.8.5 CPU DR Error response

	30.9 VIO DR service version 1.0
	30.9.1 Service ID
	30.9.2 Message format
	30.9.3 Message types
	30.9.3.1 DR_VIO_CONFIGURE request
	30.9.3.2 DR_VIO_UNCONFIGURE request
	30.9.3.3 DR_VIO_FORCE_UNCONFIG request
	30.9.3.4 DR_VIO_STATUS request
	30.9.3.5 Request number
	30.9.3.6 Device Name
	30.9.3.7 Device ID

	30.9.4 VIO DR response message
	30.9.4.1 VIO DR response message format
	1.1.1.1 VIO DR Result codes
	30.9.4.2 VIO DR status codes
	30.9.4.3 VIO DR 'reason' string

	30.10 Crypto DR service version 1.0
	30.10.1 Service ID
	30.10.2 Message format header
	30.10.3 Message Types
	30.10.3.1 Request messages
	1.1.1.1 Response messages

	30.10.4 Request Payload
	30.10.5 Request Number
	30.10.6 DR_CRYPTO_CONFIG request
	30.10.7 DR_CRYPTO_UNCONFIG request
	30.10.8 DR_CRYPTO_FORCE_UNCONFIG request
	30.10.9 DR_CRYPTO_STATUS
	30.10.10 DR CRYPTO OK response payload
	30.10.11 DR CRYPTO OK result codes
	30.10.12 DR CRYPTO OK status codes
	30.10.13 DR Crypto Error Response
	30.10.14 Operational Overview
	30.10.14.1 Offlining a Crypto Unit
	30.10.14.2 Onlining a Crypto Unit

	30.11 Variable Configuration version 1.0
	30.11.1 Service IDs
	30.11.2 Message Header
	30.11.3 Message types
	30.11.4 Set Variable Payload
	30.11.5 Delete Variable Payload
	30.11.6 Response Payload
	30.11.6.1 Response Result Codes

	30.12 Security key domain service version 1.0
	30.12.1 Service IDs
	30.12.1.1 Programming Note

	30.12.2 Message Header
	30.12.3 Message types
	30.12.3.1 Set keystore Payload
	30.12.3.2 Delete keystore Payload

	30.12.4 Response Payload
	30.12.4.1 Response Result Codes

	30.13 SNMP service version 1.0
	30.13.1 Service ID
	30.13.2 Message header
	30.13.3 Message types
	30.13.3.1 SNMP Request Message
	30.13.3.2 SNMP Reply Message
	30.13.3.3 SNMP Error Message

	31 Appendix A: Number Registry
	31.1 Hyper-fast Trap numbers
	31.2 FAST_TRAP Function numbers
	31.3 CORE_TRAP Function numbers
	31.4 Summary of trap and function numbers
	31.5 Error codes

	32 Appendix B: Domain service registry

