UltraSPARC Virtual
Machine Specification

ORACLE

UltraSPARC Virtual Machine Specification

ORACLE

Compiled from hg version 3033604f0239 3.0-draft7

Publication date 2012-03-13 19:43
Copyright © 2008, 2010 Oracle and/or its affiliates. All rights reserved.
Copyright © 2008, 2010 Oracle et/ou ses ailiés. Tous droits réservés.

This software and related documentation are provided under alicense agreement containing restrictions on use and disclosure and are protected by intellectual property
laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit,
distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to usin writing.

If this is software or related software documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following
noticeis applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are “commercial
computer software” or “commercial technical data” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and,
to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December
2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications which may create arisk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability
for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. Intel and Intel Xeon are trademarks
or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc.
UNIX isaregistered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its
affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Ce logiciel et la documentation qui I’accompagne sont protégés par les lois sur la propriété intellectuelle. |ls sont concédés sous licence et soumis a des restrictions
d'utilisation et de divulgation. Sauf disposition de votre contrat de licence ou de laloi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, breveter,
transmettre, distribuer, exposer, exécuter, publier ou afficher le logiciel, méme partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il
est interdit de procéder a toute ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté a des fins d’ interopérabilité avec des logiciels tiers ou
tel que prescrit par laloi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu’ elles soient exemptes
d'erreurs et vous invite, le cas échéant, alui en faire part par écrit.

Si celogiciel, ou la documentation qui I'accompagne, est concédé sous licence au Gouvernement des Etats-Unis, ou a toute entité qui délivre lalicence de ce logiciel
ou I’ utilise pour le compte du Gouvernement des Etats-Unis, la notice suivante s applique:

U.S. GOVERNMENT RIGHTS. Programs, software, databases, and rel ated documentation and technical data delivered to U.S. Government customers are "commercial
computer software" or "commercial technical data' pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and,
to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December
2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

Celogiciel ou matériel a été développé pour un usage général dans le cadre d’ applications de gestion des informations. Ce logiciel ou matériel n’est pas congu ni n’est
destiné a étre utilisé dans des applications arisque, notamment dans des applications pouvant causer des dommages corporels. Si vous utilisez celogiciel ou matériel dans
le cadre d' applications dangereuses, il est de votre responsabilité de prendre toutes |es mesures de secours, de sauvegarde, de redondance et autres mesures nécessaires
ason utilisation dans des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés par I’ utilisation
de celogiciel ou matériel pour ce type d’ applications.

Oracle et Java sont des marques déposées d’ Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre a des marques appartenant ad’ autres
propriétaires qu’ Oracle.

AMD, Opteron, lelogo AMD et le logo AMD Opteron sont des marques ou des marques déposées d’ Advanced Micro Devices. Intel et Intel Xeon sont des marques ou
des marques déposées d’ Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques déposées de SPARC International,
Inc. UNIX est une marque déposée concédé sous license par X/Open Company, Ltd.

Table of Contents

PrE AR ..t e XVii
L FOMEWEINT ..ot XVii
2. Related SPECITICAIIONScevueeiiiti ettt ettt e e eeaeas XVii

Lo OVEIVIBIW ottt ettt ettt e n e enaa s 1
1.1. ArchiteCtural reQUITEMENESiieite ettt et e e e e e ettt e e et e e e e et e e enbaneeeens 1
1.2. The hypervisor and sUNAV arChiteClUreccoeuunieiiiiiie e 2
1.3. Privilege, isolation and VirtualiZationccoouuiiiiiiiiiiiiie e 2
L4, DIFECE 11O ettt ettt e e e eee 3
1.5. Logical DOMaiN ChanNELSuiiiiiieieii et 5

1.5.1. StAE €SS CONNECLIONSuueieiii ettt ettt r et e e 6
1.5.2. LDC SECUNMLY .eeveieeeeeii ettt ettt e et et e e et e e e e ra s 6
1.6. MaChing DESCITPLIONSv.ueiiiitie ettt ettt e ettt ettt e et e e e 6
L7 VIRUBL O ettt 7
L1.7.0 ADSIFBCHION ..ovviiiiiii et 9
1.7.2. Stateless connections & multipathed /Ooiiiiiiiiiiii 9
1.7.3. Virtual diSK SEIVICES ...ttt e 10
1.7.4. Scalable virtual NEtWOrKing SEIVICESuiiiiiiieiiii e 10
L.7.5. Virtual 1/O LIMIES .oeeeeiiiiii et 11
L8 HYDIA O et 11
1.9. Logical DOMEIN M@NEAGETceuuueiiiiieeeiii ettt et e et e et e e e e e ena s 12
1.9.0. DOMAIN TOIES ...ttt e 12
1.9.2. DOMAIN dEPENAENCIEScieeiiei ettt 13
1.9.3. DOMain Manager OPEIEHIONuuueeeerin et e et et e et e e e et eeeneaes 13
1.10. DOMaIN SErVICe INFIASIMUCIUNEceeeti ettt 15
1.11. OPENBOOL FIMMIWEIE ...ttt ettt e e 16
122, Error HAaNGING . oooeneei ettt 16
1.13. Advanced LDOMS FEALUINESiieiiiii ettt e s 17
1.13.1. DynamicC reCoNfiQUIaLionuieieuuuieienie et 17
1.13.2. Logical domain Migrationoeeeeruieeieuieeiiiie et e e 17

2. Hypervisor Call CONVENLIONScoouuiieiiii et 19
2.1, HYPEI-TESE TrADS v 19
2.2, FASE ITADS .. oeee et 19
2.3. Post hypervisor trap PrOCESSINGc.uuuuieeuuneteiii e eenti e e et e e eai e e e e e e e e eae s 19

3. SHALE DEFINITIONS ..ttt e et e ettt e et e et e e e e e e eene 21
3.1, PrOCESSON SLALES ... cveveeeiiie ettt ettt et e et 21
3.2, Initial QUESE BNVIFONMENTuti ittt e et e e e e e e e ene e eeens 21
3.3, PrivIleged FEQISIENSceeeiii et 22

3.3.1. Non-Privileged REQISIEIScouuniiiiiiiiieiei e 22
3.3.2. Ancillary State REGISIENS ..covvuiiiiii e 22
3.3.3. Internal memory-mapped FEQISIENScuuuueieeeii et et et e 23
3.3.4. CPU-SPECITIC REGISIEISceeiei ettt 23
3.4. Other initial QUESE SEAEEeiieee et 23

4. AAAressing MOOEISooieiiii ettt 25
A1, BACKGIOUNG ...ttt ettt 25
A.2. AQUIESS TYPES ..ottt et 25
A.3. AQUIESS SPACES ...oveneeieti ettt ettt et et 25
4.4, Address Space iIdENTITIErSovieii e 25

44.1. ASI 0x14 & Ox1c: REAL_NMEM _LI TTLE} oo 25
44.2. ASI 0x15 & Ox1d: REAL_I O{ _LI TTLE} ..ooviiiiiiie e 26
4.4.3. ASI 0x26 & Ox2E: REAL_QUAD{ LI TTLE} ...ooiiiiiiiiiiiiii e 26
444, ASE OX2L: MV ot 26

UltraSPARC Virtual

Machine Specification

4.5, Translation MEPPINGSuueerueeeiieeie e e e e e e e et e et e e et e e et e et e eanesataertaeranaernes 27
4.6. MMU DEMAEPD SUPPOI 1 .uititiitiei ettt e e e e e et e et e et e e e e et e e e e e an e e eaees 27
A7, MMU F0S ottt e e e e et e e et e e e an 27
4.8. MMU FaUIt SEALUS @IEA .. .ceeevii et e e e e et eeeatanaeaees 28
LI o TN 1Y/ oo = 29
5.1. Privilege mode trap PrOCESSINGccuvuieiieiiieeiiie e e e ee et e e eeat e e et e e e e e s st e eanneeaens 29
B2, TraD [EVEIS o 29
5.2.1. Privilege mode TL oVEflOWoiiiiiiiici e 29

5.3. Sundv privileged-mode trap tableccooviiiii i, 29
L 110 0oL 4o o = S 30
L0 T T T PP 30
6.2, INLEITUPL FTEPOITS ...ttt et e e e e e e e e a e eens 30
6.3, INLEITUPL QUEUES ...ttt et e e et e e e e e n e eans 30
6.3.1. QUEUE SUPPOIT FEQISLEIS . .evuiiiiieeeiee e et e e e e e e e e e e e e e e et e e e ean s 30

O L= U o A1 = o = T PRSP 31
6.4.1. CPU MONCO INEITUPES ..vuiiiieeieeei et e e ean e eees 31
6.4.2. Device MONAO INTEITUPESvuiiii e e e e e e e e eaa e eees 32

B.5. DEVICE INTEITUPBLS . ..vuiiiiiii e e e e e e e e e e e e e e et e e st e e et e e aaeeeens 32
6.5.1. Device handles and deVINOScoovvviiiiiiiiieee e e e 32

6.6. SYSINOS AN COOKIES ... cevuiiiiiii e e e e e e e e e e e eaens 32
6.6.1. Legacy USe (the SYSIND) ...ccvvieiiiiiiiii e 32
6.6.2. INtEITUPL COOKIES .. .ivvniiiiiii e e 33

8 = (o 11Te o L= PSP 34
4% T B T 1 T 0 PP 34
O G 1 o] o == == PP 34
7.2.1. RESUMBDIE BITON ...t e e e e 34
7.2.2. NON-TESUMADIE EITOT ...ttt e 34

0 R = g (0 g (= o o 4 £ PRSPPI 34
T4, EITOU QUEBUES ...ttt et e e e e et e e e e e e e e e e e e e e n e e e e e e e aanes 34
7.4.1. Error Queue Head and Tail POINTErSocvvniiiiiiiiie e 35

S T = (0] g 1 =0 L= PRSP 35
V= o o T g Tl L= o1 o I 37
8.1 REQUITEIMENES ...iiieiiii e e e e e e e e e e et e et e e et e e et e e et e eeanaeeees 37
SIS = o o = PP 37
TG T o o [T PPN 37
S == o[PSP 38
8.4.1. Version NUMDBENINGuoiiiiiiiii e e e e 38
8.4.2. SIZE FIEIUS v 38

8.5, INAME BIOCK ... iieiiiiee ettt e e e et e e et e e b 39
T B 7 =) 2] (o PP 39
S VLo (= 2] Lo PP 39
8.7.1. EIement fOrMELcevvnieiiii ettt e e e e e eeeae e eees 40
8.7.2. Tag defiNITiONSu.iiiiiiiii e e e e aeas 41

B.8. INOUES ...ttt et e et a e et aae 41
e I\ Lo (=0 = 1T 0] (o g PSPPI 42
e I N\ oo Lo =0 o) == PN 42

8.10. CONLENE VEISIONS ..vueeeiiieeteiiieeeeetts e e e et s e e e et e e e et s e e e et e e e e et s e e e et e e e eatnaeeeatnnnes 42
8.11. CommON data AEfiNITIONSiiiieeiee e e e e e e e e eee 43
ST I S {1 o I - Y PN 43

8.12. How to use amaching desCriptionccouuieiiiiiiiiie e e e e 43
8.12.1. USINg the MD @S @ liSt ..ccuuiiiiiiii e 43

8.13. Accelerating String I0OKUPSuuiiiiiiii e e e e e e aens 44
8.14. Directed ACYCliC Graphcoouiiiiii i 45
ST IR € =0 10 (=PSRN 45

UltraSPARC Virtual

Machine Specification

8.15. DAG CONSITUCLION ...etevtieeieiii e ettt e et e e e et s e et e e e et e e e et e e e et e e e eaen s 45
8.16. REQUITEA NOUES ... cevueiiii et e et e e e e e e e e e e e e e e et s e e eeanaaees 46
8.17. The VAaNIIAIMDcoiiiiiei e 46
8.18. Formation and meaning of aDAGccouiiiiiiiii e 46
8.19. GENENIC NOUES ...evviieeeii ettt ettt et e e e et e e et e e e e et e e e et e e e et e e e eaan s 47
8.19.1. ROOL NOUEvvieeeiiii ettt et e et e e e et a e e e et e e e eereaeaees 47
8.19.2. CPUS NOUE ...ouniiiieiii et e et e e e e e e et e e e e et e e et e e et e aanaee 47
ST T T o o LU 0 1o L= PPN 48
8.19.4. MEMOIY NOUEcvuiiiiieii et e e e e e e et e e e e ea s 50
8.19.5. MBIOCK NOEuneeiiiii et 51
8.19.6. PlatfOorm NOOEueieiiiie i 51
8.19.7. DOMAIN SEIVICES NOUEevvveieeiii et e e e s 54
8.19.8. DOMaIN SErVICES POIt NOGEvuveiiieiiii e e e e e e aeas 54

8.20. Memory hierarchy NOUESooiiiiiiii e e e e e e e aes 54
8.20.1. CaChE NOUE .. .ceveiieieeii et e e e e e 54
8.20.2. EXEC-UNIT NOUEvuneeiiii ettt et e e e e et e e e eaa e e eennns 55
8.20.3. TLB NOUE ... ittt e et e e e e e aa e 57

B.2L. VaAlBDIES ... 58
ST I R I T~ ¢] o4 o o P 58

822, KB SO . ettt 58
ST T B 1=~ v] o o o [P 58

8.23. VMU DEVICES .. iieite ettt ettt et e et e e et e e e e et e e e e et e e e eebeneeeeees 59
8.23.1. Descriptions for virtual deVviCeSoeviviiiiii i 59
8.23.2. Virtual deViCES NOUEccuunieiiiiii et 59
8.23.3. Channel deviCES NOUEccuvuiiiiii e 60
8.23.4. Virtual deviCE NOUEcoovuieiiii i 61
8.23.5. Virtua device POrt NOUEcovueiiii e 63
8.23.6. Channel endpOintS NOUEcevniiiiieiiie e e 66
ST T A B T~ v] o4 o o P 67
8.23.8. Channel endpOint NOTEcvvuiiiiiei e e 67
8.23.9. RNG Virtual-deviCe NOUEcccvvniieeiii et 67
8.23.10. Crypto Virtual-deviCE NOUEccvuiiii i 68
8.23.11. MAC-addreSSeS NOUEcevviieieiii ettt e 68
8.23.12. MAC-AArESS NOUEvvieeiiiii ettt et et e e e e e eeens 69

ST IR (= o Tos Y 410 o L=< P 69
8.24.1. Programming NOtES @nNd 8CCUMBCYcvvuneerneerinieeteeeiiieesieesneestneeesnaeesneenes 70
8.24.2. Memory latenCy group NOOEevviiiii e e e e e 70
8.24.3. Programmed 1/O [ateNCY GrOUP «....ueviiniiiiieeii e e e e e e e e 73
8.24.4. 1/0O DMA [aENCY GrOUP .vvneiieeeiieeie e e et e e e e e e e e e e et e et e e e e eanas 73
8.24.5. 1/O Interrupt latency group NOOEcouiiinieiii e 74
8.24.6. LatenCy groUPS NOTEivuieiiii et e e e e e e e e e e e e e et e e et e e e e an s 75

8.25. 1/O dEVICE NOUESceevii ettt e e e e et e e e eaa e 75
8.25.1. Physical Device Collection NOAEcovvniiiiiiiiiicie e 75
8.25.2. 1/O dEVICE NOEvi ittt e e et e e et e e e eees 75
8.25.3. UltraSPARC-T2 NIU network device NOdecovevvuvieiiiiiiieiiiiiiieveiin e 80
8.25.4. Interrupt MappPing NOUEoiiinieiii e e e e eees 81
8.25.5. SIOt NAME NOUE ... it e et e e e e s 82
8.25.6. Device NAaME @liaS NOUEueiiiiiieeiiii e 82
8.25.7. 1/0 device path aliases collection NOEccviiiiiieiiii e 83
8.25.8. 1/0O device path @lias NOAEccvvniiiii e 83

9. Logical domain VariablEScciiiiiiii e 84
0.1, OVEIVIBIW .eetiieeeii ettt e et e e e e et e e e ettt e e e et et e e e e et b e e e e et e e e e et e e e e et s 84
9.2. LDOM VAITEDIE SLOME ...ttt e e et e e et e e e 84
9.3. LDom variables and automatic rebOO0Loeevevunieeiiiiiieeeciie e 84

UltraSPARC Virtual

Machine Specification

9.3.1. Format of r eboot - command variableccovevviiiiiiii e, 85
9.3.2. Guest OS management of LDom variablesc.ccoeeviiiiiiiiiin i 86

J0. SECUNTY KBYS ouniiiiiiii it e e e e e e e e et e e e e et e e et e e eeanes 87
A o Y= = T oo 88
0 o o | S SPPPRRN 88
I o T = Y= £] o PN 88
I o T o 1= Y £ o] N 90

A 0o == = Vo= ST 91
L2.0. APL CallS et a e aae 91
It It O 3= o T = P 91

ot W 3= o T o (= o P 91
ot O T 3= T 1 N 92
12.1.4. mach_ St WaChOAOQuvvvn i e e e e aaas 92
12.1.5. MACH SUSPENGuiiiiiiiii e e e e e e e e e e e aen 93

2t I 3= o T o 93
o A 40T o T = £ 94
12.1.8. Mmach_reboot data SELovvviiii e e 95
12.1.9. mach_reboot data gLuvvvniiii e 96

A O B o= PP 98
13.1. CPU id @0 CPU LISt eiitiieiiii ettt e e et e e e e e e eaenas 98
13,2, APL CallS et 98
G 2ot T o o U = | PP 98
G o o U o o PRSP 98
13.2.3. CPU SEL TDa ..ceve i 99
T2 N v o U o = A 11 o 7= 99
L13.2.5. CPU YIEIA .ot 100

G T2 T o o [oo o | S 100
T2 A v o U o 1) o TP 101
jCTZ28 T v o 0 I 100 To (o JE== oo 101
T8 T o o U I o 1)/ o PN 102
G (O o o LU = = = PSPPI 102
T2 I I o o 1O (T G 4] . PR 103
T2 7 v o U (T G 2] . P 103

LA, IMIIMIU SEIVICES .vtuieeiiiie ettt e ettt ettt ettt e e e et e e e e et e e e e e et e e e eete s e e e aete s eeeeetnaeeees 104
14.1. Trandation Storage Buffer (TSB) specificationccooeviiiiiiiiiiiiiiin e, 104
O N o LS PP 104
14.1.2. CONLEXE INAEX 1.vvuiieeiii et e et e e et e eeaaan s 105

Y Y L = PSP 105
14.3. Trandation tahle ENtrIES ...ooovuiiei e 106
14.3.1. TSB entry tag WOcovviiiiiiei e e e e e e e e e e e eaes 106
14.3.2. TSB entry data WOrdccuuiiiiuieiiiieeii e e e e e e e anes 107

14.4. Trandation storage buffer (TSB) configurationccoceuuieiiiiiiiiiieiiieecie e e, 108
14.5. Permanent and non-permanent MapPPiNgS «.....vevueerneerinieeiiieeaiieeeieerseersneeeenneesenees 108
14.6. MMU FaUlt STABIUS @IEA ... cvvvviieeeiii ettt e e et e e et e e e eeanns 108
14.7. Global MMU OPEIAtiONS ... ccvueiiiieiiieeee e e e e e e e e e e e e e et e e et eeaeeeees 111
TA.8. APL CallS coniiiiiii e 112
14.8. 1. MMU_ESD CEXO Leuiiiiiiie e e r e 112
14.8.2. MMU_tSD CEXNOND ...uiieiii e e e e e e e e e e e e e ee 112
14.8.3. MMU_AEMBP PAGE «.vvueeeeneeetneeeieeeitaeeetae et e e et e et eeat e e ete e et e eateeeaeesannas 113
R 010 1W o (= 0= o o oGP 113
14.8.5. mMMU_demap allcoiiiiiii e 114
14.8.6. MMU_MEP_AANiiiiii e 114
14.8.7. mMuU_Map_PEM_adarciii i 115
14.8.8. MMU_UNMAP_AAAN .. .ovuiiii e e e e 115

Vi

UltraSPARC Virtual

Machine Specification

14.8.9. mmu_unmap_Perm_addrcoiiiiiiiii e 116

14.8.10. mmu_fault_area CONfoiiiiiiii i e 116

14.8.11. MMU_ENADIE .. coueiii e 117

14.8.12. mMmuU_tsh CEXO INFO ..uuniiiici e 117

14.8.13. mmu_tsh ctXNon0 iNfOcovuiiiiiii e 118

14.8.14. mmu_fault_area iNfOcouiiiiiiiiiii e 118

14.8.15. mmu_global demap Pageeeeunieiiiiiie e 118

14.8.16. mmu_global demap CEXcceuiiiiiiiiie e 119

14.8.17. mmu_global_demap allc.oiiiiiiiii 119

14.8.18. mmu_global demap StatUSevvinieiiieiii e 120

15. Cache and MEMOTY SEIVICEScivuuiiiiiieiiieiie e e e et e e e e e e e e et e e et e e st e e st eeaaeeaaaees 121
I5. 00 APL CallS coniiieii e 121
T 5t O 437 o = o 1 o 121

T B 1 07 0 0 Y o PP UPRPRPTPRN 121

16. DEVICE INTEITUPL SEIVICES ..uuiiiiiiiii i eeie et e e e e e e e e e e e e e e e et e et e e et e e et eeaneeanns 123
30 T T 1 1 PP 123

16.2. APL CallS cuniiiiiii e 124
16.2.1. VINEE _gEICOOKIE ..vuuiiiieeii e e et et e e e e e e e e e e et e e e e e et e e san e een s 124

16.2.2. VINET_SEICOOKIE ..evuuiiiteiiieeiiii et e e et e e aaeeeenns 124

16.2.3. vintr_getenabledcoooiiiiii 124

16.2.4. vintr_satenabledcc.iiiiiii 125

16.2.5. VINE _QEISEALE ...uvvteeii e e e e e e et e e e e e e e e e et e e et e e et e e aaeeaens 125

S SR g = I = =TS 125

16.2.7. VINEE _QEIAIGEL .ovvniiie it e e e e e e e e e e e e e aanas 126

16.2.8. VINET _SEHAIGEL ...ovuiiiiii e e e e e e e e e e e et e aan s 126

16.3. Deprecated APl CallSoovniiiiii 127
16.3.1. intr_devino 10 SYSINOcvvuuiiiiieiii e e e e e e e e e e 127

16.3.2. intr_getenabledcooviii 127

16.3.3. intr_SEtenabledcouniie e 127

R T o\ o (= £ - (= 128

RN [o (g = £ - (=P 128

16.3.6. INtr_QEHANGEL ...oevniii e e e e e 128

I A T 01 (g = 1= (o (= A 129

16.4. Interrupt APl VEIrSION CONIOLviiniii e e e e 129

17. TIME Of QAY SEIVICES covuniiii it e e e e e et e e e e e e et e e et e eanaees 131
L7. 0 APL CallS oo 131
2 0 O (oo o = PP 131

o oo = PSRN 131

18, CONSOIE SEIVICES .uuieiieiiieeeeii ettt e e et e et e e et e e et e e e e et e e e et e e e e tt e e e e tb e eeenen e 132
L8.L. API CallS cuniiiiiii e 132
18.1.1. CONS GEICNAI ..ucvviieiiii e e e e e e e e e et e ean s 132

18.1.2. CONS PULCHENiitiiiii e e e e e e e e e e e een 132

18.1.3. CONS TEAM .. .cevniii e e e e e e e e e e 132

18.1.4. CONS WIITE ouuiiiiiieii e e e e e e e e e e e e e e et e e e e ean s 133

19. DOMEIN SEALE SEIVICES ..vuueieiiit et et e ettt e ettt e e et e e et e e et e e e et e e e e et e e e e et e e eeatn s 135
L. L. APL CallS ceniiiiii e 135
T o = - 1= = PP 135

19.1.2. SOft_StA Bl ..evniieii e 136

20. COre AUMP SEIVICES ..uuuiiiineii ettt et et e e e et e e e e e e e et e e et e e et e e e at e e e et e e et e eetn e eaneeenns 138
20.1. AP CaIIS it e a e aae 138
20.1.1. dump_BUf_UPEEEuiiicie e 138

20.1.2. dump_BUF INfO ..iieeci e 139

21, TraP trACE SEIVICES ..ouuiiiiieii et ettt e e e et e e e e et e e et e e et e e et e e e e et e e et e e et e e etn e eaneeannns 140
21.1. Trap trace buffer CONtrol StrUCLUEooviuiiiiiie e, 140

Vii

UltraSPARC Virtual

Machine Specification

21.2. Trap trace buffer entry formatcoooouiiiiiii e 140
20,3, AP CalIS e e aae 141
21.3.0. ttrace buf CONf ... 141
21.3.2. ttrace buf iNfOoooee i 141
21.3.3. traCe ENADIE ... i 142
21.3.4. HIaCE frEEZE ...oviee i 142
21.3.5. ttrace addentrycoouiiiiiiiii e 142

22. Logica Domain Channel SEIVICESccuuiiiii e e e e e e e e e 144
7 T = 0T | o] 1 144
22.2. LDC QUEUES ... eeeetiee ettt ettt ettt ettt e e ettt a e aaanan 144
7 T I D TR [51 (= 1 (V]) (=P 145
224, APL CallS .. e aae 145
275 T U o oG o (o) 1 | 145
22.4.2. 1dC tX_GINFO covvniiiii e 146
2 e T [ol o Qi o (= A - (= 146
2244, 1dC X SBE QA covvneeiiiii e 147
7 ST Lo ol o Qo [+ | 147
7N ST [ol o o 1 1) { T 148
5 B [ol o Qo = N C- (= P 148
22.4.8.1dc rX St gheadoiiniiiii 149

22.5. Shared Memory API CallSoiiiicii e 149
22.5.1. Idc_set Map tablecovuiiii e 149
22.5.2. Idc_get map tablecouiiiiii 150
7 ST T [oo o] VP 150
7Y S [ol 1 7= o 1 o P 151

7S 3T Lo o U g0 4= o TP 152
7 SN ST [ol (=Y 0] (Y 152

23, PCl /O SEIVICES ..ottt ettt e e e e e ettt e e e e et e e e eate s e e e eatnaaeeenes 154
P22 50 O 11 o [0 o [o PP 154
23.1.1. EXternal dOCUMENLScccuuueeiiiiiieeeeii e e e et e e et e e e et e e e et e e e et e e e e enn s 154

23.2. 1O Data DEfINITIONS ...uieeiiiiieeiiie ettt e e e e e e et e e et e e e e b 154
23.3. PCl 10O Data DEfINITIONSuuuiiiiiiie et e e 154
234, APL CallS .o 157
p22C 37 T oo IR o 400U I 0o T 157
23.4.2. PCI_IOMMU_AEMBP ...vvniiiiieiiie e e e e e e e e e e e e e e e et e e et e eeanaeees 158
23.4.3. PCI_IOMMU_GEIMBID ©.uvvtteiiii e e e ee e e e e e e e e e et e e e e e et eeaaeeannnes 158
23.4.4. PCi_iOMMU_GEIDYPASS ...vuiiiicii e 159

PG TSN oo oo 41 o o = PN 159
23.4.6. PCI_CONFIG PUL oevniiiii e e e e e e e e e e e et e e aan s 160
2347, POL_PEEK covuiii et 161
PG T T o o [) (= T 161
T/ I oo o 0= N P 162

RIS (ol D1 < o B [PP 163
23.5.1. SDIO DEFINITIONS t.vuiieeeiiiieeeeeiie et e e eeere e 163
23.5.2. SDIO APl DEFINITIONS ..vvuieeeiiiieeeeiiiee e e et e e et eeeeianaeeeees 163

P e O I Y S S = Y o= TP 167
24.1. Message Signaled Interrupt (MSI) .ooeniiiii e 167
24.2. MS| Event QuUeUe (MS| EQ) ...uiiieiiiiiiiii e e e et e 167
24.2.1. MSI/Message/INTx Data Record formatooeevviiiiiiiiiiineciieceeeeeeeeaenn, 167

P G I B L 10T] S UPPPSPPIN 169
244, APl CaIIS .. e aae 170
29 T o o R 1 1= T [o 4 | 170
24.4.2. PCI_MSIQ INFO coivniiii e e 171
24.4.3. pCi_MSIQ GEIVAIIA ..ovniii e 171

viii

UltraSPARC Virtual

Machine Specification

24.4.4. pCi_MSIQ SEVAII ..oovniiiicie e 172

2/ ST oo 101 T e (=6 = = P 172
24.4.6. PCI_MSIQ SEESEAEE ..uuiveeiiieeei e et e e e e e e e e e e e e e e e et e e et e e e e eaneees 172
24.4.7. pCi_MSIQ GEINEAiiiici e 173
24.4.8. pCi_MSIQ SEthEAciveiii i 173
24.4.9. PCI_MSIQ QELAI ..uiivniiii e 173
24.4.20. pCi_MS_GEVAIIA .ovniiii e 174
24411, PC_IMSI_SEEVAIIT ... e e 174
2 2 o 41 T (=111 T 174
P2 R T o o .11 T = 0 01 o [P 175
P2 O o 4 T (=6 = = 175
2 ST o o Il 11 T = = = N 175
P (G o o T 141~ o e =110 o 176
2 N A o T 111 o TR =1 1= T 176
24.4.18. pCi_MSY_GEIVAIA ... 176
24.4.19. pCi_MSY_SEVAIIT .ouiii i 177

25. CryptographiC SEIVICESuuiiieiii et e ettt e e e e e e e e e e e e e e e e et e e et s e et e e e ta e e et e e eneeeanns 178
25.1. Random NUMDBEr GENErationccuuuiiiiiiiieeiiii e e e e eees 178
25.1.1. Trusted DOMEINS .. .cevvvneeieiiieeeeii e eeete s e e et s e e et e e eet s e e eate s e e eanaaeeeaenns 178
25.1.2. RNG Control Register data StrUCIUIeccuuveiiiieiiieeiii e e e e e, 178
P R B o\ C IS - (= USSP 179
25.1.4. Maximum Data Read Lengthcocooiiiiiiiiii e, 179
25.1.5. RNG MuUtual EXCIUSIONuuiiiiiiiiieiiiis e e e 179
25.1.6. RNG Data Availabilityuuiiiieiiiiiiiiiieee e 180
25.1.7. RNG Watchdog TiMEOULcevueiiiiiiii e eee e e e e e ee et e e e e e e 180
25.1.8. INQ_Aata Avuiii e 180
25.1.9. rng_Ctl_read (2.0) ..vuniiiii i 180
25.1.10. rng_CtLWIITE (2.0) oevniiii e 182
25.1.11. rng_data read diag (2.0) ..oovniiiiniiii e 183
25.1.12. Deprecated RNG 1.0 APIS .ooviiiiiiii e 183

25.2. NiaQara CIYPLO SEIVICEScvuueiiteiiieeei e et e e e e e e e e e e e et e et e e et e e et eeaaneeaannas 186
ST VA = ¢ Lo 11 oo TP 186
25.2.2. WOIK QUEUESceieeiii i et e e e e e e e e e e et e e e e eaneees 186

2 T2 T oS o (oo o | 188
N S 4 oY o]) o T 189
25.2.5. NCS GEINEAAoveiii e 190
25.2.6. NCS_Sethead Markeriiiii i 190
25.2.7. NCS_GEIAI ..ooveiiiiiii e 190
25.2.8. NCS_SAHAI iiiiiiieiiii e 191
25.2.9. ncs_ghandle t0 deViNOccvviiiiiiii e 191
25.2.10. ncs_ulgeonf (VErSION 2.1) ...uuciiinieeiieici e e e e e e e e e e 192

25.3. Trusted Platform Module PhySICal ACCESScvvvueiiiieeiii i e e 192
25.3. 1. TPM DEfINITIONS ...eiiiiiiieeiei et e e e e et e e eaae e e eanen 192
25.3.2. TPM Hypervisor CallScciuuiiiii i 193

26. UltraSPARC-T2 Network Interface UNitoooeeuiiiiiiiiieci e e 195
P22 300 R g1 o [0 o (' o PP 195
26.2. DEFINITIONS ...ttt et e et e e e et e e e e et e e e eete e eeeatenaeaees 195
26.3. Version 1.0 and version 1.1 APIS ...t 196
26.4. VErSION 1.0 APIS ...t 196
26.4.1. Niu_rx_10gical_Page SElvuiiiiiieii e 196
26.4.2. Niu_rx_10gical_Page GELuovivn e 197
26.4.3. Niu_tX_10gICaAl_PA0E SBL ...ivviiciii e 197
26.4.4. Niu_tX_10gICaAl_PAgE GEBLcvvniei e 198
26.5. VEISION L1 APIS ..ot 198

UltraSPARC Virtual

Machine Specification

26.5.1. NIU Virtual Region (VR) SpeCifiCc APIScooiiiiiiieiiiieeeceec e 199
26.5.2. NIU DMA Channel (DMAC) SpeCifiC APISiiiiiiiiiiiiii e 200
26.5.3. Virtualized Access to Non-virtualized NIU registersoococeveviiiiiiiiiennnenns 205

26.6. VErSION 2.0 APIS ...t 207
26.6.1. niu_rx/tx_10gical Page SELcccuniiiiiiiii i 208
26.6.2. niu_rx/tx_logical Page gLc.viiiiiiiii i 208
26.6.3. NIU Virtual Region (VR) SpeCifiCc APIScoiiiiiiiieiiie e 209

27. Chip and platform specific performance COUNLErSoevviieiiieeiie e e e e e 210
27.1. UltraSPARC-T1 performance COUNTENSuiiuueiiiieeiii e e e e e e e e e e e aaaes 210
27.1.1. niagara geL PO IEg covviii i 210
27.1.2. Niagara SEt PEITIOY .vvuneiie e e 211
27.2. UltraSPARC-T1 MMU StatiStiCS COUNEISovvvvenieiiiiiieeeiiie e et e e et e et e eeneens 211
27.2.1. Hypervisor API for UltraSPARC-T1 MMU statistics collection 211
27.2.2. niagara MMUSEAL_CONTiiiiiii e e e e e e 212
27.2.3. niagara MMUSEA_INfOiiivii e 213

27.3. Fire performance COUNtEr APISuiiii e 213
27.3.1. DEfINITIONS ...oevviieieeii et e et e et e e et e e e s 213
27.3.2. Tire get PEIT OO cooveiii i 214
27.3.3. fire SEL PO 100 .o 214

27.4. UltraSPARC T2 performance COUNENSuuiviunieiieeeiieeie e e e eeie e e e et esanaeeannns 215
27.4.1. Strand performance iNStrumMENtationcccuiveiueeiiiieeiiie e e e e e eaneens 215
27.4.2. DRAM Performance INStrumentationoveveeeinierieiiniereiiinneeeiiinneeennes 215
27.4.3. API calls for SPARC and DRAM performance counters..........cooceveveeevneennnn. 215
27.4.4. Niagara2 get PETIE0 ..uiie i 216
27.4.5. Niagara2 SEL PEIfrEg ..uuiiei i 216
27.4.6. API calls for PCI-Express interface unit performance counters............c.......... 217
A O gV o [V e = Al o L= 1 o [217
27.4.8. N2PIU_SEL PEIT OO covniiiii i e 218
27.5. UltraSPARC T2+ performanCe COUNTEIScvuuuieiieiiiieeiiee et eeseineesaeesieeeaneeanneens 218
27.5.1. Strand performance iNStruMENtationcccuiveiueeiiiieriiie e e e e e 218
27.5.2. DRAM Performance INStrumentationoveveeeinierieiinieneiinneeeiiinneeennes 218
27.5.3. L2 Cache Control REJISLENcovueiiieiiii e e e e 219
27.5.4. LPU Performance INStrumentationcouiveiiiiiiiireiinieeeiiin e eeeiens 219
27.5.5. GPD Performance INStrumentationovevieiiiieriiinie e eeeeens 219
27.5.6. ASU Performance INStrumentationc..evevieiiiieieiinie e eeeiens 219
27.5.7. API calls for SPARC and DRAM performance counters..........cooceveveeevneennnn. 219
27.5.8. Vfalls et PEITIEg .vnoie e 221
27.5.9. VIallS St POITIEQ covuiiii e 221
27.5.10. UltraSPARC T2+ PCle performance instrumentationcccoccceveevnneeennn. 222

27.6. UltraSPARC KT performance COUNLEY'Scccuuieiiiieiiiieeiiieeiie et e e e e e s e e e eeanneens 222
27.6.1. Strand performance iNStrumMENtationcccuiveiuieiiiieriiieeene e e e e eaneens 222
27.6.2. DRAM Performance INStrumentationoveveevinieriiiiniereiiinneeeiiinneeenens 222
27.6.3. L2 Cache Control REJISLENcovuieiiiieiii e e e 222
27.6.4. API calls for SPARC and DRAM performance counters..........coocevvveevvneennnn. 222
27.6.5. Kt _QEBL POITIEO covniii e 223
27.6.6. Kt SEL PEITIOg covvniii e e 224
27.6.7. API callsfor UltraSPARC-T3 PCI-Express performance counters................... 224
27.6.8. Kt I0S QL PEIT T80 civniii i 225
27.6.9. Kt i0S St PEITIE0 . ovvvneeii e 225

28. Logical Domain Channel (LDC) infrastruCturecooevuieiiiiiiiiieeie e 227
P22 I O Y= VT T PP 227
28.1.1. Packet based COMMUNICEIIONccvvveieiiiii e eeiii e e e e e eeeae e 227
28.1.2. Shared memory COMMUNICALIONuieivuieiiiieeiieeei e e e e e e e eeieeeane e 228

28.2. Hypervisor INFrastiUCLUIEiiieieiie aanees 229

UltraSPARC Virtual

Machine Specification

28.2.1. PaCKEt JElIVEIY .ovveiiiii i 229
28.2.2. Shared MEMOIYiiii e e e e e e aeaas 229

28.3. LDC Virtual lINK LAYiiieici e e e eaa s 233
28.3.1. COMMUNICALION OVEIVIEW ...eeviviiieeeiiieeeeeiie e e et e e e et e e e et e e e et e eeenin s 234
28.3.2. PaCKEt FOMMALS ...eevvueeiiiii e e et e e et e eeeae e eees 235
28.3.3. CommuNiCation ProtOCOIoeeiuuieeiiieiiiiee e e e e e e e e e e e eaeaas 237

29. Virtual 1O deVICE PrOLOCOISuuiiiieeii e e e e e e e e e e e et e e e e et e e et e eaneees 242
29.1. Virtual 1O communication ProtoColoevuuieiiiiiiie e 242
29.1.1. VIO data transferoeeeeieiieeeii e 242
29.1.2. VIO deviCE MESSAGE 1A ..u.cvvvneeii e et e e e e e e e e e e e aaaas 244
29.1.3. VIO device peer-to-peer handshakeccoevviiiiiiiiii e, 245
29.1.4. VIO data transfer MOUEScccuuuiiiiiiiie e 249
29.1.5. Virtual 10 Dynamic Device Service (DDS)ccvveiiiiiiiiieiiieeee e, 252

29.2. Virtual disk ProtOCOlcceuuiiiiiiieiii e 253
29.2.1. Attribute INfOrmMationcooeuiiiiiii e 253
29.2.2. VDISK TESCIIPIONS ..vuueiiieiii e e et ee e et e et e e e e e e e et s e e e e et e e et e e e eeaneees 254
29.2.3. DiSK OPEIAIONS .. .evueiiieeii e e e e e e e e e e e et e e st e e et e e et e e e e aaaaes 255

29.3. Virtual NEWOrK ProtOCO|ieiuuiiiiieiiii e e e e e e e e e e e e e e eanes 264
29.3.1. Attribute iINfOrmMationcoovuiiiiiiii e 264

AR IV L= o (=S o T o) (o) £ 266
29.3.3. Virtual LAN (VLAN) SUPPOIT «..vvtieiiieiii e e e e et e et e e e e e e 268
29.3.4. Network Device Resource Sharing viaDDSccoooviiiiiinii e, 268
29.3.5. Network Device Physical Link Information Updates...........coovvvveiiieiinnennnnn. 270

30. DOMAIN SEIVICES ..eevtueeiiii ettt ettt ettt et e et e e e et r et e et e et e et ae e e et aeeeatnneeennnns 271
KO @Y= o= P 271
30.1.1. COMMUNICAION SEACK ..vuieieiiiieeeiii e et e e e e et e e e et e e e eai e e eain e eaees 271

30.2. DOMAIN SErVICES PrOtOCOIevviiiieiiiiie ettt e e e e eeee 273
30.2. 1. DEfINITIONS ...eeeviieieeii ettt e e e e et e e et e e e as 273
30.2.2. DS MESSAQE HEAEYcciiiieiiei e e 273
30.2.3. DS protocol fixed MESSAgE tYPES . .cvvueiviieiiieeei e et e e e e e e e 273
30.2.4. Initiate DS CONNECLION ...evvuneiiiii it e et e et 273
30.2.5. Initiation acknowledgmeNtcciiiiiiieii e 273
30.2.6. Initiation negative acknowledgmentcccocoiiiiiieiin e, 274
30.2.7. DS protocol version Negotiationovevuieiiieiiii e ee e e e e 274

30.3. DS protocol VErSION 1.0 ...couuiiiiiiiii e e e e e e e e e e aaa e 274
30.3.1. SErVICE HaNAIES ... ceeviiieieii e 274
30.3.2. SErVICE TAENLITIEr oovtieiiii e 275
30.3.3. RESUIT COUBSevvvvvniieeeeeeieiiiie e s e ettt s e e e e e e et s e e e e e e e e e aaren e e e eeeees 275
30.3.4. DS Message types defined for v.1.0 of the DS protocolcccoevevieevnnnnnns 275
30.3.5. DS Capability Version Negotiation & Registrationccoeevvieivineeinnnnn. 277
30.3.6. SENVICE REQUESEScvviiiiiicii e e et e e e e e e e e e et e e e e aanas 278
30.3.7. UNIEGISIIationiveeeiiiieiiie e e e e e e e e e e e e e e e et e e e e e et e e e e eananas 278

30.4. DS CapabilitieSceeeeveeiiiiie e e 278
30.5. MD Update Notification VErsion 1.0ccccuiveiiiiiiiiieiiiieeie e e e e e e e 279
30.5.1. SEINVICE ID .iiieiiiiie et 279
30.5.2. MD UPate REQUESLvuuneieeereeiiiiie e e e e e e ettt s e e e e e et s e e e e e e aesanenae e s 279
30.5.3. MD Update RESPONSEuuiiiiiiii et e e e e e e e e e eaanas 279

30.6. Domain Shutdown VErSION 1.0oeiiiiiiieiiiii e 279
30.6.1. SENVICE ID ..iiieiiiiiie et e 279
30.6.2. Domain ShutdoWn REQUESEcviniiiiieeiecei e e e e e e e e e e eaae e 280
30.6.3. Domain ShutdowWn RESPONSEccvuiiiiieiiiieeiie e e e e e e e e e e e e eaneees 280

30.7. DOMaiN PaniC VErSION 1.0ooiiiiiiieiiii e 280
O TS = 4T I 280
30.7.2. DOMaIN PaniC REQUESEciiiiiiii e e e e 280

Xi

UltraSPARC Virtual

Machine Specification
30.7.3. DOMaIiN PaniC RESPONSEuuiiiiiiiiiciii e e e e e e aae e 281
30.8. CPU DR VEISION 1.0 .ioiuiiiiiiiieiiiis ettt e et e et s e e et s e e enanaeaeanes 281
30.8. 1. SEIVICE ID ..t 281
30.8.2. CPU DR MeSSage HEATENuvuiiiiiiiii e 281
30.8.3. MESSAGE LYPES ...eueiieieie et 282
30.8.4. CPU DR _OK response Payloadccceuieeiiiiiiiiiecie e e e e e 284
30.8.5. CPU DR EITOr FES00NSE ... vuiviiiiiiieie ettt eas 285
30.9. Memory DR Sarvice VErSION 1.0uiiuiiiiii e e e e e e s e e e 285
30.9. 1. SEIVICE ID .oiiiiiiieeei e 286
30.9.2. Memory DR mMessage headerviiiiiiiii e 286
30.9.3. MESSAGE LYPES ... vuenetieie et 286
30.9.4. DR_MEM _OK FESPOMNSE ...vvueteiiinieteiiiieeettinaetesiiaaeeesinnaesesnnaeserinnaesesnnns 289
30.9.5. DR_MEM_ERROR FESPONSE .. .cevvviiietiiiiieeeiitiseeeeetiseeeeeiineeeesinneeeesnnnaeeenes 293
30.10. VIO DR SEIVICE VEISION 1.0 ...uiiiiiiieeiiii ettt e e e e e e e e eaa e e eeeanas 294
30.10.1. SEIVICE ID e 294
30.10.2. MESSAgE FOMMELuiiniei e e e e e 294
30.10.3. M ESSA0E LY IS vttt ettt e 294
30.10.4. VIO DR reSPONSE MESSAGE . ..uvunvneneeneiietneeeteaneansaneaeseanstneansanaeeanaaneans 296
30.11. Crypto DR service VErsioN 1.0ciuuciiii i e e e 297
30.12.1. SEIVICE ID et 297
30.11.2. Message format headercouviiiiiiiiii 297
30.11.3. MESSAGE TYPES Luituetniteiet ettt et e e e e et e e e e e e e e e an 298
30.11.4. REQUESE PaylOadiieiiiiiieiiii et e e 298
30.11.5. REQUESE NUIMDEK ...ttt e e e e e e e e 298
30.11.6. DR_CRYPTO _CONFI GrEQUESE . .cevvvieeiiiiiieeeiiiieee et eete e e et e e e 298
30.11.7. DR_CRYPTO _UNCONFI GreQUESLueeeviiieeeieiiieeeeiiiiee e et e eeeineeeeaiennes 299
30.11.8. DR_CRYPTO_FORCE_UNCONFI GreqUEStovvevvieeeeiiieeeeiiieeeiii e eeenens 299
30.11.9. DR_CRYPTO _STATUS ...ttt e et e et eeeeia e e e 299
30.11.10. DR_CRYPTO OK response payloadc..ovevvvieiiiiiiiiiiccie e 299
30.11.11. DR_CRYPTO_OK reSUIt COUESuvunieiiiiiieeeiiiiieeeeiiie e et seeeeri s e e eeainneeeens 299
30.11.12. DR CRYPTO OK StatUS COUES .. .eevvvneiiiiiieieiiieeeeiiin e e e e e 299
30.11.13. DR Crypto Error RESPONSEvuiiiiiiieieie et aas 300
30.11.14. OperationNal OVEIVIEWuiiinieiii e et e e e e e e e e et e e e e aenas 300
30.12. Variable Configuration VErsion 1.0c.ccuieiiiiiiiiiiiii e e e 300
30.12.1. SEIVICE IDS ..ottt 300
30.12.2. MESSAgE HEATENcveiiii e 301
30.12.3. M ESSAE LY IS vttt ettt e e e 301
30.12.4. Set Variable Payloadooeviiiiiiiiiiii e 301
30.12.5. Delete Variable Payloadoviiiiiiiiiiiiiii e 301
30.12.6. RESPONSE PaylOadoeiiiieiiiciie e e 301
30.13. Security key domain service VErsion 1.0ooviiiiiiiiiiiiii e 302
30.13.1. SEIVICE IDS ..ottt 302
30.13.2. MESSAgE HEATENiieiii e 302
30.13.3. M ESSaE LY IS vttt ettt e e aa 302
30.13.4. ReSPONSE PaylOaduiiiiiieiiiciie e e 303
30.14. PRI DOMAIN SENVICE 1.0 ..uuuiiiiiiiieiiiii ettt e e e e 303
30.14.1. SEIVICE ID e 303
30.14.2. PRI UPate MESSAGEueeeiiiieeeiiiiee et e e e ettt e e e et s e e eettn s e e eettaseeeeriaeeeees 304
30.14.3. PRI UpPdate RESPONSE .. .cevuiiiiieiiiieiiii e e e e e e e e e e e et e et e e et e e eaneeees 304
O I g T 115 o 11 o 304
30.14.5. ReSPONSE SEAtUS COUESuuiivniiiiieiiiiee e e e e e e e e e e e e e aae e 304
30.15. System INFO VErSION 1.0 ...cvuiiiiiiiii e e e e e e 304
30.15.1. SEIVICE ID e 304
30.15.2. MESSAgE NEBETcvviiiii e 304

Xii

UltraSPARC Virtual

Machine Specification

30.15.3. M ESSA0E LY IS vttt ittt et e e aa 305
30.15.4. Get Information Payloadcccuiiiiiiiiiiiicii e 305
30.15.5. Get Information Response Payloadcccccoveiiiiiiiiii e, 305
30.15.6. ReSPONSE RESUIE COUEScvviiiiii e e e e e 305
30.16. SNMP SErVICE VEISION 1.0 ...ciiiiiieiiiii et e et e e e e eae s 306
30.16.1. SEIVICE ID e 306
30.16.2. MESSAgE NEBETciviiiii e 306
30.16.3. M ESSA0E LY IS vttt ettt e e e 306
30.17. Domain Suspend Service VErSION 1.0cocuuviiiieiiiieiii e e 307
30.17.1. SEIVICE ID it 307
30.17.2. Domain SUSPENd REJUESEccvuueiiiieiii e e e e e e e e e aens 307
30.17.3. M ESSA0E LY IS vttt ettt aa 308
30.17.4. Domain Suspend request handlingccooeviiiiiiiii e, 309
30.17.5. MESSAPE SEUUENCESvuvuiineiieieie et te e et et e et e e et et e et aaneanaanas 310

31, DIiaQNOSHIC SEIVICES .. cvvuiiiiieii et e et e et e e e e e e e e et e e et e e et e e et e e et s e eaaeean e eatneeeanaees 313
311 AP CaAllS it aae 313
I I o T =724 o - P 313

3 I 2o T o] 1= 313

AL NUMDBDEr REGISITY ..oviiiiiiie e e e e e e e e e e e e e et e e e e e et e e aanaes 315
AL AP GlOUDS .o uiiie et 315
A.2. Hyper-fast Trap NUMDEISovuiii e e e e e e e eees 315
A.3. FAST _TRAP FUNCEION NUMDEYSouiiiicie e e e e e e 316
A.4. CORE_TRAP FUNCLION NUMDBENScoviiiiiicie e e e e 316
A.5. Summary of trap and fuNCtion NUMDBErScooviiiiiiici e 316
YN T = o g ¢lo o L=~ PRSPPI 321
B. DOMAIN SEIVICE REGISITY .ovvniiiiiiii e e e e e e e e e e e e e e et e e ean e eees 323
C. PhysiCal RESOUICE INVEMEONYuiiiiiieii e eeie e e e e e e e e e e e e e et e e e e e e e et e eeanaees 324
L3 I 111 oo (11 o o [P 324
(32 = Lo o B [0 o L= SRR 325
C.2.1. PRI VEISION PrOPEITY ..evvueiiiieeii et e e e e e ee e s ae e e et e et e e e e e e e e st e e st esaneees 325

C.3. COMPONENES NOGE .. .evviiiiiie e e e e e e e e e e e e e e e aaeeaens 325
C.3.1. Power Management (PM) VErSIONiNg Propertyceeeeeeeeeeeeineeereeeinneesnneennnns 325

C.4. COMPONENE NOGE ... et e e e e e e e e e e et e e e e ean s 326
(O T V] oL . 0] < PP 326

O Ny o= ol (0] 0= 1 Y PP 327
LR C T U = o] o= 1 328
C.4.4. seriad_NUMDEr PrOPEITY ...couiiiiicee e e e e e aens 328
C.4.5. part_NUMDEr PrOPEIMYcvve i e e e e e e e e e e e e eens 328
C.4.6. rev_NUMDEN PrOPEIMY ..uiieeciii e e e e e e e e e eaaas 328
C.4.7. dash_NUMDEr Propertycoovuieiiieii e e e e 328
O S A ol = (0] 0= ¢ |V 328
(O e o 1 g I = (0] o= 1 Y/ 329
O3 (O Pl = B = (0] o< £ PR 329

CA. 11, NAIME PrOPEITY . vuiviiiiiiee ittt et et e e e e e e et e e e aanes 329
C.4.12. PM_TESOUICE PrOPEITY ..uviiiiiiiiie e ea e eas 329
C.A.13. PM_SEAES PrOPEITY ..ovniiiii e e e e 329
C.4.14. pPM_COOKIE PrOPEIMY ...ivieieii et e e e e aaas 330
C.4.15. pm_dependency PropertYcc.ceiiiiiiiii e 330
C.4.16. pm_coordination PrOPErtYccouuiiiiiiiiii e 330
C.4.17. pM_MapPiNg ProPEMYciue i e e e e e e e aaae s 331
C.4.18. tOpO-NC-NAME PrOPEMY ..vuiieiieii e e e e e e 331
C.4.19. tOPO-SKIP PrOPEIY ...cvviieiiii it e e e e e e e et e eaeeees 331
C.4.20. assignable-path Propertyoovveiiiiiiiiie e e 331
C.4.21. PM_POWES PrOPEITY ..ovuiiiiiiie et a e e 331

Xiii

UltraSPARC Virtual

Machine Specification

C.5. FIrMWAare NOOEoiieiiieiei et e et e et e eeera s 332
C.5. 1. MAX_QUESES PrOPEITY .vuieiiiiieie et e e e e e e e aaes 332
C.5.2. Max_hv_IdCS PrOPEITY ...couuiiiiiiii e 332
C.5.3. max_guest [dCS Propertyovevuiiiiiiciie e e 332
C.5.4. max_guest_dependencies Propertyceeeuiieiiiiiiiieeeeeeeeee e e e e e 332
C.5.5. directio_capability Propertyooveiiiiii e 332

C.6. Read Only Memory NOGEcccvuiiiiieiie e e e e e aenas 333
C.6.1. NAIME PrOPEITY e 333

(O A o S ST o o= 1 333

O R A= -l = (0] = o Y/ 333

(s = (o T 1 7o T\ oo 333
G771 NAIME PrOPEITY vniii it aaas 333
O o i 1= o 0 0= 334
O AR A= N = (0] = o Y/ PN 334
O A - T 0 07= 0| G (0] 0= Y/ 334
C.7.5. min_allocation PropeErtYcoivunieiiieiii e e e e e 334
C.7.6. QUESE_USE PrOPEITY .uvvuieieiiitiiiei ettt e e e e et e e e e e e e aees 334

C.8. Ldc_ ENAPOiNtS NOGEuciviiiiiiiieii e e e e e e e e e e s e e e aaaeees 334
C.9. Ldc_ ENAPOiNt NOGEuuiiiiiieiiiei et e e e e e et e e e e ean e e eaaees 334
C.9.1. reSOUIrCE i PrOPEITY ..vvviiiii et e e e e e e e aan s 335
C.0.2. target_tYPE PrOPEITY ...cveiiieii i 335
(O3S S Ao 7= 1010 = B (0o = 1 335
C.9.4. target_channel Property ...cooveiii e 335
C.9.5. tX-iN0 and rX-iN0 ProPerti€Scivnciii i 335
C.10. Memory Segments and related NOAEScvvuniiiiiiiiii e e 336
C.11. Memory-Segment NOEc.uiiiii e e e e e e e e eaes 336
(O I B o7 = (o]0 1= 1 Y 336
O N B N o o= 4 336
C.12. MemOry-Bank NOGEcouuiiiieiii e e e 336
C.12.1. SIZE PrOPEITY ovuiiiiieiie e e e e e e e e e e ae 337
C.12.2. MASK PrOPEITY ..ovnciii e e 337
C.12.3. MEECH PrOPEIMY ..ooivieiiie et e e e e e e e e e e aaeaes 337
C.13. IO DEVICE NOUE ...ttt ettt e e et e e et e e e ae e 337
C.13.1. Sundv to PCl EXPress root NEXUS AEVICEcuuiiviieiiiiiiii e e e e 337
C.13.2. Generic PCl deVICE PIrOPEITIEScvvuieiiieeiii et e e e e e e e e e e e e e 337
C.13.3. PCI bridge type deviCe ProPertieSueeeuuieiiieeiieeiieeeei e e e e e e e e eanas 338
C.13.4. PCI 9ot type deviCe PropertiESivvunieii e e e e e e e e e 338
C.13.5. PCl network device PropertieScuuueiiiieiiiiieci e ece e e e e e 338
C.13.6. PCI SCSI deVIiCE PrOPErtIESivvueeiieeiiieeiieee e e e e e e e e e e e e aanas 338
C.14. Interrupt MapPiNg NOUEuiiiiieii e e e e e e e e e e e e eanas 338
C.15. POwer-Management NOTEccuueiii e e i e e e e e e e e e e e e et e e e e eaeeeeas 338
C.16. Memory-Grouping NOGEcccuiiiiiiiie e e e e e e e e 338
O3 LG T I T Il = (o]0 =1 R 339
C.16.2. NAIME PrOPEITY .uiviiiiiiee ittt et e e e e e e e e e anaanes 339
C.16.3. PM_TESOUICE PrOPEITY ...vuiiiieie e ea e eas 339
C.16.4. PM_SEAES PrOPEITY .ovuiiiiieie e a e 339
C.16.5. pM_COOKIE PrOoPEY ...cvveciii i e e e e aaes 339
C.17. Memory-Region NOUEcouuiiiiiiii e e 340
(O3 50 R o I = o= Y 340
C.17.2. NAIME PrOPEITY . vuiviiiiiiee ettt e e e e e e e e e e e e 340
C.17.3. DBSE PrOPEIMY ...ivincii et 340
O I R N o o= 1 340

131 o] oo r="o] /R PP 341

Xiv

List of Figures

1.1, SUNAV ATCRITECTUIE .. .oeee ettt e e et e e eeta e eees 2
1.2, DIFECE 11O ittt et e e e e 5
L3 VUL 1O ettt ettt 8
1.4, Virtual Network MUITIPaEhcoouiii e 10
1.5, DOMAIN MBINEGEYeevtneiiiit ettt e et e e ettt e e ettt e e et et e e e e e tb e e et ebb e e e e era e eeee 14
3.1, SUNAY ProCESSOr SEBLESceuuirteieti et ettt ettt et r e e e e et e e e e enneees 21
6.1. Interrupt queue head and tail register fFOrMaLScoevuiiiiiiiii e 31
7.1. Error queue head and tail register fOrmMatSveiiiiiieiii e 35
8.1. Machine DESCIPtION SECHIONSiiiiiti ettt et e e e e e e e eneens 37
8.2. Virtual DeViCe NIEIrarChyccoouuuiiiiii i et 59
14.1. Trandation Table Entry (TTE) fOrMatoouniiiiiiiiiiii e 106
28.1. LDC Virtual LiNK LBYENccoeuiiieieiiii ettt ettt et e e e eennes 233
201, ViIrtUBl 1O LBYENS ..ottt ettt e 243
30.1. Domain Service communiCation SACK LaYEISc.uuuiiiiiiiieiiiiiee et 272
30.2. Domain Services Communication Path EXamplecooooiiiiiiiiiii e 272

XV

List of Tables

2.1. Hyper-fast trap calling CONVENTIONiiiiieiiiiiii e 19
2.2. Fast trap Calling CONVENTIONiiiiiieiiii et 19
3L Privileged FEOISLEN'S ... eeeeei ettt ettt 22
3.2. NON-PrVIIEEA FEJISIEIS ..ottt et et e e e e eneens 22
3.3, ANCIHIAIY SEALE FEOISIE'S ... eeeit ettt ettt ettt et e et e et e e et e e e s 22
3.4. Internal MemMOry-mapPed FEJISIEN'Suun ittt 23
A1, Privileged FEOISIEIS .. .ceeiiieeiii ettt ettt e e ettt 25
A.2. MIMU TEOISIEIS ..ottt ettt ettt e et e e et e e et e e e e s 26
4.3. MMU context register Darrier FUIEScoeuuuieiiii et 27
6.1, Privileged FEOISLESeeeie ettt ettt et 30
7.1. Error queue Privileged FEgISIENS i 35
8.1. Machine desCription NEATESoouii i e 38
8.2, ElEMENE FOMIBL ... ittt ettt ettt e et e e et e e e b 40
8.3, ElEMENt LAY TYPES ... eeeiti ettt ettt 41
8.4, Virtual deViCe ClaSSEScoiii ettt et e e et e e e 61
8.5. Virtual-deviCe-Port ClaSSESuuiiiiiii et 66
14.1. TSB dESCIIPLOr TAYOULceeveiieeiiie ettt ettt e e e e s 104
14.2. MMU Fault StatuS Ara LAYOULccuvuieiiiiiiiee ittt 108
14.3. MMU FaUlt TYPE VAIUBS ... ciiiiieeiiii ettt ettt e et e e et eeeeaa e eeees 109
14.4. MMU FaUlt TYPE VAIUBS ... ittt ettt e et e e e et eeeeaa e eeees 109
I 1 (= 0o B = (= PP PP PPN 123
16.2. INTEITUPL SEAEESietee ettt ettt e et et e e e e e e e e eae e ees 123
19.1. GUESE SOFIWEIE SEALESceeveieeeeiti ettt ettt ettt e e et e e e e e e aaa s 135
21.1. Trap Trace CONLrol SIMUCIUIE ... coeeeieieii ettt e e e eeeas 140
21.2. Trap Trace BUFfer ENtry SHUCTUMEuiiiiiii et 140
21.3. Trap TraCe ENLIY TYPES ..ovueeiiiiiieet ettt et e e et e e e r e e e e ees 141
251 RNG SHEIES ...oetiieiiitii ettt ettt ettt e et e 179
25.2. Niagara Crypto QUEUE TYPES .. .ceutueeiiti ettt e et e et e et e et e e et e e e 187
25.3. Niagara Crypto MAU QUEUE ENEIYiieeeieeieit ettt et e e s 187
25.4. Niagara Crypto CWQ QUEUE ENEIYeeereieeeiiii i ee et e et e et e et e e e e e e e e eaaanns 188
25.5. TPM REJISIEIS ... eeitieiiiiti ettt ettt ettt ettt ettt ettt e et et et e e b e e e e e e eaaas 193
27.1. UltraSPARC-T1 J-Bus’'DRAM Performance COUNTENSuueierrinieeeiiiieieeiineeeeeiieeeenenn 210
27.2. UltraSPARC-T1 MMU statistic buffer [ayOutccuuiiiiiiiiieiiieei e 211
27.3. Fire performanCe COUNLEN'Souuu ittt et e e et e e s 214
27.4. SPARC PErfOrmManCe COUNLEY'Scuuuueiietineteeti ettt e eeeti et eet e e e e e e e eeai e eenni e eennes 215
27.5. UltraSPARC-T2 SPARC and DRAM performance COUNESSvvveerenereeniieeeeiieeeennen 216
27.6. UltraSPARC-T2 PCI-EXpress performance COUNTEISuuiiieruneieiiaeeeeiiieeeeeia e e 217
27.7. SPARC PErfOrmManCe COUNLET'Scuuuueiieutneteeiiaeeeeti e eeeti e e eati e e eeai e e eeai e e enni e eennes 218
27.8. UltraSPARC-T2+ SPARC, L2, and DRAM performance CoUNtersccoeeuveevnneiinneeennnnes 219
27.9. SPARC PerfOrmManCe COUNLET'Scuuuueieeuineteetiieeeeti e e eeti e e eeta e e eeti e et eeai e eenna e eennes 222
27.10. UltraSPARC-T3 SPARC, L2, and DRAM performance COUNtErSccueveernieerneeenneeennn. 223
27.11. UltraSPARC-T3 PCI-Express performance COUNESSoveieueiiieiiiiieeeiiiiee et 224
AL APL GIOUDS ettt et 315
A.2. Trap and FUNCLION NUMDENS ... cooiiiiiii et 316
ALBL EITON COUBS ..ttt et ettt e ettt e e ettt e e e e e bb e e e e ene e eeeee 321
B.1. DOMAIN SEIVICES .. eeitieeiiit ettt ettt ettt e et e et e et e et et e e e et e e e eeba s 323

XVi

Preface

1. Foreward

This document is the software specification for the UltraSPARC virtual machine environment. Thevirtual
machine environment is created by a thin layer of firmware software (the “UltraSPARC Hypervisor”)
coupled with hardware extensions providing protection. The UltraSPARC Hypervisor not only provides
system services required by an operating system, but it al so enables the separation of physical resources—
thisallowsmultiplevirtual machinesto be hosted on asingleplatform. Each virtual machineisitsown self-
contained partition (or “Logical Domain™) capable of supporting an independent operating system image.

Thisdocument detailsthe UltraSPARC virtual machine environment together with the calling conventions
and detailed specifications of the virtual machine interfaces provided to aLogical Domain.

This document is intended for operating system and firmware engineers looking for detailed information
on the UltraSPARC virtual machine environment, as well as the merely curious.

2. Related specifications

The UltraSPARC virtual machine environment consists of a combination of machine registers described
by a programmer's reference manual, and a set of software services provided via the hypervisor APIs
described in this document.

The hardware registers available within a virtual machine environment form the basis of the hardware
architecture. This architecture incorporates the Level-1 SPARC v9[sparcv9] specification. However, it
supersedes and extendsthe L evel-2 SPARC v9 specification in describing the programming model, register
and exception interfaces for privileged mode software. A full description of available machine registers
isgiven in the UltraSPARC Architecture] ua2007].

In addition to the UltraSPARC Architecture manual, processor specific details for each UltraSPARC pro-
cessor are provided in the supplemental manuals corresponding to each chip. These manuals provide in-
formation on chip specific hardware details, such as performance counters.

At thetimeof writing thelatest versions of these specifications are avail able from the OpenSPARC website
[http://www.opensparc.org/]. The reader is recommended to visit the OpenSPARC website on a regular
basis for the most recent versions of these specifications.

Xvii

http://www.opensparc.org/
http://www.opensparc.org/

Chapter 1. Overview

This document providesthe detailed interface specificationsfor the UltraSPARC virtual machine environ-
ment. However, before the deep dive into the technical details, this section aims to provide an overview
of the entire architecture: the intentions behind much of the design, the individual components and how
they operate.

1.1. Architectural requirements

We start with the foundation stone for the UltraSPARC virtual machine environment; the UltraSPARC
Hypervisor.

The fundamental need to support multiple concurrently running operating systems on the same platform
wasthegoal. However, the UltraSPARC Hypervisor had to meet four architectural requirementsin achiev-
ing this; security, heterogeneity, availability, and of course high performance.

One of the significant value propositions of a virtualization solution is the ability to consolidate multiple
workloads onto a single platform and thereby increase the overall efficiency of a datacenter. Achieving
thisefficiency is however anon-trivial problem, after all operating systems have been able to run multiple
applications concurrently for decades, and yet datacenter administrators have traditionally avoided doing
so. Why?

In practice deploying an application in adatacenter often involvesthe careful selection and testing of aspe-
cific operating system together with its requisite patches and tuning parameters. Once selected, upgrades
to that application or even the underlying OS often occur on atimetable related to the application vendors
releases. Consequently, in an environment with multiple applications it is difficult to find OS versions,
patches etc. that work well for all applications, and for the same reasons upgrades have to be carefully
coordinated. So, it's usually just easier from an administrative perspective to assign a unique machine to
a specific application / task.

To deploy a OS virtualization solution into a typical data center environment for use as a consolidation
tool, the Hypervisor must be capable of supporting multiple different (heterogeneous) operating systems.

Often it isthe case that different applications are owned and run by different departments within a corpo-
ration, or even different external customers. Consider a buggy or even malicious OS patch installed in
an operating system— while that could spell disaster for that specific virtual machine it should still be
effectively isolated from other virtual machines on the same platform. This meansthat an effective virtual
machine solution must provide strong security between virtual machines. Weak security (e.g. a poorly
chosen password) within one virtual machine should not leave the rest of the machine vulnerable to attack
either directly or by denial of service.

Similarly, placing so many eggsin one basket raises the need for improved fault tolerance, and increased
availability in the event of a failure. No matter what the capability for fault handling of an individual
OS, it is only as effective as the underlying hypervisor's ability to report and manage faults upwards.
For example, if a failing CPU can take out the entire hypervisor, the fault is not limited simply to the
virtual machine using that resource but is now expanded to the entire machine. Clearly then an effective
availability capability is required from a hypervisor in the event of system component failures.

Quite simply; the goa for a hypervisor is to create virtual machines that have the attributes of classic
independent machines, but consolidated onto a single platform where resources can be shared and for
that sharing to be as efficient as possible so that the overheads do not overwhelm the overall benefit of
consolidation.

The complete Logica Domaining solution is designed to behave as much like a collection of independent
machines as possible, even to the extent of all of the virtual machines being able to boot, shutdown, crash

Overview

and reboot independently of each other. The remainder of this section describes the final architectural
implementation to meet these requirements.

1.2. The hypervisor and sun4v architecture

Unlike other hypervisor solutions, the UltraSPARC Hypervisor is not booted from disk like a traditional
operating system. Instead the UltraSPARC Hypervisor is architected to be integrated into the firmware
PROM of each hardware platform, and starts up immediately after system initialization. This approach
enables chip-set specific code to be delivered directly with each platform as it is released. No careful
patching or tuning is required because each hypervisor is delivered with, and is specific to, a particular
platform.

The traditional firmware boot loader for SPARC, OpenBoot, is completely virtualized and each logical
domain uses its own independent copy for booting.

Key to high performance, aswell as minimizing bugs and problemsin the field, is keeping the hypervisor
assimpleaspossible. Theoverall Logical Domain architecture reflectsthe desireto keep features out of the
hypervisor and seat them within the virtual machines themselves. Quite simply, fewer lines of hypervisor
code mean fewer bugs, and a greater test coverage before each platform release.

Theresult thenisahypervisor that provides support functionsto guest operating systemsviaawell defined

and stable software interface. Coupled with hardware support for protection and isolation the resultant
virtual machine environment is called the “sundv” architecture.

Figure 1.1. Sun4v Architecture

i D
@ @ @

i Sun4v
[Solaris

(OpenBoot Interface
\ - /

SPARC Hardware

Thefigure aboveillustrates the sundv interface provided by the UltraSPARC Hypervisor, and its relation-
ship to the virtualized clients that run within alogical domain.

1.3. Privilege, isolation and virtualization

In order to provide isolation and protection the UltraSPARC execution model is extended with a hy-
per-privileged mode. This additional privilege level is for the hypervisor alone, leaving guest operating
systems and their applications running in more restrictive modes that deny access to sensitive control reg-
isters and memory. The hypervisor in turn abstracts underlying hardware resources and exposes a subset
to each virtual machine or “Logical Domain”.

Overview

Consequently, guest operating systems within Logical Domains can only access or control platform re-
sources explicitly made available by the hypervisor. Typically that accessis provided via hypervisor API
calls made by a guest operating system, where the parameters can be checked and approved by the hyper-
visor prior to being acted upon (or rejected). In afew caseswhere higher performanceisrequired (such as
interrupt or timer handling) hardware support provides specific registers accessible from within a virtual
machine.

All sundv architected registers are defined to be idempotent, and hypervisor API interfaces set or clear
state explicitly rather than by side effect. These criteria enable the complete state of a virtual machine
to be unloaded from machine resources, encapsulated, and then later resurrected on different hardware
resources— even on a different physical machine. This fundamental capability allows a hypervisor to
support arange of useful feature. For example, simple capabilities such asthe time-multiplexing of multiple
virtual CPUs onto a single physical CPU, or more complex functionality such as the live-migration of a
running virtual machine from one physical platform to another.

With hardware support the hypervisor aso virtualizes memory. Physical memory is subdivided and allo-
cated to different domains. A unique address space is created for each virtual machine and supported by
the hypervisor.

By not being able to address anything outside its own domain avirtual machineisrigorously isolated from
memory and memory mapped devices it does not own. Hardware tags in the CPU translation look aside
buffers (TLBs) strictly enforce the separation of these address spaces allowing multiple virtual CPUs to
be efficiently time multiplexed onto a single physical CPU.

1.4. Direct I/O

While the hypervisor provides APIs for basic system components such as virtual CPUs, more complex 1/
O devices are handled differently.

Most modern 1/0O devices designed for performance have fairly sophisticated device drivers to handle
multiple functions, concurrency, complex bug workarounds and even to upload device specific firmware.
Moreover, these 1/0O devices are often provided by third party vendors that have developed their own
closed-source device drivers.

Consequently, the UltraSPARC Hypervisor makes no attempt to virtualize hardware I/O devices. Instead
I/O devices are directly mapped into Logical Domains.

This approach is enormously beneficial on three levels;

Firstly, by avoiding aloadable device driver model, there are no possible security holes by which a guest
OS or an operator can insert buggy or malicious code into the hypervisor.

Secondly, no device specific patching or tuning of the hypervisor is required. This better matches the
stability model expected of system firmware. Thisis particularly important given that many 1/0 devices
are plug in cards from third party vendors and true testing can therefore only be achieved in the field.

Thirdly, no loadable device driver capability means no need for a device driver framework. This signifi-
cantly reducesthe size of the hypervisor and therefore the number and range of possible bugs. For example,
at the time of writing, the Solaris device driver interface (DDI) framework contains more lines of code
than the entire hypervisor source base for either the UltraSPARC-T1 or UltraSPARC-T2 processors.

Depending on the platform hardware capabilities, devices can be mapped into individual domains at the
system bus level, the device level, or even down to functions within devices. (The latter requires capa
ble multifunction devices such as the UltraSPARC-T2's network interface unit, or PCI-IOV devices). To

Overview

achieve this the hypervisor relies on the capabilities of the processor's memory management unit (MMU)
to control CPU accessto device registers. Similarly, it requires the use of an /O MMU to map and control
device access to system memory. Specifically, the /O MMU is used to prevent one domain being able to
DMA to or from memory belonging to other domains sharing the same system.

The result is performance 1/0 devices being exclusively assigned to specific logical domains. The guest
operating systems running in those domains have direct access to the device registers and can configure
deviceoperationssuch asDMA activity. DMA mappingsfor the /O MMU are configured using hypervisor
APIs so that addresses specified can be validated by the hypervisor.

Device interrupts and system bus errors are directed from /O devices via the hypervisor to virtual CPUs
in avirtualized form. This enables the hypervisor to remap, suspend or context switch virtual CPUs on
physical CPUs without risk of device interrupts being lost.

Thus domains with I/O devices can have direct control over those devices when performance is required.
Furthermore, guest operating systems do not require special device driversto runin logical domains and
can continue to use the device driver frameworks they aready have. This even allows legacy devices and
driversfrom non virtualized systemsto be used. And finally, system administrators do not have to change
their procedures when testing and patching of their operating systemsto deal with third-party devices.

Thismodel isthe basic building block for al 1/0 in aLogical Domain system. However, it is insufficient
when there are more logical domains than physical 1/0 devices available for use. To overcomethisrestric-
tion, the architecture requires that some of the logical domains that are assigned physical 1/0 devices act
as proxies on behalf of the other domains. For this to work the domains need to be able to communicate.

Overview

Figure 1.2. Direct 1/0

/Logical Domain \

Logical Domain owns
PCle root port and tree.
Device driver has direct
access to device registers.
Device driver calls into
nexus driver to control
I/ O MMU mappings for

DMA activities.
.—H-.-.-—.

Nexus Driver
Privileged Mode

i Hypervisor
Hype;\;)cr)lc\j/geged Virtual Nexus

B

1.5. Logical Domain Channels

Hardware

A logical domain channel (LDC) is a point-to-point, full-duplex virtual link created between domains by
the hypervisor. LDCs provide a data path, a means to share memory and a mechanism to deliver asyn-
chronous interrupts between domains.

The most basic communication mechanism is the delivery of short (64-byte) datagrams along a logical
domain channel. Guest operating system code can build higher level protocolsfor larger packet and reliable
communication. Thus the complexity for sophisticated domain- to-domain protocols remains with each
guest operating system, leaving the hypervisor to implement only the most basic transport mechanism.

In addition to the short message delivery capability, one domain can export memory to another directly
for sharing. With a direct shared memory interface both domains can then communicate as fast as the
implemented protocol and memory subsystem bandwidth will allow. Direct I/O devices can be configured
to DMA directly to/from memory imported from or exported to another domain. Either domain can revoke
the shared memory mapping at any time, and domains can only access the memory of another domain that
has been explicitly exported to them.

Overview

1.5.1. Stateless connections

Logical Domain Channels may be closed by either domain, or by the hypervisor at any time. It is expected
that guest operating systems utilizing LDCs are ableto handle the arbitrary closure and re-connection of an
LDC. After an LDC closes, if the connection comes up again, a guest operating system must re-negotiate
the communication protocol without assumptions about the domain on the other side of the link.

This requirement is by convention and not enforced by the hypervisor, however it is specified in order to
support the dynamic re-configuration of system services wherein a domain's LDC may be disconnected
from one service and re-connected to a different service. A prime example of thisisin the case of live-
migration, where adomain is moved from one box to another and subsequently connected to new support
domains on the new box.

Therefore domains utilizing LDC connections must be able to recover from a reset (closed and opened)
connection by re-negotiating protocol interfaces and be able to re-submit any pending transactions.

1.5.2. LDC security

Security is a paramount concern with any communication mechanism. In particular, the problems tradi-
tionally associated with networks of machines have been architected out - namely; information leakage,
authentication, faked credentials and denial of service attacks.

Unlikemore general purpose communication mechanismssuch asthe Internet Protocol (1P), the hypervisor
Logica Domain Channel APIs provide no capability for adomain to open aconnection to another domain.
LDCs can only be created by the system “Domain manager” (which we discuss later). Without a means
to establish their own connections, domains do not have to deal with problems of addressing, connection
management and authentication. A rogue domain cannot randomly connect to another domain. There is
no mechanism by which to undertake activities like port scanning.

If aLDC exists between two domainsit had to have been created by the administrator for a specific named
purpose (for example a virtual disk interface), and both sides of that connection are clearly informed of
the role they are expected to play. As LDCs are simple point-to-point connections there is no risk of
information leakage to other domains via snooping techniques. Denial of service attacks are easily closed
off by arecipient domain by simply ignoring the rogue L DC; traffic from other domains cannot be blocked
sinceit arrives by separate point-to-point LDCs.

This unconventional approach to interconnecting domains is made possible because the virtual machines
all execute on the same shared memory system. Higher level protocols such as TCP/IP are expected for
use between applications in different domains or for in and out of box communication.

1.6. Machine Descriptions

Operating system code running within a virtual machine environment needs a means to discover the re-
sourcesthat are available within that environment. On traditional non-virtual machines hardware resources
aretypically probed for, which is an exhaustive process of testing hardware registers and waiting for lack
of response or bus errorsto indicate that suspected hardware is not in fact present.

In a para-virtualized world, there is no need to go through this arcane process to discover available re-
sources. A simple hypervisor API provides a detailed description of the resources within the virtual ma-
chine. This description is called a “Machine Description” (or “MD”) and is a one-stop catalog of every
resource a guest operating system has available.

Aside from the basics such as CPU and memory map details, a domain's MD also contains detailed rela-
tional information about resources, such as NUMA latencies and the sharing between caches in the mem-
ory system hierarchy.

Overview

Some of the information provided in the MD is mandatory, and the rest is typically advisory to be used
for performance optimizations. The key advantage of storing this information with the hypervisor is that
it is always retrievable by adomain. This avoids any bottle-necking on a“master” domain to disseminate
the information. This allows for a simultaneous parallel boot after power-on of all logical domainsin a
system without the single-point-of-failure that a master domain would introduce into the boot process.

1.7. Virtual 1/0

Direct 1/0 is the foundation model for 1/0 accessin a Logical Domain system. However, it is possible to
create more domains than there are physical 1/0 devices. In order to support sharing of 1/O devices for
virtualization, we enable some domainswith direct 1/0O accessto act as proxies on behalf of other domains.

Communication between client and proxy domainsis achieved using ahigh level negotiated protocol over
adedicated L DC between domains. This document details the protocols currently in use between domains
for proxy services such as disk and networking /0. These protocols are not in anyway enforced by the
hypervisor, and are a convention between domains.

Asillustrated below a domain acting as aproxy for 1/0O is assigned a physical 1/O device for direct access.
For this reason it is defined as an “10 domain”. The domain runs the appropriate device driver for the
specific hardware device.

Overview

Figure 1.3. Virtual 1/0

/Service Domain \

Nexus Driver

Virtual Service
Driver

Hypervisor
oe Virtual Nexus

1/ O MMU
Root Port

Logical Domain

Application

Virtual Service
Driver

The domain also runs a proxy service responsible for exporting an abstracted form of the device to other
client domains. For thisreason it is a so designated as a“ Service domain”.

Overview

Note: Thereis no requirement for a“service domain” to also be an “1O domain”. For example, a service
domain may provide a virtual network switch to other clients without requiring a physical connection
outside of the box; thus the domain may have no 10 domain capability. (We will cover domain roles later
in this section).

The proxy service run by the service domain receives I/O requests from each of its client domains, and
is responsible for servicing those requests on behalf of its client. For example, adisk read request is sent
to the service domain fromits client. The LDC framework delivers the request to the service proxy in the
service domain, the proxy isthen responsible for deciphering the request and utilizing an 10 device driver
to schedule the request as appropriate. Once complete the proxy service then acknowledges completion
back to the client domain.

1.7.1. Abstraction

Typically the communication protocol for agiven serviceis highly abstracted and agnostic with regard to
the physical device in the actual 10 domain. For example, the disk server deployed with Solaris 10 uses
internal Solaris interfaces to access an underlying storage medium on behalf of its clients. This enables
storage hits to be provide by many different sources such as adisk, or afile or a RAID-ed volume — all
of which is abstracted and invisible to the client at the other end of the LDC channel. The client instead
seesis adisk service capable of reading and writing disk blocks according to the abstracted protocol.

This abstraction has enormous advantages when deploying multiple domains on a single system. For ex-
ample, instead of adedicated boot disk for each virtual machine, asimplefile on aRAID protected filesys-
tem can be used on the IO domain to store the boot disk images of each of the client domains. Backup of
the domains then becomes a simple matter of backing up the files on the IO domain.

1.7.2. Stateless connections & multipathed 1/O

Following the requirements of the underlying LDC infrastructure, al virtua device protocols should be
designed to be stateless or transactional. This allows for a LDC channel to be arbitrarily broken and re-
connected (possibly to adifferent 10 service). Thisfunctionality is expected by the domain manager, and
isrelied upon to support resiliency, live migration and dynamic fail-over of system services.

For example, in the basic proxy configuration illustrated above, if the service were avirtual disk service,
and the service domain were to panic, (perhaps due to a hardware fault or buggy driver), the client domain
would observe the LDC being reset and wait until the channel came back up again. Once the service has
reestablished itself on the LDC, the client could re-negotiate the service capabilities and re-submit any
uncompleted transactions.

The subtlety here is that the client domain was unaffected by the failure and rebooting of its service do-
main. Thismirrors how the client and server model would function if provided on two physically separate
machines. Another way to view thisisasameansto harden |O devices and drivers that are prone to catas-
trophic failure by restricting them to their own domain.

In amore complex configuration, amultipath arrangement of 1/0 domains could be provided asillustrated
in the figure below.

Overview

Figure 1.4. Virtual Network Multipath

Service Domain Virtual Domain Service Domain

V- Ether V- Ether
Driver Driver
!
L

Virtual LAN 1b: 192.168.0/ 24
Virtual LAN 1: 192.168.0/ 24 I

kﬁTIJ klﬁjﬁj

Gb Gb
Ethernet Ethernet

Device Device
Driver Driver

In thisexample, aclient domain (2) has accessto an external network viatwo service 1O domains. Assum-
ing the client domain's operating system can support thiskind of multipathed 1/0, the configuration allows
for the failure of almost any part of the system up to the client domain itself. Traffic can be easily diverted
viathe service domain on theright if the hardware (or operating system) in the service domain on the left
should fail. In addition, because the protocol is designed as stateless, a service action (e.g. card swap or
reboot) could bring the domain on the left back on line again, after which traffic from the redundantly
connected client can be load balanced back.

It iseasy to see with thisinfrastructure, how even scheduled outages can be avoided. For example, because
the protocols are re-negotiated, arolling service domain upgrade could be implemented first by upgrading
and rebooting first the left and then the right service domain without loss of external connectivity.

This simple set of requirements, implemented by the virtual device protocols, allows for some very inge-
nious and robust virtual 1/0 infrastructuresto be created. Thus not only can physical 1/0 devices be shared
by multiple domains, but greater robustness and flexibility can be achieved using thiskind of virtualization.

1.7.3. Virtual disk services

The virtual disk protocol defined in this specification assumes the statel ess behavior described above. A
straightforward LDC is created between the service domain and the client domain by the domain manager.
The disk proxy service then slavishly responds to requests from the client.

In the same way that a service domain can support multiple client domains, aclient domain can be config-
ured to utilize multiple service domains. If supported by the client domain's operating system, this multi-
pathed configuration can be used for redundant access to storage as described above.

1.7.4. Scalable virtual networking services

The virtual networking protocol defined in this specification allows for a full layer-2 Ethernet network
switch to be created in a service domain. This switch can also be configured with multiple upstream ports
(utilizing direct 10 interfaces), or be configured to communicate with the local kernel for higher level
routing or firewalling functionality.

Each of the client domains of the networking switch has a LDC to the service domain. In the most basic
incarnation, network packets are sent by a client domain to its virtual network switch, that then forwards
those packets to the appropriate destination. The destination may be upstream or simply another domain
in the same machine.

10

Overview

The switch service protocol also provides broadcast and multicast functionality, aswell asVVLAN tagging
support.

For larger machines, where many domains may be consolidatedl, it is possible that most of the commu-
nication occurs between domains on the same machine. In this scenario ssmply forwarding packets back
and forth viathe service domain is remarkably inefficient. The switch must inspect each packet it receives
to determine its destination. Without hardware accel eration this uses CPU resourcesin the service domain
for packets remaining within the physical box.

To improve on latency and lower this overhead expenditure, the virtual networking protocol supports
the creation of a distributed switching capability. Where possible, LDCs are created to fully connect all
domainsthat are associated with the same switch. In thisway most of the switching burden is moved to the
client domain sending the packet. If the destination MAC address of a packet is to a domain with which
the guest has adirect LDC link the packet is sent over that link rather than via the switch.

This fully connected distributed switching capability is only possible because the domains are running on
a shared memory platform where LDCs are essentially a software creation rather than a scarce hardware
resource.

With this capability, the service domain hosting a virtual network switch typically only requires resources
to handle broadcast, multicast or upstream packets.

1.7.5. Virtual I/O Limits

There are no architectural limits on the number of services a domain can provide, or on the number of
clientsthat can be serviced. In redlity, system resources typically limit practical implementation. Service
domains should be sized to accommodate required load and responsiveness. Asthe virtualized 10 is oper-
ating by proxy sufficient CPU and memory resources will be required by a service domain to accommo-
date the load generated by its clients.

This provisioning does not have to be static; if the guest OS in a service domain supports dynamic recon-
figuration (“DR”) (seelater) then resources can be dynamically added or removed in response to changing
loads. It isrecommended that operating systems supporting DR are utilized for service domainsto provide
flexibility in resource assignment and to avoid having to over-provision service domains to accommodate
worst-case scenarios.

1.8. Hybrid I/0

For certain 1/O devices, for example the in-built network interface unit (N1U) of the UltraSPARC-T2, the
underlying hardware consists of multiple functions. In the case of NIU these functions are DMA engines
for networking traffic. Theintention behind multiple functionsisto enable spreading the packet processing
load between multiple CPUs— thisisimportant for a unit providing two 10GB/s Ethernet ports.

Thedirect I/O model alows control of the NIU from asingle logical domain where it can be exported as
avirtual network interface to other client domains using the virtual 1/O model described earlier.

To improve performance the hypervisor also supports a coupled capability, where the device is managed
like the virtual 1/0 model, but with some registers of each device function exported to client domains for
higher performance direct 1/0 access. The combination of a Virtual 1/0 model with a Direct 1/O model
for adeviceis called Hybrid /0.

The Hybrid 1/0 model uses the virtual 1/0 model for device management; in particular the receipt and
handling of errors in common device infrastructure. However in addition, direct 1/0O accessis allowed by
each client domain to itsown subset of the physical deviceregisters. Thisprovidesfor ahigher performance
1/O capability without having to use a proxy service.

11

Overview

Physical 1/0 functionsaretypically limited to fewer than the possible number of client domains. Therefore,
the Hybrid infrastructure is designed to allow adynamically configurable fall-back to apurely virtual 1/0
model when hardware functions are needed by other domains. In thisway the servicedomaininaHybrid 1/
O model acts as a scheduler for 1/0 resources switching its client domains between the Virtual and Hybrid
modes of device interaction depending on service needs and resource availability. For example, initialy
8 DMA engines may be split evenly between 7 client domains and the service domain itself. If another
client domain suddenly experiences a high traffic load, all the 7 client DMA engines may be withdrawn
and re-assigned to the high load domain.

1.9. Logical Domain Manager

As discussed earlier the hypervisor was architected to be as simple as possible, it provides the machine
specific core virtualization functionality and acts as the strict security enforcer between domains.

Management of logical domains requires aset of administrative interfaces (both user and machine) aswell
as code to ensure correct reconfiguration of the system when domains are created, changed or removed.

To avoid complexity in the hypervisor, this administrative functionality was consigned to an application
called the Logical Domain Manager capable of being run on any POSIX compliant guest OS.

The Logical Domain Manager controlsthe hypervisor and all of the supported logical domains. It provides
control interfaces for CLI or automated management interfaces. And, most importantly, it is responsible
for the assignment of physical resourcesto logical domains.

The Logical Domain (LDom) Manager communicates with the hypervisor via a special LDC endpoint
called the hypervisor control (“hvctl”) channel. The LDC endpoint is exposed to the user-level Domain
Manager viaakernel driver. This LDC endpoint is only accessible from a domain that has been assigned
the privilege to control the hypervisor. Thisis designated the Control Domain.

Other than the Control Domain, no other domain has access to a hypervisor control interface. Since there
isno accessto aLogica Domain Manager either, other domains in the system are not able to reconfigure
the virtual environment or potentially disrupt the machine.

This ensures the strictest possible security for the virtualization control point. Security weaknesses can
only beintroduced by the system administrator by poor configuration choices. Theseissuesare no different
than with any conventional non-virtualized network(s) of machines, and should be familiar to experienced
administrators.

1.9.1. Domain roles

From the hypervisor's perspective all domains are the same. We introduce terms describing roles and
capabilitiesonly to aid descriptivetext. Each and every domain can have one or more of thefollowingroles;

1.9.1.1. I/O domain

An /O domain has been granted direct access to one or more 1/O devices. Typically this provides a limi-
tation on thisdomain that curtails live-migration to another box unlessthe guest OS software al so supports
the ability to dynamically remove the 1/O device(s) in support of migration. The LDom Manager should
automatically detect and sequence this as required.

1.9.1.2. Service domain

A service domain provides a virtualized (virtual or hybrid 1/0O) service to other domains in the system.
This may be for disk storage or networking, or other future services. A service domain can also be the

12

Overview

client of another service domain. Indeed two service domains can even be each other's client and service
respectively. The designation of service domain merely indicates that there is a dependency relationship
on this domain by another client domain.

A service domain is often also an 10 domain— to provide access to externa 1/0 resources— this is not
arequirement. A domain can provide services purely to other clients within the system. For example, a
service domain can provide a virtual network (switch) for a number of client domains entirely within the
box. For this, no external network interfaces are required, and no need to assign an 10 capability.

A service domain can also be the client of another domain's service. For example, afirewall domain may
provide a virtual network switch to it clients and at the same time employ a virtual network interface as
its upstream link.

1.9.1.3. Control domain

In concretetermsaControl Domain has been granted accessto the hypervisor's control interface. If capable
of running the Logical Domain Manager it may control and reconfigure the hypervisor and effectively
the entire system.

1.9.2. Domain dependencies

A system administrator can define domains to be as dependent or independent of each other as desired
within the constraints of available hardware resources.

For example, a very simple configuration of two domains each with direct 10 access to its own devices
effectively behaves as two entirely separate machines. Essentially these domains can be considered as
sharing only the system chassis, power supply and are susceptible only to the most catastrophic of system
errors.

At the other end of the spectrum, it is possible to configure all guest domains to have a dependency on a
single domain that functions as a combined 10, service and control domain. Even in this extreme single
point of failure scenario, this single domain should not crash any of the other client domains if it fails,.
Moreover, if it can be rebooted and brought back online the dependent clients should be able to recover.

Key to thisis the lack of dependency other domains have on the control domain. The control domain is
not required for other guest domains to (re)boot, and can itself be rebooted without affecting any other
domainsin the system. However, if configuration changesto the hypervisor are required this must be done
using the control domain.

From the hypervisor's perspective, thereis no specia quality or differentiated functionality arole imbibes
adomain. Thus, any and all domains can be shutdown, reconfigured or restarted at any time.

The only system dependencies that exist are created by the system administrator in the configuration of
client and service domains. As described earlier the failure of a service domain will exhibit only atempo-
rary outage to aclient domain if that service domain can be brought back online. In other words the client
does not have to be rebooted with the server. And, if resilience against even temporary outages is sought,
multipathed configurations can be created with asingle client utilizing two or more service domains.

1.9.3. Domain manager operation
A full description of the internal workings of the Logical Domain Manager isworthy of its own document,
and certainly beyond the scope of thisone. However it isuseful to briefly discuss how the domain manager

functions, and how it interacts with each of the logical domains it manages.

A high-level view of the LDom manager isillustrated below.

13

Overview

Figure 1.5. Domain M anager

Control CLI
h il

[Logical Domain\ [

Control Domain

Ldom Manager

LDom
Controller
LDom

Sequencer

Domain Services

DB Module

[Hypervisor]

Reset & Config

Sack

The LDom manager is a user level application responsible for coordinating and allocating the physical
resources of its platform and reconfiguring the hypervisor'sinternal security rules.

There are two core components to the LDom manager: the LDom controller responsible for domain man-
agement and resource assignment decisions, and the the LDom sequencer responsible for sequencing the
steps necessary to effect any changes to the overall system.

Typically asystem administrator will use acommand line or higher level control application to instruct the
LDom manager to make configuration changes or to query the state of the virtual machine environment.
Thisisdone using asimple TCP/IP socket connection with the control protocol being encapsul ated within
an XML schema

The LDom controller receivesinstructions from its control interfaces and acts upon them using an internal
database of resources and domain configuration regquirements. The database module itself contains the
complete physical resource inventory (“PRI™) of the machine. This inventory is determined by the reset
and configuration code run while the system is powering up and retrieved either from the external system
controller (or possibly the hypervisor) over aLDC. The PRI itself isin the same binary form as a guest
machine description. Although it contains only physical resource information it forms the basis template
used to construct the virtual machine descriptions provided to each of the guest domains.

1.9.3.1. Constraint engine

At the heart of the the LDom controller isaconstraint engine that assigns resources to domains based upon
configuration requirements provided by the administrator. Typicaly constraints are provided at a high
level, such as “5 CPUS’ and “1GB of memory”, leaving the constraint engine to pick the most suitable
resources using default heuristics appropriate to the platform.

14

Overview

For example, cache sharing information from the PRI can serveto guide the constraint manager in selecting
available CPUs that share the same cache for adomain. At the sametimeit will try to select CPUs that do
not share caches with other domains so as to minimize cache interference effects between domains.

If allowed to, by configured constraint rules, the constraint engine may also reconfigure other existing
domainsto better balance resourcesin the system.

New configurations are described by new machine descriptions generated by the LDom manager. Each
affected domain receives an updated machine description, and the hypervisor is given an update to its
hypervisor machine description.

1.9.3.2. Transactional updates

All machine descriptions are downloaded to the hypervisor from the domain manager in a transactional
fashion, ensuring that the end state of any reconfiguration operation is either the complete resultant state,
or the previous stable state in the case of a configuration error.

By enforcing this transactional model with the LDom manager, the hypervisor can protect itself from
unstable or incomplete reconfiguration operations.

Moreover, should the Control Domain fail (crash) part way through a reconfiguration operation, the hy-
pervisor will be left in the previously defined stable state— as if the failed reconfiguration operation had
never been attempted.

In the event that the Control Domain or LDom manager do fail, once restarted the LDom manager can
retrieve the complete current running state of the virtual machines and available resources from the hyper-
visor. This key feature enables the control domain to be rebooted arbitrarily without killing or affecting
any of the other running domains in the system.

1.9.3.3. Sequencer

After resources are all ocated, the LDom controller binds them to the configured domains. Oncethisstepis
completed the domain manager proceeds to notify the hypervisor and (appropriate) domains of the change
in configuration to the system.

These notifications are delivered via back-end drivers that communicate via LDC to the hypervisor and to
live guest domains. Care has to be taken to notify the different parties in the correct order and to ensure
correct completion of the transactional model described above.

To achieve this a sequencer in the LDom manager controls the update steps taken during the reconfigu-
ration operation.

For example, adding a CPU to a domain requires first notifying the hypervisor to make the new CPU
resource available. Upon completion the domain manager notifies the guest OS in that domain of the
availability of the new resource.

A more complex example is the creation of a domain; again the hypervisor is notified first to ensure that
the domain is created and resources correctly assigned. Then, any service or other client domains have to
be notified to ensure they are aware of the new domain's existence.

Removing resources typically occurs in reverse order, first notifying domains that resources are going
away, and when safe notifying the hypervisor to complete the resource reconfiguration.

1.10. Domain service infrastructure

Aside from fundamental services like virtual 10 devices, LDCs are also used to connect domains to the
domain manager and to other system services.

15

Overview

These channels operate using a“ domain services’ protocol described later in this document. This protocol
enables adomain to advertiseits capabilities to the domain manager and to provide non virtual 10 services
to other domains.

For example, most operating systems cannot easily recover from the unexpected loss of a CPU. So if an
operating system is capable of supporting dynamic reconfiguration of CPUsit can announce this capability
to the domain manager using the domain services protocol. This serves two purposes; firstly to notify the
domain manager that dynamic CPU reconfigurations can be undertaken on thisdomain whileit is running,
and secondly to provide a request protocol from the domain manager to the guest to cleanly stop using a
CPU resource prior to its removal.

Domain services are negotiated using a common versioned registration protocol, allowing domainsto dy-
namically advertise any reconfiguration operations they are capable of supporting. If a serviceis not ad-
vertised by a domain, the LDom manager infers that it is not safe to undertake the corresponding recon-
figuration operation while the guest is running.

Similarly, domain services provide additional proxy capabilitiesto the domain manager. Thusthe domain
manager can remotely query domain performance statistics, request reboots or shutdowns. Also, the do-
main can request changes to its environment variables.

1.11. OpenBoot firmware

Unless otherwise configured for a domain, a virtualized OpenBoot firmware image is provided to each
logical domain as it starts. This enables initial loading and execution of an operating system, diagnostic
programs, and the ability to configure boot time parameters.

The retention of the OpenBoot command line interface isto maintain compatibility with existing non-vir-
tualized systems. However, for most administrators boot parameter configurationismore easily donewhen
configuring a domain using the LDom manager rather than starting and then logging into the domain's
console.

1.12. Error Handling

Handling errorsin avirtualized environment poses a number of interesting problems.

Typically errorsare delivered viaplatform specific hardware registers, and correspond to specific hardware
resources.

Only the hypervisor can capture these errors, decipher them, and direct them to the affected domain (or
worse-case domains) for further recovery.

Ignoring errors often leads to deeper problems such as data corruption. Simply crashing or panicking is
not acceptable for a hypervisor that supports multiple virtual machine environments.

The UltraSPARC Hypervisor typically performs the first stage of triage on received errors, collecting the
error information (recording for later analysis on the system controller) and then converting this into a
virtualized form for delivery to affected domains.

Errorscorrected by hardware aretypically not reported to affected guest domains. I nstead they arerecorded
for chronic analysis on the system controller. Abnormal correctable error rates can result in the domain
manager taking corrective action to avoid using a system resource. For example, CPUs or memory can
be pro-actively offlined before they fail.

Uncorrectable errors typically result in some form of data damage. This may be in critical data, (e.g. a
kernel data structure), or unused data (e.g. afree page pool) for a guest operating system. The hypervisor

16

Overview

does not know which errors are critical and which are irrelevant, so it reports all uncorrectable errors to
the affected domainsin avirtualized form.

Use of virtualized error reporting serves two purposes;

Firstly, a guest OS only knows about its virtual resources, not the underlying physical ones. So when
reporting amemory error, the hypervisor simply identifiesthe region of the guest n domain's address space
that has become corrupted.

Secondly a guest OS may very well be older than the hardware it is running on. Supplying hardware
specific data such as ECC syndromes to a guest operating system is pointless as that OS most likely will
not know what to do with the information. Consider a message of the form: “warning temperature 72
degrees’. Without knowledge of the physical hardware, is this a warning of something being too hot or
too cold? To avoid these problems error messages have a more precisely defined semantic meaning. For
example; “warning: too hot”, or “data corrupted between address X and address Y”.

The information provided to aguest OS is designed to enable the quarantining of affected resources. For
example, the off-lining of a corrupted memory page, or at least the (semi) graceful shutdown of the guest
OSitself.

Errors can occur as adirect result of adomain action (e.g. a CPU write to memory), or be detected in the
background (e.g. viaamemory scrubber).

For this reason the hypervisor further categorizes errors into “resumable’ and “non-resumable’ forms;
meaning “after receipt of this error message you can resume what you were doing”, or “you cannot com-
plete what you were doing respectively”.

1.13. Advanced LDoms features

Thearchitectural design of logical domainstechnology transatesinto unique capabilities beyond platform
virtualization. Logical domains include advanced features that help enterprises ease software migration,
simplify reconfiguration of hardware resources, and improve application isolation.

1.13.1. Dynamic reconfiguration

Spikes in demand and changing business needs cause individual IT services to use varying amounts of
compute capacity over time. The Logical Domains Manager enables administrators to optimize use of
compute resources by modifying the number and type of virtual resources, including CPU, memory, and
I/O devices assigned to alogical domain.

The ahility to do thisis afunction of aguest OS's capabilities. However, the domain services mechanism,
described earlier, provides an extensi ble mechanism for aguest to describe those capabilitiesto thedomain
manager.

Wherethe guest OSitself cannot support adynamic reconfiguration operation, the LDom manager can still
support reconfiguring the domain during areboot of that guest OS. This does not impact any of the other
virtual machinesin the system. Thistechniqueiscalled “ delayed reconfiguration”, and hypervisor updates
to adomain's configuration are delayed until the guest OS in that domain shuts down its virtual machine.

1.13.2. Logical domain migration

As mentioned earlier in this section the virtual machine architecture and interfaces have been designed to
allow the complete capture of avirtual machine state. This enables a running guest operating system to be
frozen and then saved, to be thawed later, or migrated while still running to a different physical machine.

The emphasis on state-less transactional interfaces enables guest domainsto be re-bound to new resources
arbitrarily. This mechanism is leveraged when moving or saving logical domains.

17

Overview

It falls to the domain manager(s) to ensure that appropriate resources are availabl e at the destination prior
to live-migrating alogical domain, but once that determination has been made the operation can proceed
until completion.

Snapshots of running domains can be taken to support rapid roll-back or rapid reboot in scenarios where
high-availability is paramount. Even for basic domain deployment, a pre-booted snapshot of a domain
can be brought online rapidly without having to wait for a guest OS to boot. Dynamic technologies like
DHCP can be leveraged to ensure that unique domain characteristics such as host names or |P addresses
are dynamically assigned once a“vanilla’ snapshot image is started.

18

Chapter 2. Hypervisor call conventions

Hypervisor API calls are made through the use of at r ap (Tcc) instruction using sw_t r ap_nunber s
0x80 and above. The calling convention has two forms; fast-trap and hyper-fast-trap. The principle dif-
ference between these two forms is whether the function number is passed in aregister or is encoded in
the trap instruction itself. The latter isthe faster form, but has alimited number of possible functions, and
istherefore reserved for performance critical operations only.

2.1. Hyper-fast traps
This trap mechanism encodes the API function number (0x80 + a 7-hit value) in the Tcc instruction's

sw_trap_nunber itself, and therefore providesthe fastest possible method of reaching the actual func-
tion implementation. The calling convention is as follows:

Table 2.1. Hyper-fast trap calling convention

Register I nput Output
%00 argument O return status
%01 argument 1 return value 1
%02 argument 2 return value 2
%03 argument 3 return value 3
%04 argument 4 return value 4

All arguments and return values are 64-bit values unless explicitly stated by the description of a specific
API service. Further arguments may be passed in memory, as defined on a per function basis.

2.2. Fast traps
Fast traps are the preferred mechanism for hypervisor APl calls. Fast trap APl calls primarily use

sw_trap_nunber 0x80 inthe Tcc instruction, with the required function number provided as a 64-
bit value in register %05. The calling convention is as follows:

Table 2.2. Fast trap calling convention

Register Input Output
%05 function number undefined
%00 argument O return status
%01 argument 1 return value 1
%02 argument 2 return value 2
%03 argument 3 return value 3
%04 argument 4 return value 4

All arguments and return values are 64-bits unless explicitly stated by the description of a specific API
service. Further arguments may be passed in memory, as defined on a per function call basis.

2.3. Post hypervisor trap processing

The following convention is used, unless explicitly described for a particular APl service:

19

Hypervisor call conventions

« All API services resume executing at the next logical instruction after the service trap as with a done
instruction.

» All sundv defined registers are preserved across an API service except as explicitly stated below;

* Registers providing arguments to an API service (including the function number %05 for fast traps)
should be considered volatile, and their values upon return are undefined unless they are explicitly
specified on a per-service basis. Registers not used for passing arguments or returning values are
preserved across the API service.

» Upon return from the APl service, the returned status is given in register %00. A value of zero in
%00 indicates successful execution of the APl service, all other values indicate an error status (as
defined in Section A.6, “Error codes’).

 Ifaninvalidsw_trap_number isissued, or if aninvalid function number is specified, the hypervisor will
return with EBADTRAP (as defined in Section A.6, “Error codes’) in %00.

 All 64 bits of the argument or return values are significant.

20

Chapter 3. State Definitions

3.1. Processor states

Each virtual CPU can have one of three different states:

Sopped Stopped CPU is stopped, not executing code, and may be started viathecpu_st art API
service

Running CPU is executing
Error CPU isin error, and is no longer executing code

The relationship of these CPU states and hypervisor services may be summarized with the state diagram
below.

Figure 3.1. Sundv Processor States

reset
mach_exit
mach_sir

3.2. Initial guest environment

The initial state of each sundv virtual CPU is defined in the Sundv Architecture Specification. Initial
register state is duplicated here together with initial register configuration performed by the hypervisor
for completeness.

21

State Definitions

3.3. Privileged registers

Table 3.1. Privileged registers

Register Initial Value
%cwp 0

%%cansave NW NDOWS - 2
%cleanwin NW NDOWS - 2
%ocanrestore 0

%otherwin 0

%owstate 0

Y%pstate al O except pstate.priv=1, pstate. mm=tso
%ot MAXPTL (2)
%gl MAXPGL (2)
Y%pil MAXPI L (15)
%tba current rtba
%ott POR

3.3.1. Non-Privileged Registers

Table 3.2. Non-privileged registers

Register(s) Initial Value

%g1-%g7 0

%i 0] Yocwp] real address of start-up memory segment
%i 1] %cwp] size of start-up memory segment

%i 2-%i 7[Yocwp] 0

%i0-%i 7[all other windows] 0

%I 0-%l 7[all windows] 0

%f0-%f63 binary 0

%fsr 0

3.3.2. Ancillary State Registers

Table 3.3. Ancillary stateregisters

Register Description Initial Value
ASRO %y 0
ASR 2 %ccr 0
ASR3 Yoasi AS| _REAL
ASR 4 %tick >0, npt=0
ASR5 %pc current program counter
ASR 6 %fprs 0

22

State Definitions

Register Description Initial Value
ASR 19 %gsr 0
ASR 22 %softint 0
ASR 24 Yostick >0, npt=0
ASR 25 Y%stick_cmpr 0 with interrupt disabled (bit 63=1)

3.3.3. Internal memory-mapped registers

Table 3.4. Internal memory-mapped registers

ASl VA Initial Value
ASI _SCRATCHPAD 0x00 0
ASI _SCRATCHPAD 0x08 0
ASI _SCRATCHPAD 0x10 0
ASI _SCRATCHPAD 0x18 0
AS| _SCRATCHPAD 0x2, if implemented 0
AS| _SCRATCHPAD 0x28, if implemented 0
ASI _SCRATCHPAD 0x30 0
ASI _SCRATCHPAD 0x38 0
ASI MV 0x08 (primary context) 0
ASI _MV 0x10 (secondary context) 0
ASI _MVUJ 0xn08 (for valid n>0) 0
ASl MU 0xn10 (for valid n>0) 0
ASI _QUEUE 0x3c0 (cpu mondo queue head) 0
ASI _QUEUE 0x3c8 (cpu mondo queue tail) 0
ASI _QUEUE 0x3d0 (dev mondo queue head) 0
ASlI _QUEUE 0x3d8 (dev mondo queue tail) 0
ASI _QUEUE 0x3e0 (resumable error queue head) 0
ASI _QUEUE 0x3e8 (resumable error queue tail) 0
ASI _QUEUE 0x3f 0 (non-resumable error queue head) 0
ASlI _QUEUE 0x3f 8 (non-resumable error queue tail) 0

3.3.4. CPU-specific Registers

Platform-specific performance counters will be configured such that exceptions/interrupts are disabled.

3.4. Other initial guest state

+ MMU stateis disabled.

MMU fault status area location is undefined.

TSB info is undefined.

All queue base addresses and sizes are undefined.

23

State Definitions

e One CPU is placed into the running state, all other CPUs are in the stopped state.

* Initial guest soft stateissetto SI S TRANSI T ON, with an empty description string (zeros).

24

Chapter 4. Addressing Models

4.1. Background

This section defines the sundv memory management architecture. The intent is to provide a memory ad-
dressing capability for a virtualized architecture at the same time removing the explicit dependence on
hardware mechanisms for virtual memory management. Mechanisms are provided to privileged mode to
manipul ate the memory made available, and in turn to virtualize and make that memory available to non-
privileged mode processes.

4.2. Address types

The sundv architecture hastwo addresstypes, asin legacy architectures. The main differenceisthat virtual
addresses are trandated to real addresses, as opposed to being transated to physical addresses. This
change is made in order to enable the segregation of physical memory into multiple partitions.

Virtual addresses

Real addresses

4.3. Address spaces

Virtual addresses aretrandated by an MMU in order to locate datain physical
memory. Thisdefinitionisunchanged from current systemsfor non-privileged
and privileged mode addresses.

Real addresses are provided to privileged mode code to describe the underly-
ing physical memory allocated to it. Trandation storage buffers (TSBs) main-
tained by privileged mode code are used to trandlate privileged or non-privi-
leged mode virtual addresses into real addresses. MMU bypass addresses in
privileged mode are also real addresses.

Address spaces are unchanged from UltraSPARC-1. Primary and secondary virtual addresses are associ-
ated with context identifiers that are used by privileged code to create multiple address spaces.

4.4. Address space identifiers

Instructions can explicitly specify an address space via address space identifiers. All the SPARC v9 ASI
definitions are unchanged for sundv, and anumber of new ASIs are also defined. ASIsrelated to memory
management are described below:

Table4.1. Privileged registers

ASI Number ASl Name
0x14 REAL_MEM
0x15 REAL_I| O
Ox1c REAL_MEM LI TTLE
ox1d REAL | O LI TTLE
0x21 MVU

4.4.1. ASI 0x14 & Ox1c: REAL_MEM LI TTLE}

This ASI provides privileged mode access to cached memory using a real rather than virtual address.
For this access the context id is unused. A nonr esumabl e_er r or trap occurs if the access cannot be

compl eted.

25

Addressing Models

4.4.2. ASI 0x15 & Ox1d: REAL_| O LI TTLE}
This ASI provides privileged mode access to uncached memory addresses using areal rather than virtual
address. For this access the context id is unused. A nonr esurabl e_er r or trap occurs if the access
cannot be compl eted.

4.4.3. ASI 0x26 & Ox2E: REAL_QUAD{ LI TTLE}

This AS|I provides atomic access to 16 bytes of data using rea addresses. A
nmem addr ess_not _al i gned trapistaken if the addressis not 16 byte aligned.

4.4.4. ASI 0x21: MU

The sundv MMU interface consists of the following registers:

Table4.2. MMU registers

Register Address
PRI MARY_CONTEXTn 0xn08
SECONDARY_CONTEXTn 0xn10

These registers are used for the primary and secondary context values utilized by the processor TLB for
distinguishing address space contexts. The number of primary and secondary context registers provided
isimplementation dependent subject to the following rules:

1. Thenumber of primary context registers must be the same asthe number of secondary context registers.

2. The context registers must start with n=0, and be arranged sequentially without gaps. So, for example
with 4 registers, n=0,1,2,3.

3. The number of bits provided must be the same for all context registers.

4. For easeof programming, awriteto PRI MARY_ _CONTEXTO causesthe same context valueto bewritten
to all other PRI MARY_CONTEXT registers. Similarly, awrite to SECONDARY _CONTEXTO causesthe
same context value to be written to all other SECONDARY _CONTEXT registers.

Sundv provides a minimum of 13 bits of context (bits O through 12). Further bits (from 13 and up) may
be provided as an implementation dependent feature. The maximum number of bits for a given hardware
platform are given as a property in the guest's machine description. Privileged code is responsible for
honoring the number of bits supported by hardware.

Programming note

The policy of how privileged code chooses to use the primary and secondary context registers
is beyond the scope of this document. However, because sundv only guarantees the existence
of PRI MARY_CONTEXTO and SECONDARY _CONTEXTO it is recommended that these be used
as process private context registers, while any remaining context registers be used for possibly
shared context address spaces.

4.4.4.1. Translation conflicts

For sundv platforms that implement more than one primary and more than one secondary context register
privileged code must ensure that no more than one page translation is allowed to match at any time.

26

Addressing Models

An illustration of erroneous behavior is as follows. an operating system constructs a mapping for virtu-
al address A valid for context P, it then constructs a mapping for address A for context Q. By setting
PRI MARY_CONTEXTO to P and PRI MARY_CONTEXT1 to Q both mappings would be active simultane-
ously— potentially with conflicting translations for address A. Care must be taken not to construct such
scenarios.

To prevent errors/data corruption sundv processors will detect such conflicts, flush the TLB, and issue a
{data/instruction}_access_exception.

4.4.4.2. Barrier rules

By definition changing either the primary or secondary context registers has side effects on processor
behavior. The following table describes the behavior of a store to these registers.

Table4.3. MMU context register barrier rules

@TL=0 @TL>0
PRI MARY _CONTEXT undefined; privileged membar #Sync, DONE or
code should not change RETRY are required for effect to

PRI MARY_CONTEXT at TL=0 |be guaranteed observable, other-
wise results are undefined

SECONDARY_CONTEXT membar #Sync is required for ef- | membar #Sync, DONE or

fect to be guaranteed observable, |RETRY arerequired for effect to
otherwise results are undefined | be guaranteed observable, other-
wise results are undefined

4.5. Translation mappings

Privileged code describes virtual to real address mappings to manage its virtual address spaces. These
mappings are declared either as translation table entries (TTES) in a trandation storage buffer (TSB) de-
scribed in Section 14.1, “ Trandlation Storage Buffer (TSB) specification ”, or can be established directly
by the use of the hypervisor API call mmu_map_per m addr (Section 14.8.7, “mmu_map_perm_addr”).
This call can also be used to establish alimited number of “locked” mappings for which privileged code
cannot tolerate an MMU misstrap.

4.6. MMU Demap support

Privileged mode demap operations become hypervisor APl calls.

It isimportant to note that sundv provides a coherent demap capability for the privileged mode. The demap
API call takesalist of virtual CPUs for which the demap operation is to be applied.

The following three demap operations are required for sundv:
Demap Page The trangl ations demapped match the virtual address and context id designated.
Demap Context the trand ations demapped match the context id designated.

Demap All this demaps al trandations.

4.7. MMU traps

MMU privilege mode traps are a subset of the MMU traps described in the SPARC v9 specification:

27

Addressing Models

instruction_access_nmu_m ss,data_access_mru_m ss
shall be generated when a non-privileged or privileged mode access does not have a trandation in
any of the TSBs.

dat a_access_protection
shall be generated when anon-privileged or privileged mode access matches atranslation that does not
allow the requested action, i.e. store when TTE write enablefield is clear. This aso enables software
simulation of a TLB entry modified bit, as well as fast copy-on-write page processing.

To speed processing of a copy-on-write or modified-bit usage, the faulting TLB entry is guaranteed
flushed from the local CPU's TLB upon entry of this exception. Thus, in the common case, no flush
operation needs to be generated before enabling write permission in the faulting TTE.

i nstruction_access_exception,data_access_exception
shall be generated as the result of a non-privileged mode access when TTE privilege field is set, or
asthe result of an instruction fetch when the TTE execute permission bit is not set, or as the result of
two conflicting translation matches for the same virtual address.

fast _instruction_access MVJ niss,fast _data access MMJ niss
shall be generated when anon-privileged or privileged mode access does not have atranglation in any
TLB and no TSB is specified for the virtual CPU.

fast _data_access_protection
shall be generated when no TSB is specified for the virtual CPU and a non-privileged or privileged
mode access matches a TLB trandlation that does not allow the requested action, i.e. storewhen TTE
write enablefield is clear. This also enables software simulation of a TLB entry modified bit, as well
as fast copy-on-write page processing.

To speed processing of a copy-on-write or modified-bit usage, the faulting TLB entry is guaranteed
flushed from the local CPU's TLB upon entry of this exception. Thus, in the common case, no flush
operation needs to be generated before enabling write permission in the faulting TTE.

4.8. MMU fault status area

MMU-related faults have their status and fault address information placed into a memory region made
available by privileged code. Like the TSBs above, the fault status area for each virtual processor is de-
clared viaahypervisor API call.

The MMU fault area is arranged on an aligned address boundary with instruction and data fault fields
arranged into distinct 64-byte blocks. The contents and layout of the MMU fault status area are currently
specified in Section 14.6, “MMU Fault status area” of this specification.

28

Chapter 5. Trap Model

For sundv, two of the three SPARC v9 trap types:. precise and disrupting, behave according to the SPARC
v9 specification. The third, deferred, may behave according to the UltraSPARC-I specification. The key
differenceisthat UltraSPARC-I deferred traps do not provide additional information so that uncompl eted
instructions older than TPC can be emulated.

In the case of aCPU that implements SPARC v9 deferred traps, the hypervisor will present adeferred trap
to privileged mode, but will also make available enough information so that privileged code can attempt to
emulate any uncompl eted instructions. In the case of anon-resumable error trap, the emulation information
will appear in the error report. This is also the rationale for not including the SPARC v9 FQ register in
sundv, sinceit is used for emulation of deferred floating point traps.

A more precise description of the MMU, interrupt and error traps is made below to clarify behaviors left
unspecified by SPARC v9.

5.1. Privilege mode trap processing

As with the SPARC v9 specification, the processor's action during trap processing depends on the trap
type, the current trap level (TL register), and the processor state.

For trap processing from non-privileged or privileged mode to privileged mode the steps taken are the

same as the SPARC v9 specification. Note that if a privileged code lowers the value of TL, thereis no
guarantee that the values of TSTATE, TPC, TNPC and TT will remain consistent for larger values of TL.

5.2. Trap levels
The maximum trap level available to privileged software in sundv is defined to be 2 (MAXPTL).

5.2.1. Privilege mode TL overflow

When TL = MAXPTL, an additional privileged mode trap results in the delivery of awatchdog_reset trap
to privileged mode with TT set to the type of trap that caused the error. TL remains at MAXPTL.

5.3. Sun4v privileged-mode trap table

The privileged-modetrap tableisdefined in the programmersreference manual for each specific processor.

29

Chapter 6. Interrupt model

This chapter describes the sundv architecture for sending and receiving interrupts.

6.1. Definitions

CPU mondo CPU to CPU interrupt message.
Device mondo Interrupt sent by an I/O device.
Interrupt report A message describing an interrupt.
Interrupt queue A FIFO list of interrupt reports.

6.2. Interrupt reports

Interrupts are described by interrupt reports. Each interrupt report is 64 bytes long and consists of eight
64-bit words. If areport contains less than eight meaningful words it will be padded with zeros.

6.3. Interrupt queues

Interrupts are indicated to privileged mode via interrupt queues each with its own associated trap vector.
There are 2 interrupt queues, one for device mondos and one other for CPU mondos. New interrupts are
appended to the tail of a queue, and privileged code reads them from the head of the queue.

Privileged code is responsible for allocating real memory regions for these queues. Each queue region
must be a power of 2 multiple of 64 bytes in size. The base real address must be aligned to the size of
the region. For example, a queue of 128 entries is 8K bytes in size and must be aligned on an 8K byte
real memory address boundary.

The queue configuration is described viahypervisor API callswhen the queueregioniscreated or modified
(see Section 13.2.6, “cpu_gconf™).

6.3.1. Queue support registers

The contents of each queue is described by a head and tail pointer. The head and tail pointer for each
queue are held in registers as offsets from the base of their respective queue region. These interrupt queue
registers are accessed with the QUEUE ASl (0x25). Each of the registers are addressable and accessible
as 64-bit quantities. The AS| addresses are as follows:

Table6.1. Privileged registers

Register Address Access
CPU_MONDO_QUEUE_HEAD |0x3c0 Read/Write
CPU_MONDO_QUEUE_TAIL |0x3c8 Read-only
DEV_MONDO_QUEUE_HEAD |0x3d0 Read/Write
DEV_MONDO_QUEUE_TAIL |0x3d8 Read-only

In privileged mode, the head offset registers are read and write accessible, the tail offset reg-
isters are only readable. Attempting to write the tail register from privileged mode results in a
dat a_access_excepti on trap.

30

Interrupt model

6.3.1.1. * QUEUE_HEAD and * QUEUE_TAIL

The status of each queue isreflected by its head and tail pointers:

* QUEUE_HEAD holdsthe offset to the oldest interrupt report in the queue.

* QUEUE_TAIL holdsthe offset to the area where the next interrupt report will be stored.

An event that resultsin the insertion of a queue entry causesthetail of that queue to be incremented by 64
bytes. Privileged code is responsible for similarly incrementing the head pointer to remove an entry from
the queue. The queue pointers are updated using modul o arithmetic based on the size of aqueue. A queue

is empty when the head is equal to the tail. A queue is full when the insertion of one more entry would
cause the tail pointer to equal the head pointer.

Figure6.1. Interrupt queue head and tail register formats

| head/tail offset | 0 |

The format of each of the QUEUE _HEAD and QUEUE_TAI L register is shown above. Bits O through 5
always read as 0, and attempts to write them are ignored.

The minimum head and tail register sizeis provided as a property value in the machine description given
to aguest.

6.4. Interrupt traps

The sundv architecture has an interrupt trap for each of the two interrupt queues:

cpu_nondo thistrap informs privileged mode that an interrupt report has been appended to the CPU
mondo queue.

dev_nondo thistrap informs privileged mode that an interrupt report has been appended to the dev
mondo queue.

Both traps are disrupting, meaning that the current instruction stream can be restarted with aretry instruc-
tion, and that they can be blocked by setting pstate.ie = 0.

6.4.1. CPU mondo interrupts

CPU to CPU messages are are sent via CPU mondo interrupts. The term mondo refers to the original
UltraSPARC-1 bus transaction where they were first introduced.

6.4.1.1. Sending CPU mondos

CPU mondos are sent via hypervisor API calls. The API allows 64 bytes of datato be sent to the targeted
CPUs. The API call also includes the ability to send mondos to multiple CPUs in asingle call to improve
efficiency.

31

Interrupt model

6.4.1.2. Receiving CPU mondos

CPU mondos are received via the CPU mondo queue.. When this queue is non-empty, a cpu_nondo
disrupting trap is pended to the target CPU. The mondo data received is stored as the interrupt report.

6.4.2. Device mondo interrupts

Device mondo interrupts are received via the device mondo queue. When this queue is non-empty, a
dev_nondo disrupting trap is pended to thetarget CPU. Theinterrupt report contents are device-specific,
although a hypervisor API call does exist to alow privileged code to target device interrupts to specific
CPUs.

6.5. Device interrupts

Every device (both virtual and physical) has differing interrupt needs. The device mondo payload was
defined to provide amodest amount of information in support of an interrupt so asto minimize the number
of additional hypervisor cals required to service an interrupt.

With the device mondo queue registers being implemented by hardware, and directly accessible by the
virtual machine's Operating System, no hypervisor APl calls are required to identify the source of an
interrupt, dispatch the appropriate interrupt handler and subsequently clear the pending interrupt status.
Only the device driver itself may need API callsto access the specific device concerned.

6.5.1. Device handles and devinos

To manage devices and their interrupts each device is identified by a device handle. A device handleis
unique for a specific device within a virtual machine. The device handle for adevice is typically provid-
ed to the guest OS running in a virtual machine via the Machine Description (see Chapter 8, Machine
description) obtainable from the hypervisor. A device handle (or dev_handl e) should be treated as an
opague cookie value. No semantic information can be derived from the value itself, it is merely ahandle
by which aguest operating system can identify adevice instance to the hypervisor when using an API call.

Devices often have more than one interrupt source. For example, a simple serial device may have sepa-
rate transmit and receive interrupts. Consequently to identify interrupt sources within a device a second
parameter - a device interrupt number or “devino”— is used to disambiguate interrupts belonging to a
specificdev_handl e.

6.6. Sysinos and cookies

Asdescribed above, the sundv virtual machine architecture deliversinterrupt notificationsto avirtual CPU
by means of a device mondo queue. Each interrupt entry in the device mondo queueis afixed 64 Bytesin
size and is used to hold a modest amount of additional information regarding the interrupt it represents.

The first 64-bit word of each device mondo packet holds an identifier for the interrupt source, and the
remaining 7 words are defined to be interrupt source specific.

Hypervisor APIs that relate to interrupt handling typically require the passing of a devhandle and the
devino to uniquely identify a specific interrupt within the virtual machine.

6.6.1. Legacy use (the sysino)
The initial UltraSPARC T1 hypervisor supplied a “sysino” in word 0 of each device mondo to identify

the source of an interrupt. This hypervisor's sysino was derived from the actual device handle and devino
of the interrupt source. For the devices in use by a guest operating system the sysinos to be generated by

32

Interrupt model

the hypervisor in device mondos could be determined using the Hypervisor's INTR_DEVINO2SY SINO
API call.

The sysino APl was intended for the Hypervisor to return a 64-bit value of it's choosing to represent an
interrupt source. The arbitrary sysino value was intended such that any algorithm might be employed in
generating a sysino for the corresponding device handle and interrupt number. In practice the implemen-
tation was simply to concatenate the devhandle and ino values into a single 64-bit sysino number.

Solaris 10 uses this sysino value as an index into a linear table programmed with information relevant
to the specific interrupt source. The size of this table fixed at Solaris compile time as a function of the
number of CPUSs.

The above assumption made by Solaris requires that the sysinos supplied in each device mondo lie in the
range 0-2047 - the size of the table when Solarisis compiled for 64 CPUs.

Thereis no mechanism to enforce this contract between guest OS and hypervisor. Theresult issimply that
the sysinos generated by the hypervisor that are out of range of the table are silently dropped (interrupts
are lost), and worse, the upper end of the Solaris table is used for software induced timer interrupts, so
unfortunate generation of Hypervisor sysinos can in fact be interpreted as interrupts other than those for
the device they represent.

The additional hurdle of dynamic assignment of sysinos presents itself for Logical Domaining and Live
Migration. Both features require the ability to dynamically assign and delete interrupt sources for a guest
OS, and furthermore transfer those assignments between machines.

Given these and anumber of other problems, the sysino interface is being deprecated, and is unlikely to be
supported in future hypervisors. New guest operating system code should not useinterrupt APIs requiring
sysinos unless compatibility with old UltraSPARC-T1 hypervisorsis required.

The hypervisor API versioning interfaces can be used to identify the availability of old and new interrupt
interfaces when necessary.

As described below the interrupt cookie mechanism that replaces sysinos may be used in a backwards
compatible manner to avoid significant re-writes of legacy OS interrupt handling code.

6.6.2. Interrupt cookies

To solvethe aforementioned problemswith sysinos, Guest OSs and Hypervisor a cookie based mechanism
has been implemented.

Instead of a sysino provided by the hypervisor to identify an interrupt source, a guest OS will be able to
set a 64-bit cookie value of its choice for a specific devhandle + devino pair. This cookie is returned as
word 0 in adevice mondo entry when the interrupt occurs. The cookie may be defined and interpreted in
anyway by the guest - for example as a pointer to an internal data structure for the interrupt.

Though legacy interrupt sources (for exampl e the existing PCI-E infrastructure on Ontario/Eri€) may have
cookie support in the Hypervisor, the corresponding guest OS nexus drivers must continue to provide
support for existing hypervisor defined sysinos so as to continue to function on legacy firmware imple-
mentations.

Similarly, new firmware implementations should continue to provide support for sysino based interrupt
APIs, in order to support legacy guest OS nexus drivers.

Chapter 16, Device interrupt services of this document defines the APIs used to set and get interrupt
cookies in addition to APIs to manipulate the interrupt state machine using by dev_handl e and ino —
thus removing the need for the sysino and the problems of its dynamic alocation and migration between
machines.

33

Chapter 7. Error model

This section describes the sundv error handling and reporting architecture. To allow for a degree of future
proofing, this component of sundv has to be flexible, and robust enough to gracefully cope with error
situations yet to be envisioned by system designers. In particular it isadesign goal of sundv that an older
sundv OS be able to handle reports from new hardware — if only via a set of default actions.

7.1. Definitions

Error class agroup of errors with common attributes that are handled in a similar manner.
Error report amessage describing an error sent to privileged mode.
Error queue aFIFO list of error reports of the same class.

7.2. 7.2 Error classes
The sundv architecture defines two classes of errors: resumable and non-resumable errors.
7.2.1. Resumable error

A resumable error indicates the delivery of an error notification that leaves the current instruction stream
in a consistent state so that execution can be resumed after the error is handled. A resumable error does
not require any specific action by privileged code; the error may even be ignored. More sophisticated
privileged code may record the error and/or forward it to a diagnosis agent. While all corrected errors are
resumable, it isimportant to note that some uncorrectable errors are also resumable, e.g., an uncorrectable
write-back error is resumable since the current instruction stream is not affected, but if the corrupted data
is later fetched, a non-resumable error would occur. Whether or not the error was corrected is indicated
in the error header.

7.2.2. Non-resumable error

A non-resumable error indicates the delivery of an error notification that |eaves the current instruction
stream in an inconsistent state. The instruction stream (non-privileged or privileged) interrupted by this
error cannot be resumed without explicit software intervention. In addition to possibly recording the error
and/or forwarding it to adiagnosis agent, privileged code must either abort the current instruction stream,
or attempt to recover from the error. The instruction stream may only be repaired if the error caused a
precise trap. If the error caused a deferred trap, it cannot be repaired. The error's trap type is indicated
in the error header.

7.3. Error reports

The sundv architecture presents error information to privileged mode via error reports. An error report
consists of acommon 64 byte header, followed by error-specific data. The error-specific datawill alsobea
multiple of 64 bytesin length, so the entirelength of an error messagewill alwaysbeamultiple of 64 bytes.

7.4. Error queues

Errors are reported to privileged mode viaerror reports. Error reports are appended to a FIFO error queue.
There are two error queues, one for each error class (resumable and non-resumable). Privileged code
removes errors from the front of the error queue as it handles them.

The contents of each queue isdescribed by ahead and tail pointer. The head and tail pointer for each queue
areheldinregistersasoffsetsfrom the base of their respective queueregion. Theseinterrupt queueregisters

Error model

are accessed with the ASI _ QUEUE ASI (0x25). Each of the registers are addressable and accessible as
64-bit quantities. The ASI addresses are as follows:

Table7.1. Error queue privileged registers

Register Address Access
RESUMABLE_ERROR_QUEUE_HEAD 0x3e0 Read/Write
RESUVABLE_ERROR_QUEUE_TAI L 0x3e8 Read-only
NONRESUMABLE_ERROR_QUEUE_HEAD 0x3f0 Read/Write
NONRESUMABLE_ERRCR_QUEUE_TAI L 0x3f8 Read-only

In privileged mode, the head offset registers are read and write accessible, the tail offset reg-
isters are only readable. Attempting to write the tail register from privileged mode results in a
dat a_access_excepti on trap.

7.4.1. Error Queue Head and Tail Pointers
The status of each queue isreflected by its head and tail pointers:

RESUMABLE_ERROR_QUEUE_HEAD, NONRESUVABLE_ERROR QUEUE_HEAD
holds the offset to the oldest error report in the queue.

RESUMABLE _ERROR_QUEUE_TAI L, NONRESUVABLE ERRCR _QUEUE_TAI L
holds the offset to the area where the next error report will be stored.

An event that resultsin the insertion of a queue entry causesthetail of that queue to be incremented by 64
bytes. Privileged code is responsible for similarly incrementing the head pointer to remove an entry from
the queue. The queue pointers are updated using modul o arithmetic based on the size of aqueue. A queue
is empty when the head is equal to the tail. A queue is full when the insertion of one more entry would
cause the tail pointer to equal the head pointer.

Figure7.1. Error queue head and tail register formats

| head/tail offset | 0 |

The format of each of the QUEUE_HEAD and QUEUE_TAI L registers is shown above. Bits O through 5
always read as 0, and attempts to write them are ignored. The minimum head and tail register size is 16
bits (bits 6 though 21). Unimplemented bits must read as zero, and be ignored when written.

7.5. Error traps
The sundv architecture has two error traps:

resumabl e_error
thistrap informs privileged code that an error report has been appended to the resumable error queue.
Thistrapisadisrupting trap, meaning that the current instruction stream can berestarted withar et ry
instruction, and that r esunabl e_er r or traps can be blocked by setting pstate.ie to 0.

35

Error model

nonr esunmabl e_error

this trap informs privileged code that an error report has been appended to the non-resumable error
gueue. This trap may be precise or deferred, as indicated in the error header. A precise trap may
be restartable if the corruption can be repaired, but a deferred trap cannot be restarted even if the
corruption isrepaired. Non-resumable errors cannot be blocked, or nest. Privileged code must update
the non-resumable error queue head as quickly as possible to indicate when it is prepared to take
another non-resumable error trap. If the non-resumable error queue is not empty when another non-
resumable error trap occurs, the hypervisor will stop the current CPU, and send a resumable error to
another CPU inthe same partition. If only one CPU has been configured inthe partition, the hypervisor
will inform the service processor.

At entry of thetrap handler, the processor cacheswill be enabled and cleared of any faults. System memory,
however, may have uncorrectable errors. If the real address of a memory error can be determined, this
information will appear in the error header.

36

Chapter 8. Machine description

To describe the resources within a virtual machine (or logical domain), a data structure called a machine
description (MD) is made available to the guest running in each logical domain / virtual machine envi-
ronment.

This section describes the transport format for the machine description (MD).

Thisformat is provided for the contract between the producer of the MD (typically the Service Entity) and
the consumers in the logical domains (for example, OBP boot firmware and the Solaris OS).

8.1. Requirements

The format of the machine description is designed so that any consumer may either elect to read and
transform it into an internal representation, or merely useit in place. For the latter, the encoding needs to
be easily readable with an efficient decoder. Similarly a simple encoding requirement also exists for the
system software responsible for generating a particular machine description.

A hypervisor will provide a machine description as a whole to a guest operating system upon request in
responseto an API call. The machine descriptioniswritten into abuffer owned by the guest, and not shared
with any other guest or with the hypervisor. Once provided it istruly private to the guest. Therefore, there
is no requirement that the encoding format support any form of dynamic update or extension. Updates to
amachine description are indicated by providing a complete new machine description.

8.2. Sections

The machine description is provided in four sections as illustrated below and described below.

Figure 8.1. Machine Description sections

Header

Node Block

Name Block

Data Block

These sections are linearly concatenated together to provide a single machine description.

8.3. Encoding

Unless otherwise specified, all fields described herein are encoded in network byte order (big-endian).

Unless otherwise specified, all fields are packed without intervening padding, and have no required byte
alignment.

37

Machine description

Where alignment is specified, it is defined in relation to the first byte of the machine description header.

8.4. Header

The format for the machine description header is defined below:

Table 8.1. Machine description header

Byte offset Sizein bytes Field name Description
0 4 transport_version |Transport version number
4 4 node_bl k_sz Size in bytes of node block
8 4 name_bl k_sz Size in bytes of name block
12 4 data_bl k_sz Size in bytes of data block

The header is easily described by the following packed C structure for a big-endian machine:

struct nd_header {
uint32_t transport_version;
uint 32_t node_bl k_sz;
uint32_t name_bl k_sz;
uint32_t data_blk_sz;

i

Thetransport _versi on specifies the version encoding that applies to this MD. The transport ver-
sion is a 32-bit integer value. The upper 16 bits correspond to a major version number, the lower 16 bits
correspond to aminor version number change.

8.4.1. Version numbering

Thet ransport _ver si on number for this specification is0x10000, namely version 1.0.

Anincreasein the minor number of the transport version correspondsto the compatibl e addition or removal
of information encoded in the machine description. This includes, but is not limited to, the removal of
certain property types, or the addition of new property types. Guests can expect to be able to decode some,
but not all of the Machine Description, and must handl e this expectation accordingly by ignoring unknown

types.

Future specification revisions defining new element typesfound outsi de anode encapsul ation (e.g. between
NODE_END and NODE) are considered incompatible and require an increase in the major version number
of the MD transport header.

8.4.2. Size fields

» Each sizefield describesthe size in bytes of the remaining three blocks in the machine description.
» The node block follows immediately after the section header.

» Thename block starts at byte offset: 16 + node_bl k_sz.

» Thedatablock starts at byte offset: 16 + node_bl k_sz + nane_bl k_sz.

» All sizes are multiples of 16 bytes.

e Thetotal sizeof theMD is16 + node_bl k_sz +nane_bl k_sz +data_bl k_sz.

38

Machine description

e Eachsection(sizes;node_bl k_sz,nane_bl k_sz,dat a_bl k_sz) may beamaximum of 232-16
bytesin length.

Note: The name block and data block sections are described below first, to assist in understanding of the
subsequent node block description.

8.5. Name Block

The name block provides name strings to be used for node entry naming. Legal name strings are defined
asfollows:

» A name string is a human readable string comprised of an unaligned linear array of bytes (characters)
terminated by a zero byte (NUL ' \ O' character). NUL termination enables the use of C functions such
as stremp(3) for comparison.

» Character encoding consists of all human readable letters and symbols from ISO standard 8859-1 not
including: blanks, “/”, “\", “;”, “[", “]”, “@".

Each name string is referenced by its starting byte offset within the name block.

Name string lengths are stored along with the byte offset in the node elements, limiting name length to
255 hytes, not including the terminating NUL character.

There may not be duplicate strings in the name block; a given name string may appear only once in the
name block. Thus the offset within the name block becomes a unique identifier for a given name string
within a machine description.

A single name string may be referenced from more than one node element.

The name block is padded with zero bytes to ensure that the subsequent data block is aligned on a 16
byte boundary relative to the start of the machine description. These pad bytes are included in the name
block size.

Note: The name block contains name strings that are held independently from the data block section in
order to assist with accelerated string lookups. This technique is described later in Section 8.13, “ Accel-
erating string lookups”.

8.6. Data Block

The data block provides raw data that may be referenced by nodes in the node block.

Raw data associated with node block elements is simply alinear concatenation of the raw data itself and
has no further intrinsic structure. The size, location and content of each data element is identified by the
referring element in the node block.

Data block contents are unaligned unless specified as part of the referring property's requirements. When
alignmentisrequireditisconsidered relativeto thefirst byte of the overall machine description. Alignment
isachieved by preceding a data el ement with zero bytesin the data block.

The producer of a machine description is required to arrange that data requiring a specific alignment in
the MD is placed on an appropriate alignment boundary relative to the start of the MD. The consumer of
an MD isrequired to read the machine description into a buffer aligned correctly for the largest alignment
requirement the consumer may have, or be prepared to handle unaligned data references correctly.

8.7. Node Block

The node block is comprised of alinear array of 16 byte elements aligned on a 16 byte boundary relative
to thefirst byte of the entire machine description.

39

Machine description

The node block elements have specific types and are grouped as defined below so as to form “nodes’ of
data. Each element is of fixed length, and each element may be uniquely identified by its index within
the node block array.

Any element A may refer to another element B simply by using the array index for the location of element
B. For example, the first element of the node block has index value 0, the second has index 1, and so on.

8.7.1. Element format

Elements within the node block have a fixed 16-byte length format comprised of big-endian fields de-
scribed below:

Table 8.2. Element for mat

Byte offset | Sizein bytes Field name Description
0 1 t ag Type of element
1 1 nane_| en Length in bytes of element name. Element
name is located in the name block.
2 2 _reserved field reserved field (contains bytes of value 0)
nane_of f set L ocation offset of name associated with
this element relative to start of name block.
8 8 val 64-bit value for elements of tag type NODE,
PROP_VAL or PROP_ARC
8 4 data_len Length in bytes of datain data block for
elements of type PROP_STR and of type
PROP_DATA
12 4 dat a_of f set Location offset of data associated with

this element relative to start of data block
for elements of tag type PROP_STRand
PROP_DATA

For a big-endian machine thisisillustrated by the packed C structure below:

struct nd_el emrent {
uint8 t tag;
uint8_ t nane_|en;
uintl6_t _reserved_field;
uint32_t nanme_of fset;

uni on {
struct {
uint32_ t data_len;
uint32 t data_offset;
by

uint64 t val;
}od;
1

Thet ag field defines how each element should be interpreted.

The name associated with this element is given by the name_of f set and nane_| en fields giving the
offset within the name block and length of the node name not including the terminating NUL character.

40

Machine description

Theremainder of the node el ement hastwo formats depending upon the node'st ag field. The node element
either contains a 64-bit immediate data value, or, for elements requiring an extended data or string, it
consists of two 32-bit values providing the size and offset of the relevant data within the data block.

8.7.2. Tag definitions

Note: Element tag enumerations are chosen so that an ASCII dump of the node section will reveal each
element type thus aiding debugging.

The following element tag types are defined:

Table 8.3. Element tag types

Tag Value| ASCII Name Description Valuefied
equiv
0x00 NUL LI ST_END End of element list
Ox4e "N NCDE Start of node definition 64-bit index to next nodein
list of nodes

0x45 'E NCDE_END End of node definition

0x20 SPC |NOCP No-op list element—tobe |0
ignored

0x61 'a' PROP_ARC Node property arcing to an- | 64-bit index of node refer-
other node enced

0x76 v PROP_VAL Node property with aninte- |64-bit integer value for prop-
ger value erty

0x73 's' PROP_STR Node property with astring | offset and length of string
value within the data block

0x64 "d PROP_DATA Node property with ablock | offset and length of string
of data within the data block

8.8. Nodes

The array of elements in the node block form a sequence of nodes terminated by a single LIST_END
element.

* A nodeisalinear sequence of two or more elementswhosefirst element is NODE and whose last element
is NODE_END.

» Between NCDE and NODE_END there are zero or more elements that define properties for that node.
These are PROP_* elements. The ordering of these elements (between NODE and NODE_END) does
not confer meaning.

» The name given to a NODE element is non-unique and defines the binding of property elements that
may be encapsulated within that node.

» The NOOP element isprovided so that an entire node may be removed by overwriting all of its constituent
elements with NOOP. A NODE link that arrives at a NOOP element is equivalent to the next NODE or
LI ST_END element after the sequence of NOOP elements.

e The PROP_ARC element is used to denote an arc in a DAG, therefore a PROP_ ARC element may only
reference a NODE element.

41

Machine description

* Note: A nodereferenced by any PROP_ ARC element cannot be removed by use of NOOP element unless
al the referring PROP_ARC elements are removed. PROP_ARC elements may be removed by conver-
sion to a NOOP element.

» The element index of a NODE element is serves as a unique identification of a complete node and its
encapsulated properties.

» Thevaluefield associated with a NODE element (el em pt r - >d. val) holdsthe element index to the
next NODE element within the MD.

* A reader may skip from one node to the next without having to scan within each node for the NODE_END
by using this index value to locate the next NODE element in the node block.

8.9. Node definitions

The type of a node is defined by the name string associated with the NODE element designating the start
of the node in the machine description node block. Nodes can be found by linear search matching on type
or by following the PROP_ARCs of aDAG.

8.9.1. Node categories

Nodes in amachine description serve one or two purposes; to provide information about avirtual machine
resource they represent and, optionally to function as a construction node within a DAG formed within
the machine description. A construction node may contain properties about certain resources, however its
primary functionisasacontainer for the arc links (PROP_ ARC properties) that connect to other descriptive
nodes.

Nodes belong to one of four categories that determine what walkers must handle within the MD. A node's
category determines whether nodes of that type can be expected to found within the M D, or whether nodes
of that type are optional. The categories are defined below:

core Nodes of thistype are always required to be present in the MD.

resource required If the resource described by the node is available within the virtual machine,
an associated node of this type is required to be present in the MD in order
to describe the resource.

required by X If anode of type X is present in the MD, then one (or more) nodes of thistype
will be present in the MD and associated with X.

optional A node of this type need not appear as part of the MD, it is entirely optional,
and guest OS code should have adefault policy to continue functioning despite
this absence.

8.10. Content versions

Theroot node (Section 8.19.1, “Root node”) is uniquein the entire machine description. It is; the one node
from which all other nodes can be reached, guaranteed to be the first node defined in the node block, and
isrequired to be present in a properly formed machine description.

The root node is primarily a construction node, with arc properties connecting to other nodes in the de-
scription. The root node carries a string property cont ent - ver si on that defines the version number
of the content of the machine description.

Content versioning is defined independently of the machine description transport version. The content
version identifies the rules surrounding construction of the DAG describing the machine.

This specification is for content version “1”.

42

Machine description

Minor changes such as the addition of new node types, properties or arc names, or the removal of optional
nodes or properties, do not require a content version number change.

Incompatible changes to the node definitions such that any possible earlier machine description consumer
will encounter problems with the newer content cause a version change.

8.11. Common data definitions

As defined by the machine description transport, data values for string and data property elements
(PROP_STR and PROP_DATA) are placed in the data block of the machine description. This section de-
fines commonly used formats of data placed in the data block of a machine description and referred to
using elements with the PROP_DATA tag.

Additional dataformats may also be defined explicitly with a specific node definition.
8.11.1. String array

A string array is a commonly used data property that defines a concatenated list of NUL character termi-
nated strings. The PROP_DATA element that refers to this structure carries an offset (within the MD data
block) to the start of thefirst string. The size field corresponds to a count of all the string bytes comprising
the compound string list.

In this format strings are concatenated one immediately after the next. Thus if p is a pointer to the first
string, then p+strien(p)+1 isa pointer to the second. The overall size of thisdatafield is used to determine
thelast string in the list. Every string in the list must terminate with the NUL character. The string pointed
toby pisthelast stringin the array if p+strlen(p)+1 equals the address of the property data plusits length.
A string array of zero elementsis not possible since the data length of a PROP_DATA element cannot be
zero. Consumers should interpret the absence of the property asindicating an array of zero elements.

For example; the string list “{ "data", "load", "store" }” would be encoded as a PROP_DATA pointing to
a 16 byte block of the data section of the MD with the byte values: 0x64 0x61 0x74 0x61 0x00
Ox6c Ox6f Ox61 0x64 0x00 0x73 Ox74 Ox6f 0x72 0x65 0x00.

8.12. How to use a machine description

A machinedescription (MD) contains both explicit information about resourceswithin amachine- detailed
by specific nodes within the MD, and implicit information about the relationship of those resources -
detailed by how nodes are interconnected into a relationship graph. We detail the relationship properties
later in this section.

8.12.1. Using the MD as a list

For the simplest of sundv guest operating environments, details of memory system hierarchy or even
cache sizes are of little to no importance. Rather, basic information such as available memory regions and
numbers of virtual CPUs are sufficient for the environment to function.

Therefore the MD is designed to enable the extraction of basic information without the need to parse any
of theinter-relational information also provided.

For example, asimple guest may wish to simply determine the number of CPUs available in the machine.
Within the MD each CPU is represented by a node of type “cpu” (please see Section 8.19.3, “cpu node”
for the definition of node types).

A guest may then, starting at the first node in the MD, simply linearly walk the list of nodes from one to
the next in thelist looking for nodes of a specific type. As each specific nodeisfound properties may then
be read from within that node. Pseudo code for thisisillustrated below.

43

Machine description

i nt
find_node_idx(uint_t *bufferp, char *namep)
{
struct nd_header *hdrp;
struct nd_el erent *nodep;
int i, nelens,;
char *strp;
hdrp = (void *)bufferp;
nodep = (void *)(bufferp + 16);
nel ems = hdrp->node_bl k_sz / 16;
strp = buffer + 16 + hdrp->node_bl k_sz;
for (i =0; i < nelems; i = nodep[i].d.val) {
char *sp
if (strcnp(strp + node[i].nanme_offset,
nanep) == 0)
return (i);
}
return (-1); /* failed */
}

8.13. Accelerating string lookups

To search for specific nodes or properties within a node, list element names need to be matched against
known strings. The name for each list element isindirectly referenced in the name block of the machine
description.

The basic method of searching for nodes or propertiesimpliesthat for each tagged element in the machine
description list, the name string must be found (using the of fset in the el ement) and then the string compared
against the desired string value.

While providing correct results these numerous string compares slow searching of the machine description.

The string match process may be short circuited due to the property of uniqueness of strings in the name
block. The name block is constructed to guarantee that each string appears only once in the name block
regardless of the number of timesit isreferenced by different elements. Since adesired string (e.g. “cpu”)
can appear at most once in the name block, the index to that string in the name block becomes as unique
asthe string itself.

With this knowledge amoretrivial method of searching the MD, isto first find the strings of interest in the
name block— thus identifying the unique index for each string name. Then the MD itself can be searched
by trivially matching the first 64 bytes of each element.

For example, suppose we wish to count the number of CPUs represented in the MD. We first identify
the string “cpu” in the name block; for our example it might appear at index 0x123. Thus any element
uniquely identify the start of acpu node will have thetag value' N, name length of 4 (3 plus the NUL
string terminator) and name offset of 0x123. So then in the binary image of our example MD the first 64
bits of any “cpu” node element will have the unique value of 0x4e0300000123.

A trivia linear search of the MD for this pattern enables nodes of type “cpu” to be counted;

Similarly, sought elements within a node can be matched using the same method of testing the first 64
bits of the element structure.

Machine description

Elements describing the start of a node have the specific property that the value field (el em ptr -
>d. val) holds the index of the element for the next node in the machine description. So when searching
specificaly for node elements, other elementsin the MD are trivially skipped thus speeding the search.

It is recommended that guests using the MD initialy search and cache the indices of desired strings from
the MD name block to avoid even the cost of finding the matching string index for each new MD search.

It should noted however, that the name block isuniqueto aparticular MD. If the guest requests a new copy
of aMD from the hypervisor, there is no guarantee that strings will have the same indices in the name
block of the new MD asthey have in the name block of the old MD.

8.14. Directed Acyclic Graph

The intrinsic Machine Description (MD) is a collection of directed acyclic graphs (DAGs) of nodes de-
scribing resources or information available within a machine. This information is provided upon request
to aguest operating system via the machine description request API.

8.14.1. Graph nodes

The DAG nodes are defined by the NODE element within the element list, and contain all the properties
and arcs described until the subsequent NODE_END element. DAG node names form awell defined name
space such that a particular name describes the type of a well defined entity. A different type of entity
must be described by a node of adifferent name. For example, a CPU may be described by of type “cpu”,
while a cache is described by anode of type “cache”.

Each nodeis aspecific instance of the entity it describes. Properties or named values held within that node
providerelevant details of the corresponding entity. For example, acache nodewill hold alist of properties
describing attributes of that cache.

Asanodeis defined by a specific NODE element within the element list, then for a specific MD, we can
uniquely refer to that node by theindex of its starting node element withing the element list. Thusif a“cpu”
node starts at list element number 27, then a unique reference to that “cpu” node is the index value 27.

Using these index values for node start list elements, we can now provide pointers or “arcs’ to point to
other nodes. In the construction of the MD element list, we define the 64-bit data payload of a NODE
element to contain the index to the next NODE element inthe element list. Thusasimplelinear list of nodes
is formed within the MD element list that enables searching for nodes of specific types without having to
scan every list element looking for NODE and NODE_END tags.

Similarly, using the PROP_ARC, type we can build a link or arc from one node to another. The value
field of a PROP_ARC element is the 64-bit element index of the NODE element pointed to. It isillegal
for a PROP_ARC element to point to anything other than a NODE element, or a NOOP element located
outside anode.

8.15. DAG construction

A DAG isconstructed as described above by named arcs that link the nodes together. The interconnection
of these arcs explicitly defines the relationship between the nodes. For example, if node A has an arc to
node C and node B has an arc to node C then the relationship exposed is that within the graph both nodes
A and B share node C and any nodes that C arcsto. In the example illustration shown in the figure below
we can see an instruction cache that is shared by two cpu nodes. The sharing isindicated by the existence
of arcs from each c pu node to the same cache node.

The default DAG described within the MD is defined by arcs (element type PROP_ARC) with a name of
“fwd”. For convenience in walking this DAG, arcs named “back” are also provided that definetheinverse

45

Machine description

DAG. Thus for every node A that has a “fwd” arc pointing to another node B, there is a corresponding
“back” arc for node B pointing back to A.

The use of named arcs enables other DAGs to be built and contained within the same M D, however none
other than the DAGs defined by the “fwd” and “back” arcs are currently defined.

8.16. Required nodes

The MD DAG will vary according to the resources available within a machine, and certain nodes may be
present in a machine on one machine architecture, but not on a different machine architecture.

The MD concept is designed to allow for certain nodes to be “optional”, however, to alow for the MD to
be usable at all certain nodes must be defined and present in the description. These are “required”’ nodes
and are guaranteed to be present if the resource they describe is present within the machine.

Nodes not defined in this specification must be ignored by system software.

8.17. The vanilla MD

Normally a MD is a full description of the resources available to specific logica domain. However, it
is arequirement for any sundv guest operating system that it be able to handle any machine description
capable of being defined by this document and its subsequent revisions. To this end, a Guest operating
system must be able to ignore/skip over nodes whose type and definitions the OS has never seen before,
and most importantly that same Guest must follow some default fall-back behavior when information is
not available.

Totest therequirement for adefault fall-back behavior, we definea*vanilla’ description that containsonly
the core and required nodes for a given platform. This guarantees that a Guest OS is given no information
about the platform upon which it is running, and to test that it continues to boot and execute— though
optimal performanceis no longer required.

The nodes in the vanilla MD are therefore required and sufficient to describe a guest environment for a
basic sundv compatible Operating System.

8.18. Formation and meaning of a DAG

As mentioned above a machine description currently contains only one DAG, and this is defined by all
arcs with the name “fwd”. As a courtesy, in order to speed certain searches, the MD also contains the
inverse of this DAG built using arcs of name “back”. Clearly the “back” DAG could be built by a guest
from the “fwd” DAG, however the basic MD contains both to help lower the burden on the Guest.

Future revisions of this spec. may include new nodes, and importantly new DAGs within the same MD.
Current software should be designed to ignore arcs with names other than “fwd” and “back” in order to
remain future proof. Future MD will be implemented so as not to have conflicts with the vanilla fwd and
back DAGs.

To understand how to use the DAGsin aMD consider the DAG built using the “fwd” arcs.

Theroot of the“fwd” DAG isanodeof type*“root”. Thisisby definitionthevery first nodeintheMD. It can
be found very simply by scanning the MD element list for the first NODE definition (though unfortunately,
due to the existence of NOOP elements, this need not be at element index 0).

From the root node, “fwd” arcslead to nodes describing the various components within the logical domain
aguestisusing.

The root node in turn contains “fwd” arcs to collective nodes for CPUs, memory and various forms of 1/
O, aswell as nodes targeted to specific consumers such as OpenBoot.

46

Machine description

8.19. Generic nodes
8.19.1. Root node

Name: r oot

Required subordinates: cpus (Section 8.19.2, “Cpus hode”), menor y (Section 8.19.4,
“Memory node”), pl at f or m(Section 8.19.6, “Platform node”),
vari abl es (Section 8.21, “Variables’)

Optional subordinates: channel - endpoi nt s (Section 8.23.6, “Channel endpoints
node’), donai n- servi ces (Section 8.19.7, “Domain services
node’), i oal i ases (Section 8.25.7, “1/0O device path aliases col-
lection node”), keyst or e (Section 8.22, “Keystore”), phys_i o
(Section 8.25.1, “Physical Device Collection node”), vi rt u-
al - devi ces (Section 8.23.2, “Virtual devices node”)

8.19.1.1. Description

A node of thistype must always be the first node in a machine description.
Only one node in the machine description may be named “root”.
This root node must be the first node defined in the node block of the machine description.

All other nodes in the forward graph can be reached starting at the root node.

8.19.1.2. Properties

Name Tag Required Description

content-versi on PROP_STR yes Version string for the content of this
machine description. The currently
defined versionis“1".

nd- gener at i on# PROP_VAL no A 64-hit unsigned integer that
monotonically increasesif the ma-
chine description is updated while
the domain remains bound, that is,
configured within the Hypervisor. A
value of zero isto be assumed if this
property is absent.

8.19.1.3. Programming note

Thepurpose of thend- gener at i on# number isassist gueststhat attempt to respond to dynamic updates
of their machine descriptions. With the number monotonically increasing aguest is easily able to resolve
the temporal ordering of multiple updates of its machine description.

Thend- gener at i on# values will not to be re-used during the lifetime of the guest domain

8.19.2. Cpus node

Name: cpus

Category: required by r oot

Required subordinates:

Optional subordinates: cpu (Section 8.19.3, “cpu node”)

47

Machine description

8.19.2.1. Description

This construction node leads directly to all the virtual CPUs supported within this virtual machine. The
number of CPUs is expected to be derived by counting the number of subordinate cpu nodes.

8.19.2.2. Properties
None defined.

8.19.3. cpu node

Name: cpu

Category: resource required

Required subordinates:

Optional subordinates: exec- unit (Section 8.20.2, “Exec-unit node”), cache (Sec-

tion 8.20.1, “Cache node’), t | b (Section 8.20.3, “TLB node”), meno-
ry-|atency- group (Section 8.24.2, “Memory latency group node”),
pi o- | at ency- gr oup (Section 8.24.3, “Programmed |/O latency
group”), i nterrupt -1 at ency- gr oup (Section 8.24.5, “1/O Inter-
rupt latency group node”)

8.19.3.1. Properties

Name Tag Required Description

cl ock-frequency PROP_VAL yes A 64-bit unsigned integer giving the
frequency of the sundv virtual CPU in
Hertz and thereby the frequency of the
processor's %otick register

conpati bl e PROP_DATA* yes String array of CPU types this virtual
CPU is compatible with. The most spe-
cific CPU type must be placed first in the
list, finishing with the least specific.

id PRO_VAL yes A unique 64-bit unsigned integer identi-
fier for the virtual CPU. Thisidentifier
isthe one to use for all hypervisor CPU
services for the CPU represented by this

node.

i sali st PROP_DATA* yes List of the instruction set architectures
supported by this virtual CPU.

nmru- #context-bits PROP_VAL no A 64-bit unsigned integer giving the

number of bitsforming avalid context
for usein asundv TTE and the MMU
context registers for this virtual CPU.
sundv defines the minimum default val-
ue to be 13if this property is not speci-
fied in acpu node.

mru- #ra-bits PROP_VAL no A 64-bit unsigned integer giving the
number of real address bits supported by
thisvirtual CPU. If not present, no de-
fault value is assumed and the max RA

48

Machine

description

Name

Tag

Required

Description

value can be inferred from the nbl ock
nodes.

mmu- #shar ed- cont ext s

PROP_VAL

no

A 64-bit unsigned integer giving the
number of primary and secondary shared
context registers supported by this virtu-
a CPU's MMU. If not present the default
value is assumed to be 0.

mm #va-bits

PROP_VAL

no

A 64-bit unsigned integer giving the
number of virtual address bits supported
by thisvirtual CPU. If not present a de-
fault value of 64 is assumed. Note: Itis
legal for there to be fewer VA bits than
real address bits.

nmru- conpati bl e

PROP_DATA*

no

String array listing alternate mmu-type
values that thisvirtual CPU's MMU in-
terface is compatible with.

nmu- nax- #t sbs

PROP_VAL

no

A 64-bit unsigned integer giving the
maximum number of TSBsthisvirtu-
al CPU can simultaneously support. If
not present the default value is assumed
to be 1. Note: sundv Solaris assumes at
least 2 are available.

mru- page- si ze-1i st

PROP_VAL

no

A 64-bit unsigned integer treated as a bit
field describing the page sizes that may
be used on this virtual CPU. Page size
encodings are defined according to the
sundv TTE format (see Section 14.3.2,
“TSB entry dataword”). A bit N in this
field, if set, indicates that sundv de-
fined page size with encoding N is avail-
able for use. For example bit O corre-
sponds to the availability of 8K pages.

If not present, a default value of 0x9 is
assumed, indicating the sundv default
availability of 8K and 4M pages.

mu- t ype

PROP_STR

yes

Name for the kind of MMU in use by
this cpu. Currently defined names are:
“sundv”.

nw ns

PROP_VAL

yes

A 64-bit unsigned integer giving the
number of SPARCV9 register windows
available on thisvirtua CPU.

g- cpu- nondo- #bits

PROP_VAL

yes

A 64-bit unsigned integer the maximum
size (in bits) of the cpu mondo queue
head and tail registers.

g- dev- nondo- #bit s

PROP_VAL

yes

A 64-bit unsigned integer giving the
maximum size (in bits) of the device
mondo queue head and tail registers.

49

Machine description

Name Tag Required Description

g-resumabl e-#bits PROP_VAL yes A 64-bit unsigned integer giving the
maximum size (in bits) of the resumable
error queue head and tail registers

g- nonr esunabl e- #bits |PROP_VAL yes A 64-bit unsigned integer giving the
maximum size (in bits) of the non-re-
sumable queue head and tail registers

hwcap- | i st PROP_DATA no A list of stringsidentifying which 1SA
extensions are implemented in this pro-
cessor. The currently defined values

for constructing an hwcap- | i st are:
“ima’, “fifmau”, “trans’, “random”,
“hpc”, “vis3”, “fmau”, “fmaf”, “ASl-
BIKInit”, “vis2", “vis’, “popc”, “v8plus’,
“fsmuld”, “div32”, “mul32".

menor y- nodel - 1i st PROP_DATA no A list of stringsidentifying which
memory models are supported, as per
[ua2009] (or future revisions of same)
Appendix D (Formal Specification of the
Memory Models). Currently defined val-
ues are: “tso”, “rmo” and “wc”. These
are, respectively, “Total Store Order”,
“Relaxed Memory Order”, and “Weak

Consistency”.
Note
The“compatible” will have“ SUNW,sundv” asthelast element for systems of the sundv machine
class.
Note

Currently defined 1SAs for constructing an “isalist” are: “sparcv9”, “sparcv8plus’, “sparcv8”,
“sparcv8-fsmuld”, “sparcv7”, “sparc”.

Note

Detailsonthelist of currently defined extensionsto the SPARC I SA aregiveninthe UItraSPARC
Architecture specification [ua2007].

8.19.4. Memory node

Name: nenory

Category: required by r oot

Required subordinates:

Optional subordinates: nmbl ock (Section 8.19.5, “Mblock node”)

8.19.4.1. Description

This construction node leads directly to all the blocks of real address space backed by memory within
this virtual machine.

50

Machine description

8.19.4.2. Properties

None defined.

8.19.5. Mblock node

Name: nbl ock
Category: required
Required subordinates:
Optional subordinates:

8.19.5.1. Description

This node represents a single contiguous range of avirtual machine's real address space that is associated
with real memory.

8.19.5.2. Properties

Name Tag Required Description

base PROP_VAL yes A 64-bit unsigned integer giving
the base real address of the memory
block represented by this node

si ze PROP_VAL yes A 64-hit unsigned integer giving the
sizein bytes of the memory block
represented by this node

addr ess-congr u- PROP_VAL no A 64-bit unsigned integer such
ence- of f set that; address-congruence-offset

= (PA_base - RA_base) mod M.
Where M is a power of 2 strict-

ly greater than all values of ad-

dr ess- nmask andi ndex- mask
for al the cache and latency

group hodes in the MD. See Sec-
tion 8.24.2.3, “Programming note
on RA and physical address congru-

ence”.
8.19.6. Platform node
Name: pl atform
Category: core
Required subordinates:
Optional subordinates: | at ency- gr oups (Section 8.24.6, “Latency groups node”)

8.19.6.1. Description

This node holds general properties describing the platform a guest operating system is running on.

51

Machine description

8.19.6.2. Properties

Name

Tag

Required

Description

banner - nanme

PROP_STR

yes

The banner name of the system.

hosti d

PROP_VAL

no

A 64-bit unsigned integer in which
the lower 32 bits hold the host id as-
signed to the virtual machine. The
upper 32 bits must be zero.

mac- addr ess

PROP_VAL

no

A 64-bit unsigned integer in which
the lower 48 bits holds the mac ad-
dress assigned to the virtual ma-
chine. The upper 16 bits must be ze-
ro.

namne

PROP_STR

yes

The platform binding name of the
system. May not contain white space
characters.

serial #

PROP_VAL

no

A 64-hit unsigned integer in which
the lower 32 bits hold the serial
number assigned to the virtual ma-
chine. The upper 32 bits must be ze-
ro.

sti ck-frequency

PROP_VAL

yes

A 64-bit unsigned integer giving the
frequency in Hertz of the system
(%stick) clock for the virtual ma-
chine.

uui d

PROP_STR

no

A string that indicates the UUID of
the domain. The format of the string
is defined by uuid_unparse(3uuid).

wat chdog- r esol u-
tion

PROP_VAL

no

The resolution, in milliseconds,

of the watchdog API service. This
property is present if the watchdog
timer isserviceisavailable, but is
otherwise not required.

wat chdog- max-ti nme-
out

PROP_VAL

no

The largest number of milliseconds
that isvalid as a parameter to the
watchdog timer service API. This
property is present if the watchdog
timer is serviceis available, but is
otherwise not required.

cons-read-buffer-size

PROP_VAL

no

Provides a hint as to the size of
the console device'sinternal in-
put buffering - suitable for the
cons_read API call.

cons-write-buffer-
si ze

PROP_VAL

no

Provides a hint asto the size of
the console device's internal out-
put buffering - suitable for the
cons_write API call.

max- cpus

PROP_VAL

no

The theoretical maximum number
of virtual CPUs a guest OS may be

Machine description

Name Tag Required Description

assigned. If present, the guest soft-
ware can assume that it will not see
more virtual CPUs than specified by
this property. If not present, thereis
no theoretical limit to the number of
virtual CPUs the guest may be as-
signed. Consequently the guest will
have to make a determination for it-
self asto how many and which of its
virtual CPUsit activates. The value
isan unsigned 64-bit integer.

i nter-cpu-latency |PROP_VAL no This property defines the maximum
number of nanoseconds of delay the
guest might encounter when two
processors attempt to rendezvous
(inter-processor communication us-
ing interrupts, shared memory, €tc.).
Thevalue is an unsigned 64-bit inte-
ger.

domai ni ng- enabl ed |PROP_VAL no A 64-bit value indicating the avail-
ability of domaining on this plat-
form. Valid valuesare O or 1.

8.19.6.3. Programming notes

Note: A platform'sbanner - nane iscosmetic only, typicaly of the form “Sun Fire T100", but the name
is part of the platform binding, typically of the form “ SUNW,Sun-Fire-T100".

Note: The presence of the max- cpus property does not place any requirement on the guest to support
the number of virtual CPUs specified. The guest is always free to further constrain the number of virtual
CPUs that it will support.

Note: Thei nt er - cpu- | at ency property isintended to bound the amount of time privileged software
should consider when calculating timeouts to be used for detecting non-responsive virtual CPUs. This
value does not account for additional time required due to the implementation of the privileged codeitself,
such as executing for prolonged periods with interrupts disabled (pstate.ie==0). The total amount of time
imposed by the system added to the amount of time imposed by the guest should be used as the basis for
calculating timeout values. More specific latency information may be provided via latency groupsin the
same machine description see Section 8.24, “Latency nodes’

Note: Platform node properties may be added, removed, or changed at any time, with notification provided
by the MD update domain service. Guest software is expected to take notice and accommodate changes
when they occur.

Note: The absence of thedonai ni ng- enabl ed flag indicatesthat the platform firmwareis not capable
of supporting multiple domains. The domai ni ng- enabl ed flag, if present and set to O, indicates that
the platform firmware is capable of multiple domains, however the domain manager has not been used
to configure the platform. The domai ni ng- enabl ed flag, if present and set to 1, indicates that the
platform firmware is capable of multiple domains and the domain manager may have configured multiple
domains on this platform.

53

Machine description

8.19.7. Domain services node

Name:
Category:

Required subordinates:

Optional subordinates:

8.19.7.1. Description

donai n- servi ces

optional, under root

domai n- servi ces- port

This construction node leads directly to all the domain services ports supported within thisvirtual machine.
There is only one domain-services node per virtual machine.

8.19.8. Domain services port node

Name:
Category:

Required subordinates:

Optional subordinates:

8.19.8.1. Description

domai n- servi ces- port

optionally required by donmai n- ser vi ces or openboot

channel - endpoi nt

This node uniquely represents an instance of a domain services port. The donai n- servi ces node
or openboot node will have zero or more donai n- servi ces-port nodes. A domai n- ser -
Vi ces- port under an openboot nodeisintended exclusively for use by OpenBoot firmware.

8.19.8.2. Properties

Name Tag Required Description
id PROP_VAL yes A 64-bit unsigned integer uniquely
identifying this domain service port
within thedonai n- servi ces
node or openboot node.
nd- gener at i on# PROP_VAL no A 64-bit unsigned integer that

monotonically increasesif the ma-
chine description is updated while
the domain remains bound, that is,
configured within the Hypervisor. A
value of zero isto be assumed if this
property is absent.

8.20. Memory hierarchy nodes

The following nodes are used to convey information about the host memory system hierarchy to a guest.

8.20.1. Cache node

Name:
Category:

Required subordinates:

Optional subordinates:

cache
optional

cache (Section 8.20.1, “Cache node”)

Machine description

8.20.1.1. Description

This node describes a cache in the memory system hierarchy.

8.20.1.2. Properties

Name

Tag

Required

Description

associativity

PROP_VAL

yes

A 64-bit unsigned integer giving the
associativity of the cache (number of
ways in each set). A value of 0 indi-
cates fully associative, avalue of 1
indicates direct-mapped, avalue of 2
indicates 2-way and so on.

conpati bl e-type

PROP_DATA

no

Holds a string array of “type’ field
values. In the event that a precise
type match cannot be made using
the “type” property this property
may be searched for compatible
types.

| evel

PROP_VAL

yes

A 64-hit unsigned integer giving the
notional level of this cacheinthe
memory hierarchy.

li ne-size

PROP_VAL

yes

A 64-bit unsigned integer giving
the number of bytes comprising a
single cache line. Thisisthe size
of the caches allocation unit that is
matched by a single cache tag.

sub- bl ock-si ze

PROP_VAL

no

A 64-bit unsigned integer giving the
number of bytes comprising asin-
gle cache sub-block. Thisisthe size
of the cache's coherence unit size
that is matched by asingle state en-
try. This property may be omitted if
it would have the same value as the
line-size property.

si ze

PROP_VAL

yes

A 64-hit unsigned integer giving the
capacity (size) in bytes of the cache.

type

PROP_DATA

yes

String array listing what may be
held in this cache. Generic types are
“instruction” and “data’.

i ndex- mask

PROP_VAL

no

A 64-bit unsigned integer. A bit in
index-mask is set if that bitin a PA
influences the cache index at which
amemory is stored when cache resi-
dent. This property is discussed later
with regard to page coloring in Sec-
tion 8.24.2.4, “Page coloring”.

8.20.2. Exec-unit node

Name:

exec-unit

55

Machine description

Category: optional

Required subordinates:

Optional subordinates: cache (Section 8.20.1, “Cache node’), t | b (Section 8.20.3, “TLB
node”)

8.20.2.1. Description

This node is describes an execution unit associated with avirtual CPU. Each execution unit may perform
multiple functions/operations, and properties are defined appropriate not just to the whole execution unit,
but also to individual function capabilities.

8.20.2.2. Properties

Name Tag Required Description

compati bl e-type PROP_DATA no If defined holds a string array of
“type” field values. In the event that
a precise type match cannot be made
using the “type” property this prop-
erty may be searched for compatible
types.

type PROP_DATA yes String array listing functional capa-
bilities of this execution unit. Gener-
ictypesare:

“ifetch” - instruction fetcher
“integer” - integer instruction execu-
tion

“fp” - floating point instruction exe-
cution

“vis’ - VISinstruction execution
“integer-load” - integer load opera-
tions

“integer-store” - integer store opera-
tions

“fp-load” - floating point load opera-
tions

“fp-store” - floating point store oper-
ations

Niagara specific types are:

“nl-crypto” - Niagara 1.0 crypto
unit

Niagara-2 and Victoria-Falls specif-
ictypesare:

“rng” - Random number generator

8.20.2.3. Programming Note

Somevery early rel eases of Sun firmwareincluded nodes erroneously named “ exec_unit” (note underscore
instead of dash). Software should ignore these nodes and their contents asin a few cases the information
provided wasin fact incorrect. Software correctly written to this specification should automatically ignore
these false nodes anyway since they are not named “ exec-unit”.

56

Machine description

8.20.3. TLB node

Name: tlb

Category: optional

Required subordinates:

Optional subordinates: t I b (Section 8.20.3, “TLB node”)

8.20.3.1. Description

A TLB node describes a Translation Look-aside Buffer (MMU trandation cache) in the memory system
hierarchy.

8.20.3.2. Properties

Name Tag Required Description

associativity PROP_VAL yes A 64-bit unsigned integer giving the
associativity of the TLB (number of
waysin each set). A value of 0 indi-
cates fully associative, avalue of 1
indicates direct-mapped, avalue of 2
indicates 2-way and so on.

compati bl e-type PROP_DATA no If defined holds a string array of
“type” field values. In the event that
a precise type match cannot be made
using the “type” property this prop-
erty may be searched for compatible
types.

entries PROP_VAL yes A 64-bit unsigned integer giving the
number of translation entries.

| evel PROP_VAL yes A 64-hit unsigned integer giving
the notional level of thistrandation
buffer in the overall page trandation
hierarchy.

page- si ze-Ili st PROP_VAL yes A 64-bit unsigned integer treated as
ahit field describing the page sizes
that may be used in this TLB. Page
size encodings are defined according
to the sundv Architecture Specifica
tion. A bit N in thisfield, if set, in-
dicates that sundv defined page size
with encoding N is available for use.
For example bit O corresponds to the
availability of 8K pages.

type PROP_DATA yes String array listing functional capa-
bilities of this execution unit. Cur-
rently defined types are:

"instruction" trandatein-
struction
fetches

57

Machine description

Name Tag Required Description

"dat a" trandlates data
accesses

8.21. Variables

Name: vari abl es
Category: required by r oot
Required subordinates:

Optional subordinates:

8.21.1. Description

This machine description node is used to supply variable valuesto the guest operating system of the virtual
machine. These variables are part of the operating environment of the virtual machine and being present
in the machine description may be preserved across reboots and power-cycles of the virtual machine and
overall system.

Each property in the node constitutes a variable and its value. Variables can be retrieved by name or by
retrieving each of the properties of the variables node.

8.21.1.1. Properties

Name Tag Required Description

"variable name" PROP_STR yes The variable'svalue. A NUL-termi-
nated string.

8.22. Keystore

Name: keystore

Category: optionally required by r oot
Required subordinates:

Optional subordinates:

8.22.1. Description

This node contains a list of security keys used for WAN Boot support. See Section 30.13, “ Security key
domain serviceversion 1.0”. The node consists of alist of security keysformatted asname and value string
pairs. The key names are chosen by the user.

8.22.1.1. Properties

Name Tag Required Description
key name PROP_STR yes The security key'svalue. A NUL-ter-
minated string.

The key name can be up to 64 characters long and the value for each key can be up to 32 characters long.

The key name represents the name of the security key.

58

Machine description

8.23. Virtual Devices

Virtual devicesimplemented as part of the Virtual 10 (V10) infrastructure are represented in the guest's
machine description as nodes together with their properties. This section provides description of these
virtual device nodes, the device hierarchy and their properties.

8.23.1. Descriptions for virtual devices

All virtual devices are represented as a node in the guest MD aong with its sub-nodes as children of the
vi rtual - devi ces node. All virtual devices nodesare of type virtual-device. The name and compatible
properties identify the the specific device and the driver associated with the device. There are two types
of virtual device nodes and these are grouped into two separate classes. The first class of device nodes
are ones that do not use Logical Domain Channels (LDC) like console, and the existing platform service
nodes. These appear as children of the vi r t ual - devi ces nodein the MD. All vi rt ual - devi ce
nodes that use LDCs belong to a class called channel devices and are grouped under anode called chan-
nel - devi ces.

>An example node hierarchy for virtual device MD nodesisillustrated above using the “fwd” DAG.

Figure8.2. Virtual Device hierarchy

root

/

virtual-devices channel-endpoints

virtual-device channel-devices
'
virtual-device virtual-device
' o
virtual —d%vi ce-port virtual _d?/i ce-port virtual —d%vi ce-port
N\ \
channel —Zendpoi nt channel —fndpoi nt channel —Oendpoi nt

The channel - devi ces nodeisachild of thethevi rt ual - devi ces node. Some of thevi rt u-
al - devi ce nodes under the channel - devi ces node have one or more child port nodes of type
vi rtual - devi ce- port. A port for avirtual device represents acommunication path to and/or from
that virtual device and can be comprised of one or more logical domain channels. Each vi r t ual - de-
Vi ce- port node can point to one or more channel - endpoi nt nodes corresponding to the logical
domain channels within that port.

8.23.2. Virtual devices node

Name: vi rtual - devi ces
Category: optionally required by r oot
Required subordinates:

59

Machine description

Optional subordinates: vi rtual - devi ce (Section 8.23.4, “Virtual device node”) and chan-
nel - devi ces (Section 8.23.3, “Channel devices node”)

8.23.2.1. Description

This construction node leads directly to al the virtual devices supported within this virtual machine. The
number of instances for each device can be derived by counting the number of nodes for each device.

8.23.2.2. Properties

Name Tag Required Description

nane PROP_STR yes A string name for this node. This
value is currently defined as “virtu-
al-devices'.

device type PROP_STR yes A string type for this node. Thisval-
ueis currently defined as “virtu-
al-devices’.

compati bl e PROP_DATA yes An array of string namesfor this
node. Thisvalueis currently defined
as“ SUNW,sun4v-virtual-devices’.

cf g- handl e PROP_VAL yes A 64-bit unsigned integer identify-
ing this device uniquely.

8.23.3. Channel devices node

Name: channel - devi ces

Category: optionally required by vi r t ual - devi ces

Required subordinates:

Optional subordinates: vi rtual - devi ce (Section 8.23.4, “Virtua device node")

8.23.3.1. Description

This construction node leads directly to all the channel based virtual devices supported within this virtual
machine. The number of instances for each device can be derived by counting the number of nodes for

each device.
8.23.3.2. Properties
Name Tag Required Description

name PROP_STR yes A string name for this node. This
valueis currently defined as “chan-
nel-devices’.

devi ce-type PROP_STR yes A string type for this node. Thisval-
ueis currently defined as “ chan-
nel-devices’.

conpati bl e PROP_DATA yes An array of string namesfor this
node. Thisvalueis currently defined
as“ SUNW,sundv-channel-devices’.

cfg-handl e PROP_VAL yes A 64-bit unsigned integer identify-
ing this device uniquely.

60

Machine description

8.23.4. Virtual device node

Name: virtual - devi ce

Category: optionally required by vi r t ual - devi ces and channel - devi ces
Required subordinates:

Optional subordinates: vi rtual - devi ce- port (Section 8.23.5, “Virtual device port node”)

8.23.4.1. Description

This node uniquely represents an instance of avirtual device. The properties listed here applicable to all
virtual devices. Each of the virtual devices may specify additional propertiesthat are device class specific.

8.23.4.2. Common properties

Name Tag Required Description

nane PROP_STR yes Standard property name defining the
type of device. See virtual-device
class table below.

type PROP_STR yes Standard property type for this node.
Seevi rtual - devi ce classtable
below.

cf g-handl e PROP_VAL yes A 64-bit unsigned integer identify-

ing this device uniquely.

conpati bl e PROP_DATA yes An array of strings containing com-
patible device names for this node.
Seevi rtual - devi ce classtable

below.
8.23.4.3. Virtual device classes
Table 8.4. Virtual device classes
Service Class Compatible Name de- name
Group ice-type
Console Client [SUNW sun4v- consol e serial | console
Channel Devices
Network Client |SUNW sun4v- net wor k net- | network
work
Network Server |SUNW sun4v- net wor k-swi tch |vsw |virtua-network-switch
Block Client |SUNW sun4v- di sk block |disk
Block Server |SUNW sun4v- di sk- server vds |virtual-disk-server
Console Server |SUNW sun4v- consol e- concen- |vcc | virtual-console-concentrator
trator
Serial Server |SUNW sun4v- channel serial | virtual-channel
Serid Client |SUNW sun4v- channel serial | virtua-channel-client
Serial Server |SUNW sun4v- dat a- pl ane- serial | virtual-data-plane-channel
channel

61

Machine description

Service Class Compatible Name de- name
Group ice-type
Serial Client |SUNW sun4v- dat a- pl ane- serial | virtual-data-plane-chan-
channel nel-client
Serid Server [SUNW sun4v- domai n-servi ce |serial |virtua-domain-service

8.23.4.4. Device class specific properties

Name

Tag

Re-
quired

Description

vsw phys- dev

PROP_DATA

no

An array of string names identifying the phys-
ical network devices available locally for use
by avirtual switch device

vsw swi t ch- nbde

PROP_DATA

no

An array of string names identifying the or-
der of the preferred switching mode(s) for
this switch device. Current valid values are
“switched”, “promiscuous’, and “routed” .

| ocal - rac- addr ess

PROP_VAL

no

A 64-hit unsigned integer in which the lower
48 bits hold the mac address assigned to avir-
tual network or switch device. The upper 16
bits must be zero.

default-vlan-id

PROP_VAL

no

A 64-bit unsigned integer, where the lower
12 hits hold the vlan-id used to designate un-
tagged Ethernet frames set or received by a
virtual network or switch device. The upper
52 bits must be zero.

port-vlan-id

PROP_VAL

no

A 64-bit unsigned integer, where the lower 12
bits hold the implicit port vlan-id assigned to
this virtual network or switch device. The up-
per 52 bits must be zero.

vl an-id

PROP_DATA

no

An array of 64-bit unsigned integers, where
the lower 12 hits of each element holdsthe
vlan-id(s) assigned to this virtual network or
switch device. The upper 52 bits of each ele-
ment must be zero.

priority-ether-
types

PROP_DATA

no

An array of 64-bit unsigned integers, where
the lower 16 bits of each element holds a high
priority Ethernet type. The upper 48 bits of
each element must be zero. The Ethernet type
corresponds to the Type field in a Ethernet
frame as defined by the Ethernet v2/DIX stan-
dard. The virtual network and switch devices
should prioritize frames with these types over
all other frames, and ensure that these frames
are not dropped under congestion.

PROP_VAL

no

A 64-bit unsigned integer in which the low-

er 16 bits hold the size of maximum trans-
mission unit (MTU) of avirtual network or a
switch device. The upper 48 bits must be zero.

62

Machine description

Name Tag Re-
quired

Description

I'i nkprop PROP_VAL no

A 64-bit unsigned integer in which the low-
er 1 bit holds the information on whether the
virtual network or the switch device should
attempt to obtain physical link state updates.
For avirtual network device, avalue of 1 for
this bit indicates that it should negotiate for
physical link state updates; a value of O for
this bit indicates that it should not negoti-

ate for physical link state updates. For virtu-
al switch device which isitself configured as
an interface, avalue of 1 for thisbit indicates
that it should track physical link state changes
and avalue of O for this bit indicates that it
should not track physical link state changes.

vcec-m n-tcp-port PROP_VAL no

A 64-hit unsigned integer identifying the
smallest TCP port assignable to a console
group in aSUNW sun4v- consol e- con-
cent r at or device.

vcc- max-tcp-port PROP_VAL no

A 64-hit unsigned integer identifying the
largest TCP port assignable to a console group
inaSUNW sun4v- consol e- concen-
trat or device.

vl ds- domai n- handl e |PROP_VAL no

A 64-bit unsigned integer that unique-
ly identifies the domain containing the
SUNW sun4v- domai n- ser vi ce device.

vl ds- domai n- nane PROP_STR no

A string that indicates the domain name of the
domain containing the SUNW sun4v- do-
mai n- servi ce device.

8.23.5. Virtual device port node

Name: vi rtual - devi ce- port

Category: optionally required by vi r t ual - devi ce node (Section 8.23.4, “Virtu-

al device node”)
Required subordinates:

Optional subordinates: channel - endpoi nt (Section 8.23.7, “Description”)

8.23.5.1. Description

This node uniquely represents an instance of avirtual device port. All vi rt ual - devi ce channels con-
nected to the same client are grouped under a single port device. Every vi r t ual - devi ce has zero or

moreVi rt ual - devi ce- port nodes.

8.23.5.2. Common properties

Name Tag Required Description

name PROP_STR yes

A string name for the device. See
virtual-device-port class table.

63

Machine description

Name

Tag

Required

Description

PROP_VAL

yes

A 64-bit unsigned integer identify-
ing this port uniquely within the vir-
tual-device.

8.23.5.3. Device class-specific port properties

Name Tag Required Description
vds- bl ock- devi ce PROP_STR no A string name identifying the

block device used by aportina

SUNW,sundv-disk-server device.

vds- bl ock- de- PROP_DATA no An array of string names identify-
Vi ce-opts ing the options for the device used
by avds- port in SUNW sun4v-

di sk-server device. Current

valid options are:

"ro" The deviceis
used and export-
ed by vdsasa
read-only device.

"slice" The deviceis ex-
ported by vdsasa
disk slice.

"excl usive" Thedeviceis
opened for exclu-
sive use by this
vdsinstance only.
The device can-
not be used by
another client or
vds instance on
the guest.

"shar ed" The deviceis ex-
ported by the vir-
tual disk server
instance to one or
more clients con-
nected to it.

vds- bl ock- de- PROP_STR no A string name identifying the
Vi ce- nanme canonical name assigned to the
block device used by aport in

SUNW sun4v- di sk-server de

vice.

vds- npgr oup- nane PROP_STR no A string name identifying the mul-

tipath group aport belongstoin a

SUNW sun4v- di sk-server de

vice.

Machine description

Name

Tag

Required

Description

vdc-ti neout

PROP_VAL

no

A 64-bit integer identifying a block
device's connection timeout. The
value specified in seconds deter-
mines the period after which a
SUNW,sundv-disk device will time-
out submitting requestsif it cannot
establish a connection with the vir-
tual disk server. If the property is
either not specified or set to O, the
block device will wait indefinitely to
establish a connection with the virtu-
al disk server.

vce-tcp- port

PROP_VAL

no

A 64-hit unsigned integer identify-
ing the TCP port assigned to a con-
sole group. Provided to the vnts dae-
mon viathe vce driver.

vCC- gr oup- name

PROP_STR

no

A string name identifying the con-
sole group for a domain. Provided to
the vnts daemon via the vec driver.

r enot e- nac- addr ess

PROP_DATA

no

Array of 64-bit unsigned integers
where the lower 48-bits of each ele-
ment holds the mac address assigned
to the virtual network or switch de-
vice. The upper 16-bits of each &l-
ement must be zero. Thisarray isa
list of mac addresses that are known
to be accessible viathis port. Thisis
not a complete and comprehensive
list.

renot e- port - vl an-
id

PROP_VAL

no

A 64-bit unsigned integer, where the
lower 12-bits holds the implicit port
vlan-id assigned to the peer virtual
network or switch device. The upper
52-bits must be zero.

renote-vlan-id

PROP_DATA

no

An array of 64-bit unsigned integers,
where the lower 12-bits of each el-
ement holds the vlan-id(s) assigned
to the peer virtual network or switch
device. The upper 52-bits of each €l-
ement must be zero.

maxbw

PROP_VAL

no

A 64-bit unsigned integer identify-
ing the bandwidth limit for this port.
Thevalueis specified in bps (bits
per second).

Swi t ch- port

PROP_VAL

no

Identifies this port as being associ-
ated with a SUNW,network-switch
device. Property value must be zero.
Other values are reserved. Program-
ming note: When using a distributed

Machine description

Name

Required

Description

switch model, this property assists a
simple guest in finding a switch port
rather than querying every port di-
rectly.

nmai n- nane

vl dc- svc- nane PROP_STR no A string name identifying the ser-
vice a SUNW,sundv channel device
is providing over this port.

vdpc- svc- nane PROP_STR no A string name specifying the service
a SUNW,sundv-data-plane-channel
deviceis providing over this port.

vl ds-r enot e- do- PROP_VAL no A 64-hit unsigned integer that

mai n- handl e uniquely identifies the domain to
whichavl ds- port nodeisasso-
ciated.

vl ds-r enot e- do- PROP_STR no A string that indicates the domain

name of the domain to which a
vl ds- port nodeisassociated.

8.23.5.4. Virtual-device-port class table

Table 8.5. Virtual-device-port classes

Service Group Class name name of parent vi r -
t ual - devi ce node
Network Client vnet - port net wor k
Network Server VSW port vi rtual - network-sw tch
Block Client vdc- port di sk
Block Server vds- port virtual - di sk-server
Console Client vcce- port vi rtual - consol e- concent r a-
tor
Serial Server vl dc- port vi rtual - channel
Seria Client vl dc- port vi rtual - channel -cl i ent
Seria Server vdpc- port vi rtual - dat a- pl ane- channel
Serial Client vdpc- port vi rtual - dat a- pl ane- chan-
nel -client
Serial Server vl ds- port vi rtual - donmi n-service

8.23.6. Channel endpoints node

Name:
Category:

channel - endpoi nt s

optionally required by r oot

Required subordinates:

Optional subordinates:

channel - endpoi nt (Section 8.23.7, “Description”)

66

Machine description

8.23.7. Description

This node uniquely represents a collection of channel endpoint nodes being used by this guest. There
should be only one channel - endpoi nt s node. The single channel - endpoi nt s node will have
zero or more channel - endpoi nt nodes as subordinates.

8.23.8. Channel endpoint node

Name: channel - endpoi nt

Category: optionally required by channel - endpoi nt s node (Section 8.23.6,
“Channel endpoints node”) and optionally required by vi r t ual - de-
Vi ce- port nodes (Section 8.23.5, “Virtual device port node”)

Required subordinates:
Optional subordinates:

8.23.8.1. Description

This node uniquely represents an instance of a channel endpoint available to this guest. Every vi rt u-
al - devi ce- port nodewill have zero or more channel - endpoi nt nodes.

8.23.8.2. Properties

Name Tag Required Description

id PROP_VAL yes A 64-bit unsigned integer identify-
ing this endpoint uniquely within the
virtual machine.

tx-ino PROP_VAL yes A 64-hit unsigned integer identify-
ing the interrupt number assigned to
the transmit interrupt for this end-
point.

rx-ino PROP_VAL yes A 64-bit unsigned integer identify-
ing the interrupt number assigned

to the receive interrupt for this end-
point.

8.23.9. RNG virtual-device node

The RNG hardware support on the UltraSPARC-T2 chip is represented as a single virtual device and is
represented in the Machine Description (MD) avi rt ual - devi ce node.

8.23.9.1. Properties

Name Tag Required Description
nane PROP_STR yes "random-number-generator"
cf g- handl e PROP_VAL yes A 64-bit unsigned integer identify-
ing this device uniquely.
conpati bl e PROP_DATA yes An array of string namesfor this
node. Thisvalueiscurrently de-

67

Machine description

Name Tag Required Description

fined as one of "SUNW,n2-rng", or
"SUNW,vf-rng".

rng-#units PROP_VAL yes A 64-bit unsigned integer indicating
the number of available RNG de-
vices in the system.

8.23.10. Crypto virtual-device node
Thecrypto hardware support onthe Niagarachip isrepresented asasinglevirtual deviceand isrepresented

in the Machine Description (MD) graph for a Guest as avi rt ual - devi ce node with the following
properties:

8.23.10.1. Properties

Name Tag Required Description

nane PROP_STR yes The string name for thisnodeis de-
fined as “ncp” or “crypto” for Ul-
traSPARC-T1, as “n2cp” for Ultra-
SPARC-T2.

devi ce-type PROP_STR yes A string type for this node. The val-
ueis currently defined as “ crypto”,
as“n2cp” for UltraSPARC-T2.

devi ce-type PROP_STR yes A string type for this node. The val-
ueis currently defined as “ crypto”,
as“n2cp” for UltraSPARC-T2.

intr PROP_DATA yes List of interrupt numbers. One num-
ber per core per type of crypto unit.

i no PROP_VAL yes List of virtual inos generated.

cfg-handl e PROP_VAL yes A 64-bit unsigned integer identify-
ing this device uniquely.

compati bl e PROP_DATA no An array of string namesfor this

node. Thisvalueis currently defined
as one of "SUNW,sun4v-ncp", or

"SUNW,n2-cwq".
8.23.11. MAC-addresses node
Name: nmac- addr esses
Category: optional
Required subordinates:
Optional subordinates: mac- addr ess (Section 8.23.12, “MAC-address node”)

8.23.11.1. Description

Thisnode is used to identify fixed mac address resources available to a guest virtual machine. There will
beasingle mac- addr esses node that describes all MAC address to device path mappings that a guest
OpenBoot can use to allocate MAC address resources. Each forward link of this node will correspond to

68

Machine description

anmac- addr ess MD node that contains a single device tree pathname and an array of MAC addresses
that have been alocated to that device. Each of these mac- addr ess nodes may also be a child of any
i odevi ce, thisallows /O partitioning by associating an MAC addresses with a particular 1/O sub-tree.

8.23.11.2. Properties

This node has no properties but contains forward links to nodes that describe an instance of an MAC
address resource in the guest.

8.23.12. MAC-address node

Name: nmac- addr ess
Category: optional
Required subordinates:

Optional subordinates:

8.23.12.1. Description

This node contains a device tree path and an array of MAC addresses that have been allocated to that
device. See mac- addr esses node (Section 8.23.11, “MAC-addresses node”)

8.23.12.2. Properties

Name Tag Required Description

dev PROP_STR yes A string that describes the pathname
of adevicetree node. Thisdeviceis
being allocated MAC addresses as
described by the mac- addr esses
property.

mac- addr esses PROP_DATA yes A consecutive array of six byte ele-
ments, each six byte element spec-
ifies an 48-bit |IEEE 802.3-style
MAC address.

8.24. Latency nodes

The following nodes are used to convey latency information to a guest. Latency information may be used
by a guest operating system to perform various optimizations within the virtual machine. For example, a
guest might optimize the allocation of memory so as to minimize the average access latency for programs
running on a particular virtual CPU.

Latency information is provided in the form of latency groups. A latency group node defines the rel ation-
ship between the MD nodes that lead to it and/or that it leads to.

Four types of latency are defined by this specification:
1. Thelatency between avirtual CPU and a memory block for load and store operations,
2. The latency between avirtual CPU and al/O device for load and store operations,

3. Thelatency between an /O device and memory for DMA operations, and

69

Machine description

4. The latency between an I/O device and avirtual CPU for interrupt delivery.

Physical latency information is provided in each latency group node (defined below) with the latency
property. Each latency property valueis specified in picoseconds (ps). The actual latency observed in each
circumstance may be moderated by the effects of caches and other system components.

Latency group nodes are optional in a machine description. However, for any given type the latency re-
lationships must be full and complete. Thus, if alatency group node describing the load/store latency be-
tween one virtual cpu and amemory block exists, then all such latency relationships between al cpus and
all memory blocks must be present.

It is recommended, for robustness, that in the event of only partial latency information for a given type
being available, a guest should behave asif no latency information of that typeis available.

8.24.1. Programming notes and accuracy

Latency information for thetypes defined aboveis optional and isnot necessarily provided by every virtual
platform.

In the event that one of the above types of latency nodeinformation is not present in amachine description,
aguest operating system must assume a default policy of uniform latency.

A dynamic update to a machine description may add or remove some or all of the latency information.
This behavior isto be expected by the guest, which in turn must assume a default uniform latency policy
in the event that latency information is not present.

For short transitory periods latency group information presented in a machine description may not reflect
the actual relationships of components available to a virtual machine. This can happen, for example, as
a result of lag between the reconfiguration of virtual resources and the subseguent machine description
update. For this reason, latency group information should only be used for performance optimizations,
where inaccuracies may result in sub-optimal performance, but not incorrect behavior.

8.24.2. Memory latency group node

Name: menory- | at ency- group
Category: optional
Required subordinates: bl ock (Section 8.19.5, “Mblock node”)

Optional subordinates:

8.24.2.1. Description

Thisnode describestheload and store latency relationship between avirtual CPU and aregion of memory.
Therenor y- | at ency- gr oup nodeisdefined to be aoptional subordinate of acpu node, andin turn
anbl ock nodeis defined to be a subordinate of the menor y- | at ency- gr oup node.

Thus a search of the “fwd” DAG - starting from a “cpu” node will reveal al the menory- | at en-
cy- gr oup nodes representing that cpu. A search “fwd” from each menor y- | at ency- gr oup node
will in turn revea each nbl ock with the described memory latency. So, for example, in the machine
description illustrated below we see that CPU 1 can observe mbl ock A with alatency of 100ns, and can
observe nbl ock B with alatency of 150ns.

It is common in microprocessor memory system designs to support striped memory addressing, where a
number of address bits are used to selected a particular memory bank or chip. Each of these stripes may
present a different latency of access for a specific CPU. Often the size of each stripe unit may be quite

70

Machine description

small, therefore it is not practicable to provide a mblock for each small stripe so as to connect each to a
distinct memory Igroup node.

To resolve the memory striping problem, each memory latency group node holds two additional proper-
ties, an address mask (“address-mask”), and an address match (“address-match”) value to be used in con-
junction with the real address ranges of the mblocks the latency group nodes connect to.

So, for example, if bit 22 is used to select between two memory banks for a specific cpu - providing
alatency strip of 4 M bytes - then two memory-latency-group nodes may connect the cpu node to the
appropriate mblock node. Both memory-latency-group nodeswill have aaddress-mask property with value
0x400000, with one memory-latency-group node having aaddress-match property value of 0, and the other
memory-latency-group node having a address-match property of 0x400000. Thus the latency information
appliestoamblock only for thosereal addresseswherethe equation ((address + address-congruence-offset)
& address- mask) == address-match holdstrue. The value address-congruence-offset isaproperty specified
in the mblock corresponding to the specified address, and transforms the address into pseudo address
suitable for the mask and match combination.

If address-mask and address-match properties are not present in a memory-latency-group node, then no
address striping is in effect, and the described memory latency applies between al mblocks and cpus
connected to this memory-latency-group node. The address-mask and address-match properties, while
optional, must be provided together. If one property is present without the other a guest must treat the
memory-latency- group node as erroneous and ignore it altogether.

8.24.2.2. Properties

Name Tag Required Description

| at ency PROP_VAL yes A 64-hit unsigned integer giving the
approximate latency of accessin pi-
coseconds.

addr ess- mask PROP_VAL no A 64-bit unsigned integer providing
amask value for amemory stripe.

addr ess-mat ch PROP_VAL no A 64-bit unsigned integer providing
amatch value for amemory stripe.

8.24.2.3. Programming note on RA and physical address congru-

ence

The real address space used within avirtual machine is aremapping of portions of a system's underlying
physical memory. A guest running within a virtual machine is not provided the physical addresses of its
memory blocks. This abstraction of memory addresses enables guests to be moved in memory without
changing their real address space layout.

However, to support NUMA and page-coloring algorithms for a guest operating system further informa-
tionisrequired that describes the congruency relationship between areal address and the underlying phys-
ical address to which it is mapped. To do this, the optional property address-congruence-offset may be
optionally added to each mblock node. The property is computed such that:

address-congruence-offset = (PA_base - RA_base) mod M

Where; M is a power of 2 strictly greater than all values of address-mask and index-mask in the MD. A
guest operating system must add address-congruence-offset to any real address before applying masks to
determine alatency group match, such as address-mask and index-mask.

71

Machine description

If this property is not present in the mblock, then its value must be assumed 0. This property is typical-
ly provided when the congruency between the real and underlying physical address of a mblock is less
than the size needed for Igroup or page color masking. For example; Consider a NUMA machine where
memory is striped on 1GB boundaries between 4 different memory controllers. Each cpu may see dif-
ferent access latencies to each of the memory controllers—- each latency is represented by a lgroup node
described above. Now consider a 1GB memory segment that starts at real address 0x400000000 and is
bound to physical address 0x10000000. To identify 4 different memory controllers with a 1GB stripe the
address-mask property of one of the Igroups might have the value 0xcO000000. In thislegitimate scenario
to correctly apply the Igroup information, the guest OS needs enough correctly congruent bits from the
actual physical address to be able to meaningfully apply the Igroup address mask. So for our example,
real address 0x400000000 corresponds to physical address 0x10000000, and real address 0x430000000
corresponds to physical address 0x40000000. If we apply the Igroup mask to 0x10000000 we get 0x0. If
we apply the Igroup mask to 0x40000000 we get 0x40000000 as the result. Therefore we see that these
different address pages reside on different memory controllers with different access latencies. Note: if we
had applied the Igroup mask to the corresponding real addressestheresult isaways 0x0 implying the same
memory controller— which would be incorrect.

Thus ameansto recover the relevant bits of the physical address are required so that the address mask can
be correctly applied. The address-congruence-offset property in an mblock provides this information. As
described above the property is derived from the difference between real and their corresponding physical
addresses for a mblock. However, to retain ambiguity for actual physical address bindings, this property
is not the actual difference, but simply enough bits from the RA/PA difference that an addr mask can
be correctly applied. This ambiguity is strictly enforced to prevent guest operating systems being able to
bind themselves to specific physical addresses for anti-social activites such as denial of service attacks on
specific memory banks or memory controllers on a shared domain platform.

Thus the value provided for address-congruence-offset is sufficient that the equality:
(RA + address-congruence-offset) & address-mask == address-match

holds correctly for all the provided address-mask and address-match values within the MD in order to
correctly match Igroups.

If the address-mask 0xc0000000 is the largest mask provided, then the address-congruence-offset for ex-
ampl e above would be;

(0x10000000 - 0x400000000) & Oxffifffff = Ox10000000

The address matches for the real addresses above will be,
(Ox400000000 + 0x10000000) & 0xc0000000 = 0x0

(0x430000000 + 0x10000000) & 0xcO000000 = 0x40000000

As defined above the address-congruence-offset is an optional property in an mblock node. If not present,
avalue of 0 can be assumed, thus the equality for matching Igroups reduces to:

RA & address-mask == address-match

8.24.2.4. Page coloring

Page coloring for large caches exhibits asimilar set of problems to identifying Igroups.

72

Machine description

To assist, acache nodeis extended with an optional property index-mask to compute amatching set within
the corresponding cache.

The actual cache index employed by hardware is a function of multiple bits from the physical address of

the memory reference. To compute a page coloring value the index-mask field identifies the relevant bits
from aphysical address. Thus the index-bits for page coloring can be derived as:

index-bits = (RA + address-congruence-offset) & index-mask

Where the address-congruence-offset is the property from the mblock (corresponding to the given RA)
as described above.

Similarly to Igroup matching, if the address-congruence-offset property is not provided for a mblock its
value can be assumed as zero reducing the equation to:

index-bits = RA & index-mask
8.24.3. Programmed I/O latency group
Name: pi o- | at ency- gr oup
Category: optional

Required subordinates:
Optional subordinates:

8.24.3.1. Description

This node describes the access latency of load or store instructions from one or more ¢ pu nodesto one or
more i/o devices. This node requires at least one subordinate node whose type represents an 1/0 device,
the valid types of these subordinates are listed above in the optional subordinate section.

The pio-latency-group node is defined to be a optional subordinate of a cpu node, and in turn each 1/0
device node is defined to be a subordinate of the pi o- | at ency- gr oup node.

The latency information defined by this node may be used to better schedule guest OS functions such as
interrupt handlersto virtual cpus with lower latency access to the target devices.

8.24.3.2. Properties

Name Tag Required Description
| at ency PROP_VAL yes A 64-hit unsigned integer giving the
approximate latency of accessin pi-
coseconds.

8.24.4. 1/0 DMA latency group

Name: dma- | at ency- group
Category: optional
Required subordinates: nbl ock (Section 8.19.5, “Mblock node”)

Optional subordinates:

73

Machine description

8.24.4.1. Description

This node describes the access latency of DMA operations from one or more I/O device nodes to one
or more mblocks. This latency information may be used to better allocate memory local to 1/O devices
where latency of access may be important-- for example in the alocation of device descriptor rings or
lookup tables.

The properties describing memory latency and striping are defined as per the memory-latency-group node

(see Section 8.24.2, “Memory latency group node”).

8.24.4.2. Properties

Name

Tag

Required

Description

| at ency

PROP_VAL

yes

A 64-hit unsigned integer giving the
approximate latency of accessin pi-
coseconds.

cont ent -versi on

PROP_STR

yes

Version string for the content of this
machine description. The currently
defined versionis“1”.

nd- gener at i on#

PROP_VAL

no

A 64-bit unsigned integer that
monotonically increasesif the ma-
chine description is updated while
the domain remains bound, that is,
configured within the Hypervisor. A
value of zero isto be assumed if this
property is absent.

addr ess- mask

PROP_VAL

no

A 64-bit unsigned integer providing
amask value for amemory stripe.

addr ess- mat ch

PROP_VAL

no

A 64-hit unsigned integer providing
amatch value for amemory stripe.

8.24.5. 1/0O Interrupt latency group node

Name:

Category:

Required subordinates:
Optional subordinates:

8.24.5.1. Description

i nterrupt-Iatency-group

optional

This node describes the latency of interrupt delivery from one or more I/O device nodes to one or more
cpu nodes. This latency information may be used to better assign virtual cpus to interrupt sourcesin such
cases where low interrupt latency is required. This node is subordinate to cpu nodes and to I/O nodes
suchasvpci - bus nodes.

8.24.5.2. Properties

Name

Tag
PRP_VAL

Required Description

| at ency yes A 64-hit unsigned integer giving the
approximate latency of accessin pi-

coseconds.

74

Machine description

8.24.6. Latency groups node

Name: | at ency- groups

Category: optional

Required subordinates:

Optional subordinates: menory- | at ency- gr oup (Section 8.24.2, “Memory latency group

node’), pi o- | at ency- gr oup (Section 8.24.3, “Programmed 1/0O la-
tency group”), dma- | at ency- gr oup (Section 8.24.4, “1/O DMA la
tency group”), i nt errupt - | at ency- gr oup (Section 8.24.5, “1/0
Interrupt latency group node”)

8.24.6.1. Description

This collective node leads to al of the latency group nodes in a guest MD. If any of the memory, PIO,
DMA, or IRQ latency group nodes exist in amachine description, thenthel at ency- gr oups node must
exist with each of the individual latency group nodes as its subbordinates.

8.24.6.2. Properties

None

8.25. 1/0 device nodes

These MD nodes describe the static 1/0 device topology to the OpenBoot guest running in adomain. This
allows OpenBoot to extract hardware-specific device information (MAC addresses, interrupt-maps, etc.)
from the MD, thereby making the guest hardware agnostic.

The MD iodevice tree is not meant to replace ASR database functionality. If a device is disabled in the
ASR database, its node will still appear in the MD, which means that OpenBoot will still have to check
if adeviceisdisabled before probing it.

8.25.1. Physical Device Collection node

Name: phys_io
Category: optionally required by r oot
Required subordinates: i odevi ce (Section 8.25.2, “1/O device node”)

Optional subordinates:

8.25.1.1. Description

This node is a collection node referring to the physical devices in the machine description.

8.25.2. 1/0 device node

Name: i odevi ce

Category: optional

Required subordinates:

Optional subordinates: i odevi ce (Section 8.25.2, “1/O device node’), i nt er r upt - map-

ent ry (Section 8.25.4, “Interrupt mapping node”), sl ot - nane (Sec-
tion 8.25.5, “Slot name node”’), deval i as (Section 8.25.6, “Device

75

Machine description

8.25.2.1. Description

name aliasnode’), i nt err upt - | at ency- gr oup (Section 8.24.5,
“1/0 Interrupt latency group node’), dnma- | at ency- gr oup (Sec-

tion 8.24.4, “1/0 DMA latency group”) xaui - mac (Section 8.25.3, “UI-
traSPARC-T2 NIU network device node”)

This node describes properties necessary to create an I/O device node in the OpenBoot device tree.

8.25.2.2. Properties

Name

Tag

Required

Description

devi ce-type

PROP_STR

yes

A string type for thisnode. The re-
maining propertiesin the MD node
for this device will vary depending
on the value of this string. For each
specificdevi ce-t ype allowed,
the remaining properties are shown
below. The allowed devi ce-t ype
values are:

pci ex
This value indicates a sundv
root nexus PCl Express device
(Fire ports A and B, N2 PIU,
etc.)

-swW tch-upstream
Thisvalueindicates the node is
an upstream port of a PCl Ex-
press switch

pc

-swi t ch- downst ream
Thisvalue indicates the nodeis
a downstream port of a PCl Ex-
press switch

pcC

e- pci - bri dge
Thisvalue indicates the nodeis
a PCI Expressto PCI bridge

pc

X- pci x- bri dge
Thisvalueindicates the node is
aPCI-X to PCI-X bridge

pc

- net wor k

This value indicates the node
isaPCl-Express or PCI-X net-
work device

pcC

- scsi

Thisvalue indicates the nodeis
a PCI-Express or PCI-X SCSI
adapter

pc

76

Machine description

Name

Tag

Required

Description

pci - generic

Thisvaue indicates the node is
a PCI-Express or PCI-X device

sun4v

This value indicates the nodeis
ageneric sundv device

8.25.2.2.1. Sun4v to PCI Express root nexus device

The following properties are allowed for device-types that have the value “pciex”.

Name

Tag

Required

Description

namne

PROP_STR

yes

A string with the value “pci”.
Thisvalueis converted to the
OpenBoot device tree nane

property.

conpati bl e

PROP_STR

yes

A string with the value
“SUNW,sundv-pci”. Thisvalue
is converted to the OpenBoot de-
vicetreeconpat i bl e proper-

ty.

cfg-handl e

PROP_VAL

yes

A 64-bit value that is uniqueto
this device on the sundv bus.

addr ess-ranges

PROP_DATA

deprecated, see
ranges

An array of 64-bit value pairs
which specifies the address
ranges available to this device.
Each pair contains a base and
range value. Thefirst pair of the
array specifies the PCI 10 space
addresses, the second pair spec-
ifies the PCI 32-bit memory ad-
dresses, and the final pair speci-
fies the PCI 64-bit prefetchable
memory addresses.

ranges

PROP_DATA

yes

An array of 7 groups of 64-bit
values which specify an entry

in the sundv bus child device's

r anges property. Thefirst three
values represent thechi | d-
phys address, the second two
values represent the par -

ent - phys address, and the last
two values represent the si ze.

vi rtual -dnma

PROP_DATA

yes

A pair of 64-bit values which
specify the virtual DMA region
for this device. This property
is converted to the OpenBoot
devicenode'svi rt ual - dma

property.

7

Machine description

Name Tag Required Description

nsi - ad- PROP_DATA yes An MSI property as specified in

dr ess-ranges [msiprops].

#si PROP_VAL yes An MSI property as specified in
[msiprops).

nsi - dat a- mask PROP_VAL yes An MSI property as specified in
[msiprops).

nsi - ranges PROP_DATA yes An MSI property as specified in
[msiprops).

nsi - eq- si ze PROP_VAL yes An MSI property as specified in
[msiprops].

nsi x-data-wi dth |PROP_VAL yes An MSI property as specified in
[msiprops].

#nsi - eqs PROP_VAL yes An MSI property as specified in
[msiprops).

nsi - eq-t o- devi no |PROP_DATA yes An MSI property as specified in
[msiprops).

bus-ranges PROP_DATA yes A range of PCI bus numbers that
this root nexus device can allo-
cateto child PCI devices.

| evel 1- hot - PROP_VAL no An integer which will be convert-

pl ug- sl ot - count ed into an OpenBoot encoded in-
teger property of the same name.

| evel 2- hot - PROP_VAL no An integer which will be convert-

pl ug- sl ot - count ed into an OpenBoot encoded in-
teger property of the same name.

8.25.2.2.2. Generic PCl device properties

” i

Thefollowing properties are allowed for device-typesthat have the values: “ pcie-switch-upstream”, “pcie-
switch-downstream”, “ pcie-pcix-bridge”, “ pcix-pcix-bridge’, “ pci-network”, “pci-scsi”, “pci-generic’.
Name Tag Required Description
devi ce- nunber PROP_VAL yes The PCI device number for this PCI
device
function- nunber PROP_VAL yes The PCI function number for this
PCI device

8.25.2.2.3. PCI bridge device properties

Thefollowing propertiesare allowed for device-typesthat have the values: “ pcie-switch-upstream”, “pcie-
switch-downstream”, “ pcie-pcix-bridge”, “ pcix-pcix-bridge”.

Name Tag

PROP_VAL no

Required Description

Thisvalue will be converted into the
OpenBoot #i nterrupt-cell s
property. The value is the number

of 32-bit integers required for the

#interrupt-cells

78

Machine description

Name Tag Required Description

representation of asingle interrupt
specifier for this node. A more com-
plete description of this property can
be found in [ofintrmap].

i nterrupt-map- mask |PROP_DATA no This array of integers will specify
thei nt er r upt - map- mask prop-
erty that OpenBoot needs to cre-

ate in this PCI device node. A more
complete description of this property
can be found in [ofintrmap].

8.25.2.2.4. PCI slot device properties

The following properties are allowed for device-types that have the values: “pcie-switch-downstream”,

“pcie-pcix-bridge’, “ pcix-pcix-bridge”.

Name Tag Required Description

sl ot - present PROP_VAL no The presence of this property means
that a PCI dlot is present at this de-
vice/function number.

hot pl ug- supported |PROP_VAL no The presence of this property means
that the dlot supports PCI hotplug.

8.25.2.2.5. PCI network device properties

The following properties are allowed for device-types that have the values: “pci-network” .

Name Tag Required Description

phy-type PROP_STR no This property will contain astring
that specifies the type of exter-

nal physical layer transceiver is
connected to the network device.
The following are the allowed
values: “xgc” for 10Gb copper,
“xgf” for 10Gb fiber, “mif” for
1G/100M/10M copper, “pcs’ for
1Gb fiber.

mac- addr esses PROP_DATA no An array of MAC addresses allocat-
ed to this network device.

8.25.2.2.6. PCI SCSI device properties

The following properties are allowed for device-types that have the values: “pci-scsi”.

Name Tag Required Description
sas-wwi d PROP_VAL no An array of 8 byte SAS WWIDsfor
this SCSI adapter.

8.25.2.2.7. NIU device properties

The following properties are allowed for UltraSPARC-T2 NIU devices.

79

Machine description

Name Tag Required Description
devi ce-type PROP_STR yes A string type for this this node.
Thisvalueis currently defined as
“sundv”.
conpati bl e PROP_DATA yes An array of string namesfor this

node. Thisvalueis currently defined
as“ SUNW,niumx”.

cfg-handl e PROP_VAL yes

8.25.3. UltraSPARC-T2 NIU network device node

Name: xaui - mac

Category: optional, under i odevi ce
Required subordinates:

Optional subordinates:

8.25.3.1. Description

This node describes the NIU device properties, and the transveiver properties of the external PHY that is
connected to the XAUI bus on an NIU port.

8.25.3.2. Properties

Name Tag Required Description

devi ce-type PROP_STR yes A string type for this node. The val-
ueis currently defined as “ network”.

conmpati bl e PROP_DATA yes An array of string namesfor this
node. The valueis currently defined
as“SUNW,niud”.

port PROP_VAL yes A 64-bit unsigned integer identify-
ing this device uniquely.

phy-type PROP_STR yes This property contains a string that

specifies the type of the external
physical layer transceiver that con-
nected to the XAUI bus of thisNIU
port. The currently defined values
are:

“ X gf ”
10Gbps fibre (optical)

“ X g C ”
10Gpbs copper

mac- addr esses PROP_DATA yes An array of MAC addresses allocat-
ed to this network device.

t x- dma- channel s PROP_DATA yes An array of pairs of integers (must
contain a multiple of two integers).
Thefirst integer of each pair spec-
ifies a base transmit DMA channel

80

Machine description

Name

Tag

Required

Description

number, the second integer of the
pair specifies then number of trans-
mit DMA channels (beginning at
base) that the device node has been
allocated.

r x- dma- channel s

PROP_DATA

yes

An array of pairs of integers (must
contain a multiple of two integers).
Thefirst integer of each pair spec-
ifies a base receive DMA channel
number, the second integer of the
pair specifies then number of receive
DMA channels (beginning at base)
that the device node has been dlo-
cated.

interrupts

PROP_DATA

yes

An array of system interrupts allo-
cated for this NIU device.

8.25.4. Interrupt mapping node

Name:

Category:

Required subordinates:
Optional subordinates:

8.25.4.1. Description

i nterrupt-nmap-entry

optional

This node describes a hardware interrupt mapping from a child device interrupt domain to a parent device
interrupt domain. 1/0 device nodes may have forward links to these interrupt mapping nodes. Each node
will correspond to alinein the devicetreei nt er r upt - map property. For more information about the

i nt errupt - nap related properties, please refer to [ofintrmap].

Asstated inthe description of par ent - devi ce- pat h below, if OpenBoot cannot find the parent inter-
rupt devicein the device tree, OpenBoot must eliminate the device tree node corresponding to thei ode-
vi ce node which hasthe forward arc to the associated i nt er r upt - map- ent r y node. The reason for
thisisthat interrupt mappings cannot span accross multiple domains, so a child interrupt domain must be
within the same logical domain as the parent interrupt domain. To avoid forcing restrictions on the device
probing order, we will have to overlay interrupt map properties after all devices have been probed.

8.25.4.2. Properties

Name Tag Required Description

parent-interrupt PROP_DATA yes An array of integers that describes
the interrupt number in the parent
interrupt domain.

child-interrupt PROP_DATA yes An array of integers that describes
the interrupt number in the child in-
terrupt domain.

chi | d-uni t - addr ess |PROP_DATA yes The unit address of the device that

generates the interrupt in the child

81

Machine description

Name Tag Required Description

interrupt domain. There number of
integersin this array will be equal
tothe#addr ess- cel | s for the
child device.

par ent - devi ce- pat h |PROP_STR yes The textual device path of the device
tree node that serves as the parent
domain of theinterrupt mapping. If
the parent device that is specified by
thepar ent - devi ce- pat h prop-
erty is not present in the device tree,
OpenBoot will eliminate the child
device node from the device tree.

8.25.5. Slot name node

Name: sl ot - nane
Category: optional
Required subordinates:

Optional subordinates:

8.25.5.1. Description

One of possibly multiple slot names for this node. The propertiesin this node will become an entry in the
OpenBoot sl ot - nanes device tree property. Note that thisis an optional node, since not all platforms
have implemented the s| ot - nanes properties for their PCI dots.

8.25.5.2. Properties

Name Tag Required Description

sl ot - name PROP_STR yes A sl ot - nane entry for the PCI
slot MD iodevice node which points
to this slot name MD node.

devi ce# PROP_VAL yes The device number that is associat-
ed with the sl ot - nane property of
this node.

8.25.6. Device name alias node

Name: deval i as
Category: optional
Required subordinates:

Optional subordinates:

8.25.6.1. Description

One of possibly multiple devaliases associated with this node. The properties in this node will become a
devaliasin OpenBoot.

82

Machine description

8.25.6.2. Properties

Name Tag Required Description
deval i as PROP_STR yes A device diasfor the device path
described by the pat h property of
this node.
pat h PROP_STR yes The device path which will be
dliased tothedeval i as property
of this node.

8.25.7. 1/0 device path aliases collection node

Name: i oal i ases

Category: optional

Required subordinates:

Optional subordinates: i oal i as (Section 8.25.8, “1/0 device path dias node”)

8.25.7.1. Description

This collection node provides forward pointersto all systemi oal i as nodes

8.25.8. I/0 device path alias node

Name: i oalias
Category: optional
Required subordinates:

Optional subordinates:

8.25.8.1. Description

This node provides the current path to a PCle switch's upstream port and alist of all possible paths to the
same PCl e switch upstream port.

8.25.8.2. Properties

Name Tag Required Description
current PROP_STR yes A string containing the path to a
PCle switch upstream port.
al i ases PROP_STR yes A list of space separated strings con-
taining all the possible paths to a
PCI root nexus.

83

Chapter 9. Logical domain variables

9.1. Overview

LDom variables control and provide information to the guest's environment. These variables are known
as an environmental variables or NVRAM variables on legacy platforms.

These variables are created and consumed by guest software such as OpenBoot. These variables can be
modified by guest software CLIs and by LDom manager CLIs. The guest software can create these vari-
ablesin any datatypesit chooses. The datatypes are private to the guest SW itself. Thus, in case of Open-
Boot, the formats of the variables are determined by OpenBoot.

The sundv architecture currently has no predefined variables or values. However OpenBoot software (used
by most guest operating environments as their boot loader) does provide a number of environmental vari-
able values.

Rather then push OpenBoot's variable definitions up-stream into the sundv architecture, OpenBoot (as a
layered piece of software) provides default values for these variables itself.

Only when a default value needs to be over-ridden, then the administrator can set aLDom variable of the
same name to override the OpenBoot default value.

9.2. LDom variable store

All LDom variables with non-default settings are stored in the LDom variable store and are available to
its consumer through machine description (MD). The variable store is managed directly by the LDom
manager, and/or indirectly from each guest virtual machine via the variable domain service described in
Section 30.12, “Variable Configuration version 1.0".

If avariable is changed to its non-default value then such change is communicated to LDom manager
or to service processor software. The changeis reflected in the guest specific machine description (MD).
Since only non-default settings are stored in the LDom store, only non-default settings are available in the
machine description. All variables not in the machine description are assumed to be set to their default
values. Thelist full list of variables defined by aclient and their default values are only known to the client
which defines the variables. Typically this client is the OpenBoot firmware.

If the format of the LDom variable in the machine description is not known to its consumer such as Open-
Boot then a default value for that variable should be assumed. For example, if OpenBoot does not recog-
nize the value for a variable then the variable will be restored to its default setting.

The non-default settings of al of the LDom variables is communicated using name value string pairs
encoded as properties in the variables machine description node.

Even though the values are stored and communicated as name value string pairs, the creators of these
variables can create them in any format desired. It is then the responsibility of the consumer of these
variablesto convert to and from astring encoding for the variable store. For example, if aninteger variable
is set to 0x0abb0823 then it could be stored in a string format as, “0abb0823". When the consumer
reads the value from the machine description, it should convert the string value back to an integer format.
Boolean variables should be converted to either “TRUE” or “FALSE” strings, so that the strings will ook
exactly the same as user might type at the keyboard. (Though this is convention only and not enforced).

9.3. LDom variables and automatic reboot

Historically there were two ways by which OpenBoot would automatically boot a guest OS. One of the
way is by setting the LDom variable aut 0- boot ? to TRUE. The second way was valid settings in the

Logica domain variables

in-memory reboot buffer. For security reasonsin LDoms, the concept of the reboot buffer was removed.
Three new variables are defined in its place for use with OpenBoot.

OpenBoot's decision to automatic boot a logical domain will be made by first looking at the r e-
boot - command variable and then by looking at the aut o- boot ? variable. If ther eboot - conmand
contains avalid boot string then OpenBoot will execute that boot string command. If the string is null or
non-existent then OpenBoot will look for the aut o- boot ? variable. If aut 0- boot ? is set to TRUE
then OpenBoot will boot the guest OS using the boot device specified by boot-related LDom variables
(theseareboot - devi ce andboot -fi |l e).

Note: The di ag- devi ce and di ag-fi | e variables do not exist on sundv class platforms.

Thefollowing threevariablesareintroduced to support automatic reboot of aguest domain. Thesevariables
replace the legacy reboot parameter buffer on non-sundv platforms.

reboot - | i ne- nunber
Thisisan optional variable used by Framebuffer console. Thevalueisa32-hit integer value describing
line number. The default valueisO.

r eboot - col um- nunber
Thisisan optional variable used by Framebuffer console. Thevalueisa32-bit integer value describing
column number. The default valueisO.

r eboot - command
This is arequired NUL-terminated string variable which describes reboot string which includes the
boot command, “boot”, optional device path or a device aias and optiona file arguments. A null
string indicates that the reboot string is not valid. The maximum string length of this variable is 256
characters. The default value of this variable is null. See below for details on the format.

Thestringinr eboot - conmand isinterpreted by OpenBoot asis. The contents of this variable are
valid only for onereset. Ther eboot - command string isinvalidated by setting it to the null string
after OpenBoot has read the variable. If the user wants to set a permanent reboot path and arguments
then aut o- boot ? should be set to TRUE together with boot - pat h and boot - fi | e being set
to the proper device path and boot arguments respectively.

Implementation Note

This variable can be set by using OpenBoot CLIs, guest OS CLIs and also by LDom manager
CLlIs. It will be updated by the SW responsible for a guest reboot. If OpenBoot is responsible for
a guest reboot then it will set ther eboot - commrand variable with an appropriate boot string.
On legacy platforms, the boot string is stored in a reboot parameters buffer which is part of
NVRAM device. If Solarisisresponsiblefor guest reboot then Solarisis responsible for updating
this variable directly. In either cases, OpenBoot is the sole consumer of this variable.

9.3.1. Format of r eboot - command variable

The format of the string in the r eboot - conmand consists of the following parameters:

boot _conmand

optional device path or an alias
optional boot argunents

NUL

Here, boot _command isthestring “boot”, devi ce pat h isthe OpenBoot device tree path to the boot
device. An al i as is an dlias to the boot path. Boot ar gunent s are arguments passed to the boot
command. A NUL character terminates the string.

85

Logica domain variables

Each of the three parameters above are delineated by one or more space characters (ASCI1 value 0x20). If
the second parameter is neither adevice path (string which startswith “/”, ASCI| value 0x 2f) or adevice
alias then the second parameter is the boot argument. The device path can not contain any spaces but boot
arguments can have one or more spaces. The end of the boot argument string is the NUL character.

Note

If the device path or an alias are not specified then OpenBoot will use the “boot-device” variable
value as the boot device. Similarly, if boot arguments are not specified then OpenBoot will use
the “boot-file” variable value as boot arguments.

The maximum length of the “reboot-command” variable string is 256 characters. A string consisting of
just aNUL character (ASCII value 0) is considered as an invalid boot string.

9.3.2. Guest OS management of LDom variables

A guest OS obtainsthelist of variables defined by OpenBoot fromtheopt i ons devicenodeinthedevice
tree created by OpenBoot. For each such variable, OpenBoot creates properties in the opt i ons device
node. The property contains the name and value for each of the LDom variable. This behavior isthe same
on all systems that use OpenBoot.

However, guest Operating Systems that retire OpenBoot after booting must manage LDom variables di-
rectly if changes are to be stored. Thus the list of LDom variables OpenBoot has defined should be re-
trieved fromtheopt i ons devicenode. A Guest OSwill be ableto set any of these variablesfollowing the
string name/value pair format described above using the variable domain service (Section 30.12, “ Variable
Configuration version 1.0").

86

Chapter 10. Security keys

Most sundv SPARC platforms provide the ability viatheir OpenBoot firmware boot code to boot a veri-
fiable operating system image across awide area network (WAN) such as the Internet.

Toguard against a“man-in-the-middle” attack where afalse boot imageisprovided in place of alegitimate
one for booting, verification and security for boot images is performed using security keysto attest to the
correctness of theimage being downl oaded. OpenBoot documentation providesamorein-depth discussion
of this mechanism.

In support of this WAN Boot capability a domain service is provided to be able to store and retrieve
these security keys by aL Dom on its platform. These keysthemselves are typically manipulated viaCLIs
provided by OpenBoot and operating systems like Solaris.

The WAN Boot key values need to be persisted across reboot. Thisisachieved in asundv virtual machine
by presenting the keysin the guest Machine Description (MD) node called “ keystore” . Setting and deleting
the keysis achieved via a domain service described in this section.

The MD node definitions are given in section Section 8.22, “Keystore”.

The mechanism to store and access the Security Key values is identical to the variable store and access
and is described in Section 30.13, “ Security key domain service version 1.0". The only difference is the
MD node and the domain services used to access the keys. The keystore format is also identical to LDom
variables. The reason for the differentiation is that security keys are not LDom variables and should not
be manipulable via the normal variable management CLIs.

87

Chapter 11. APl versioning

This section describes the API versioning interface available to all privileged code.

11.1. APl calls

11.1.1. api_set_version

trap# CORE_TRAP

function# APl _SET_VERSI ON
arg0 api _group

argl maj or _nunber

arg2 req_m nor _nunber
ret0 st at us

retl actual _m nor_nunber

The API service enables a guest to request and check for a version of the Hypervisor APIs with which it
may be compatible. It usesits own trap number to ensure consi stency between future versions of thevirtua
machine environment. API services are grouped into setsthat are specified by the argument api _gr oup
in the table below). For the specified group the guest's requested APl major version number is given
by the argument maj or _nunber and arequested APl minor version number is given by the argument
req_m nor _nunber.

If the maj or _nunber is supported, the actual minor version implemented by the Hypervisor is re-
turned inret 1 (act ual _mi nor _nunber). Note that the actual minor version number may be less
than, equal to, or greater than the requested minor version number. (See Notes, below). If the returned
act _m nor_nunber isgreater thanther eq_mi nor _nunber then the APIs enabled by the Hyper-
visor for api _gr oup will be compatible withr eq_ni nor _nunber .

If the maj or _nunber is not supported, the Hypervisor returns an error code inret 0, andret 1 is
undefined. (See Errors, below.)

If thermaj or _nunber requested is zero, the version of the api _gr oup selected is requested to return
to the initial un-set (disabled) state. If the call succeeds it will return with EOK in st at us, and zero in
act _m nor_nunber.

The version number of a specified APl group may be set at any time with this API service, however;

1. Theact of selectingan API versionfor anapi _gr oup, or requesting that the group return to being un-
set (maj or _numnber =0), does not reset any previous state associated with services within a group—
unless specified explicitly for that group associated state after aapi _set _ver si on cal isundefined.

2. Any APl cals belonging to the same api _group being made concurrently with this
api _set _ver si on service will have undefined results.

3. Callsto APIs made concurrently with api _set _ver si on that are not in api _gr oup proceed as
normally defined.

4. Simultaneous calls to api _set _ver si on using the same api_group, may succeed but leave the
api _gr oup in an undefined state.

5. Simultaneous callsto api _set _ver si on and api _get _ver si on using the same api _gr oup
have undefined resultsfor api _get _ver si on.

88

API versioning

6. api _set ver si on does not affect the CORE_TRAP API calls - these remain unaffected and may
be called at any time.

The API groups are defined in Appendix A, Number Registry together with the approved version numbers
for each of the API services defined in this specification.

Programming note

Each API group istreated independently of the othersfrom aversioning perspective, so one group
can have its version negotiated while APIs from other groups are actively being used. Howev-
er, a guest operating system should take care to ensure that whileaapi _set _versi onisin
progress, no APIsfrom the same APl group are used, and no other callstoapi _set _versi on
orapi _get _ver si on are made using the same API group.

11.1.1.1. Errors

EINVAL The api _gr oup field is unknown to this hypervisor. This error takes prece-
dence over ENOTSUPPORTED.

ENOTSUPPORTED If major number for that api _gr oup is not supported

EOK If api _group and maj or _nunber match, or maj or _nunber iszero

EWOULDBLOCK Operation would block

EBUSY The api _gr oup is currently in use, and the requested version would leave

the virtual machinein anillega state

11.1.1.2. Usage Notes

This API uses its own trap number, not for performance reasons, but to ensure its constancy even in the
face of new APl major versions.

Regardless of version number, the Hypervisor core APIs (CORE_TRAP) defined above enables any guest
to print amessage and cleanly exit its virtual machine environment in the event it is unsuccessful in nego-
tiating an API version with which to communicate with other hypervisor functions.

The following informative text is provided as a guide to assist the reader in understanding the hypervisor
versioning API.

API functions and returned data structures are categorized into specific groups. Each group represents
an area of hypervisor functionality that may change independently of the others, and therefore may be
versioned independently.

For each API group thereisamajor and aminor version number. Differencesin the major version number
indicate incompatible changes. Differences in the minor number indicate compatible changes, such that a
higher version number espoused by the hypervisor will becompatiblewith alower minor number requested
by aguest. If theapi _gr oup isnot supported theapi _set _ver si on function will return EINVAL.
If the major version number for avalid api _gr oup isnot supported theapi _set _ver si on function
will return ENOTSUPPORTED.

The handling of an unsupported API version is purely guest policy, however aguest may freely attempt a
different major version if it is capable of driving that alternate interface. The suggested minimal behavior
isto print awarning message and exit the virtual machine.

By way of example, consider aguest that requests minor version Requested, and this APl may return minor
version Actual for agiven major_number and api _gr oup.

89

API versioning

If Requested == Actual, then the requested minor version is available.

If Actual < Reguested, the guest must be able to determineif the interface with minor version Actual offers
the required services and proceed accordingly. Thisis aguest policy issue.

If Actual > Requested, then the guest may assumeit can operate compatibly with version Requested. Minor
version number increments are defined to be compatible with the preceding version, so in general the guest
may accept Actual when Actual > Requested. In this case, the guest may want to print awarning, but that
isup to the policy of the guest.

Alternatively in the event that Actual > Requested, the hypervisor may elect to emulate version Requested,
thus returning Requested.

For situations such as the co-residence of OBP with Solaris, or multiple Solaris modules using the same
API group, alayered software approach must be taken for version negotiation.

For example, it isrecommended that OpenBoot initially negotiate to the lowest version number supported
for the firmware consolidation for api groupsit intends to use. A subsequent guest operating system may
then negotiate versions up for each api group by calling though OpenBoot's CIF interface. Using the CIF
interface means OpenBoot will be aware of the version negotiation and can adapt itself accordingly to
new api versions, or simply veto requested versionsit cannot compatibly upgrade to. If a guest negotiates
versions directly with the hypervisor bypassing the CIF, the guest is responsible for retiring OpenBoot
and providing OpenBoot services for itsalf.

11.1.2. api_get_version

trap# CORE_TRAP
function# APl _GET_VERSI ON
arg0 api _group

retO st at us

retl nmaj or _nunber

ret2 m nor _nunber

This service is used to determine the major and minor number of the most recently successfully set API
version for the specified group (see Section 11.1.1, “api_set_version”). In the event that no APl version
has been successfully set the call returnsthe error code EINVAL andret 1 andr et 2 areset to 0.

11.1.2.1. Errors

EINVAL No API version yet successfully set

90

Chapter 12. Core services

Thefollowing servicesenable privileged software to request information about or to affect the entirevirtual
machine domain.

12.1. APl calls

12.1.1. mach_exit

trap# FAST_TRAP
function# MACH EXI'T
arg0 exit_code

This service stops al CPUs in the virtual machine domain and places them into the stopped state. The
64-bit exi t _code may be passed to a service entity as the domain's exit status. On systems without a
service entity, the domain will undergo areset, and the boot firmware will be reloaded.

This function will never return to the guest that invokesiit.

Note

Note: by convention aexi t _code of zero denotes successful exit by the guest code. A non-
zero exi t _code denotes a guest-specific error indication.

12.1.1.1. Errors
This service does not return.

12.1.2. mach_desc

trap#t FAST_TRAP
function# MACH DESC
arg0 buf f er
argl ength
retO st at us
retl [ength

This service copies the most current machine description into the buffer indicated by the real addressin
ar g0. The buffer provided must be 16-byte aligned. Upon success or EINVAL this service returns the
actual size of the machine description is provided inther et 1 (I engt h) return value.

Note

Note: A method of determining the appropriate buffer size for the machine description isto first
call this service with a buffer length of 0 bytes and use the valuereturned inr et 1.

12.1.2.1. Errors

EBADALIGN Buffer isbadly aligned
EINVAL Buffer length is too small for complete machine description.

91

Core services

ENORADDR Buffer isto anillegal real address

12.1.3. mach_sir

trap# FAST_TRAP

function# MACH SI R

This service provides a software initiated reset of a virtual machine domain. All CPUs are captured as
soon as possible, al hardware devices are returned to the entry default state, and the domain is restarted

at the SI R (trap type Ox4) real trap table (rtba) entry point on one of the CPUs. The single CPU restarted
is selected as determined by platform specific policy. Memory is preserved across this operation.

12.1.3.1. Errors
This service does not return.

12.1.4. mach_set_watchdog

trap# FAST_TRAP

function# MACH_SET_WATCHDOG
arg0 ti meout

retO st at us

retl ti me_remai ni ng

This API service provides a basic watchdog timer service.

A guest usesthis API to set awatchdog timer. Oncethe guest has set thetimer, it must call thetimer service
again either to disable or re-set the expiration. If the timer expires before being re-set or disabled, then
the hypervisor takes a platform specific action leading to guest termination within a bounded time period.
The platform action may include recovery actions such as reporting the expiration to a Service Processor,
and/or automatically restarting the guest.

If thet i meout argument is zero, the watchdog timer is disabled.

If theti meout argument is not zero, the watchdog timer is set to expire after a minimum of timeout
milliseconds.

Theimplemented timeout granularity is given by thewat chdog- r esol ut i on property inthepl at -
f or mnode of the guest's machine description (see Section 8.19.6, “ Platform node” . The specified timeout
isrounded up to the nearest integer multiple of wat chdog- r esol ut i on milliseconds.

Thelargest timeout value allowed is specified by thewat chdog- max- t i meout property of thepl at -
f or mnode. If the timeout value exceeds the value of thewat chdog- max- t i meout property, the hy-
pervisor leaves the watchdog timer state unchanged, and returns a status of EINVAL.

Thet i me_r emai ni ng return valueisvalid regardless of whether the return statusis EOK or EINVAL.
A non-zero return value indicates the number of milliseconds that were remaining until the timer was to
expire. Thetimeremaining will be rounded up to the nearest millisecond of watchdog-resolution available.

Programming note

If the hypervisor cannot support the exact timeout value requested, but can support alarger time-
out value, the hypervisor may round the actual timeout to avaluelarger than therequested timeout,

92

Core services

consequently thet i ne_r emai ni ng return value may be larger than the previously requested
ti meout value.

Programming note

Any guest OS debugger should be aware that the watchdog service may bein use. Consequently,
it is recommended that the watchdog service is disabled upon debugger entry (e.g. reaching a
breakpoint), and then re-enabled upon returning to normal execution. The API has been designed

with thisin mind, and thet i me_r emai ni ng result of the disable call may be used directly as
thet i meout argument of the re-enable call.

12.1.4.1. Errors

EINVAL ti meout too large

12.1.5. mach_suspend

trap#t FAST TRAP
function# MACH_SUSPEND
retO st at us

This call suspends the current virtual machine. The function will return upon the resume. A suspended
virtual machine can only be resumed by the domain manager.

All resources that were available to the domain prior to suspension will till be available after resumption,
but additional resources may be available. After resumption, a suspended domain's tick/stick may have
changed by either a positive or negative offset.

On success, the call returns a status of EOK. Otherwise, it returns one of the following errors.

12.1.5.1. Errors

ENOTSUPPORTED The requested operation cannot be performed on this domain
EWOULDBLOCK The requested operation cannot be performed at thistime

12.1.6. mach_pri

trap# FAST_TRAP
function# MACH_PRI
arg0 buf f er
argl [ength
retO st at us

retl | ength

This service copies the most current physical resource index (PRI) into the buffer indicated by the real
address in ar g0. The buffer provided must be 16-byte aligned. Upon success or EINVAL this service
returns the actual size of the machine descriptionis provided inther et 1 (I engt h) return value.

93

Core services

Note

Note: A method of determining the appropriate buffer size for the machine description isto first
call this service with a buffer length of 0 bytes and use the valuereturned inr et 1.

12.1.6.1. Errors

EBADALIGN Buffer isbadly aligned

EINVAL Buffer length is too small for complete machine description.
ENORADDR Buffer isto anillegal real address

ENOACCESS Access to the PRI is not permitted

ENOTSUPPORTED The PRI is not accessible using this AP

12.1.7. mach_vars

trap# FAST_TRAP
function# MACH VARS
arg0 buf f er
argl | ength
ret0 st at us
retl [ength

This service copies the most current Variable Updates Machine Description into the buffer indicated by
the real addressin ar g0. The buffer provided must be 16-byte aligned. Upon success or EINVAL this
service returnsthe actual size of the machine descriptionisprovidedinther et 1 (I engt h) return value.

Note

A method of determining the appropriate buffer size for the machine description is to first call
this service with a buffer length of 0 bytes and usethe valuereturnedinr et 1.

Note

The Updates MD delivered to OBP is simply a data structure in the machine description format
with asingleroot node containing string propertiesnamed after NVRAM variablesand containing
their non-default values. The Updates MD isalso delivered to the LDom Manager on the mdstore
domain service so that it can merge the updates into its own version of the control domain guest
MD. When an LDoms configuration is subsequently saved to the SP, the variables in the SP
variable store are flushed since they are now represented in the running control domain guest MD
and in the stored L Doms configuration.

If the SPisfaulted when the host is powered on, when the control domain OBP bootsit will fail to
register the var-config-backup domain service with VBSC. Any non-default NVRAM variables
will be present in the guest MD on thisfirst boot after power-on since hostconfigisableto include
the latest non-default variables from the backing store in the guest MD it creates. Moreover, if
OBP setenv command is used to update avariable, it will fail due to the missing variable domain
service, and so there will be no new non-default settings to persist after the SPis faulted.

If any non-default variables are present in the variable backing store but not in the guest MD,
they are only retrievable via the Updates MD. This happens if OBP setenv is used and then the

94

Core services

control domain is soft reset with reset-all. Thisalso happensif Solaris eeprom(1M) is used while
the LDom Manager is not running and the control domain is rebooted. There are additional use-
cases that can result in this condition. If the SP is faulted while in this condition, absent some
recovery, the user will see the OBP variables revert to either a historical value still present in the
guest MD or back to the default value.

Itisproposed that if the SPisfaulted OBP will retrieve the Updates MD viaaan hypervisor AP
call. The Updates MD will be stored in the host flash and kept up-to-date by VBSC. Hypervisor
will retrieve the Updates MD from the flash and make it available to the control domain OBP.
The layout of the flash and the Updates MD in it is described in the host flash section.

The control domain OBP will continue to use the variable domain service when the SPis present.
Non-control domain OBP will continue to only use the variable domain service provided by the
LDom Manager. The control domain OBP will only fallback to using the hypervisor APl when
the var-config-backup domain servicefailsto register. Thismight happen for threereasons: 1) the
SPisfaulted; 2) host is doing parallel boot and VBSC on the SPis not yet running; 3) ahardware
or firmware bug causes the Idc/ds transport for the variable service to fail.

Whilethe hypervisor API isnecessary for the casewherethe SPisfaulted, it also providesanideal
recovery when the SPis not faulted but still booting. This might happen during a cold power-on
boot of host and SP (parallel boot), or it might happen if the host and control domain are rebooted
in parallel (parale reboot).

12.1.7.1. Errors

EBADALIGN Buffer isbadly aligned
EINVAL Buffer length is too small for complete machine description.
ENORADDR Buffer isto anillegal real address

12.1.8. mach_reboot_data_set

trap# FAST_TRAP

function# MACH REBOOT_DATA SET
arg0 buf f er

argl | ength

ret0 st at us

This service stores data across a domain reset. The stored data will persist acrossaMACH_SIR. Initially
the stored data will be cleared and the stored data length will be reset to the value zero.

The argument | engt h isthe size of the datain the buffer to be saved. If | engt h is zero, the argument
buf f er isignored, and any previously saved datais destroyed and the saved datalength is set to zero. If
the argument | engt h is non-zero, the argument buf f er isthereal address of a data buffer. The buffer
provided must be 16-byte aligned.

If thisfunction returns successfully, the saved data and length have been updated. If theargument | engt h
isnon-zero, | engt h bytesof datafrom the databuffer defined by theargument buf f er have been saved.
The saved data and data length may be retrieved viathe mach_r eboot _dat a_get API.

If this function returns an error, the saved data and data length are unchanged.

The minimum supported size of the internal data buffer shall be 512 bytes and the actual maximum may
be higher.

95

Core services

It is the guest's responsibility to clear the reboot data after it has been retrieved. The data may be cleared
by calling this APl with al engt h of 0.

Note

In SP degraded mode, if a domain is rebooted, Solaris would not be able to save the reboot
parameters on the SP. Alternately, if the SP goes down after reboot parameters are saved on the
SPbut before OBP is ableto retrieve the parameters, OBP would not be able to boot Solarisusing
the specified parameters.

In order to support a guest domain reboot in SP-degraded mode, these APIs are defined. Solaris
would use these APIs to save the reboot parameters for the guest. When OBP is ready to boot it
would use these APIs to retrieve the reboot parameters and initiate the boot.

Both Solaris and OBP need to negotiate the “ Reboot Data Services’ API group. If the API group
issuccessfully negotiated they should use only these APIsfor reboot command parameters. If the
API group is not negotiated they should continue to use the existing method of storing/retrieving
the reboot parameters.

12.1.8.1. Errors

EBADALIGN Buffer is badly aligned
ENORADDR Buffer isto anillegal real address
EINVAL Therequested | engt h islarger than the maximum size

12.1.9. mach_reboot_data_get

trap# FAST_TRAP

function# MACH REBOOT_DATA GET
arg0 buf f er

argl ength

ret0 status

ret0 actual -l ength

This service returns a copy of the currently saved reboot data. The saved reboot data may be set via the
mach_reboot data_set API.

If the argument | engt h is non-zero, the argument buf f er isthereal address of al engt h-sized data
buffer. The buffer provided must be 16-byte aligned. This API copiesupto| engt h bytes of stored data
into the data buffer defined by the buf argument.

If the argument | engt h is zero, the argument buf f er isignored.

Inall cases, the actual length of the stored dataisreturnedinact ual _| engt h.Ifactual | engthis
zero, no data has been copied to the buffer defined by the buf f er argument, and there is no stored data.

If the argument | engt h is non-zero, and less than the size of the stored data, the error code EINVAL
isreturned and no datais copied.

If the argument | en is non-zero and greater than or equal to the size of the stored data, the stored datais
copied to the buffer defined by the buf f er argument.

96

Core services

If | engt h islarger than act ual _| engt h, the contents of the buffer beyond act ual _| ength is
undefined.

Note

The client can easily determine the size of the stored data by calling this service with the | en
argument set to the value O.

12.1.9.1. Errors

EBADALIGN Buffer isbadly aligned
ENORADDR Buffer isto aniillegal real address
EINVAL The requested length is larger than the maximum size

97

Chapter 13. CPU services

CPUs represent devices that can execute software threads. A single chip that contains multiple cores or
strands is represented as multiple CPUs with unique CPU identifiers. CPUs are exported to OBP via the
machine description (and to Solaris via the device tree). CPUs are always in one of three states: stopped,
running, or error.

13.1. CPU id and CPU list

A CPU id isapre-assigned 16-bit value that uniquely identifies a CPU within alogical domain.

Operations that are to be be performed on multiple CPUs specify them viaa CPU list. A CPU listisan
array in real memory, of which each 16-bit word isa CPU id.

CPU lists are passed through the API as two arguments: the first is the number of entries (16-bit words)
in the CPU list, and the second is the (real address) pointer to the CPU id list.

A valid CPU list must have one or more CPU id entries.

13.2. APl calls

13.2.1. cpu_start

trap# FAST_TRAP
function# CPU_START
arg0 cpuid

argl pc

arg2 rtba

arg3 target _argO
retO st at us

Start CPU withid cpui d with pc in %pc and with areal trap base address value of r t ba. Theindicated
CPU must bein the stopped state. The suppliedr t ba must be aligned on a 256 byte boundary. On success-
ful completion, the specified CPU will be in the running state and will be supplied witht ar get _ar g0
in%o0andrt ba in %tba.

13.2.1.1. Errors

ENOCPU Invalid cpui d

EINVAL Target cpui d isnot in the stopped state
ENORADDR Invalid pc or rt ba real address
EBADALIGN Unaligned pc or unalignedr t ba
EWOULDBLOCK if starting resource is not available

13.2.2. cpu_stop

trap#t FAST_TRAP
function# CPU_STOP
arg0 cpuid

98

CPU services

retO st at us

Stop CPU cpui d. Theindicated CPU must bein the running state. On completion, it will bein the stopped
state. It is not legal to stop the current CPU.

Note

Asthisservice cannot be used to stop the current CPU, this service may not be used to stop the last
running CPU in adomain. To stop and exit arunning domain a guest must usethe mach_exi t
service.

13.2.2.1. Errors

ENOCPU Invalid cpui d

EINVAL target cpui d isthe current CPU
EINVAL target cpui d isnot in the running state
EWOULDBLOCK if starting resource is not available

ENOTSUPPORTED if not supported on the platform

13.2.3. cpu_set_rtbha

trap# FAST_TRAP
function# CPU_SET_RTBA
arg0 rtba

retO st at us

retl previous_rtbha

Set the real trap base address of the local CPU to thevalue of r t ba. The supplied r t ba must be aligned
on a 256 byte boundary. Upon success the previousvalue of r t ba isreturned inr et 1.

Note

Thereal trap table is described in the sundv architecture specification.

Note

This service does not affect %tba.

13.2.3.1. Errors

ENORADDR Invalidr t ba real address
EBADALIGN rt ba isincorrectly aligned for atrap table

13.2.4. cpu_get_rtba

trap# FAST_TRAP
function# CPU_GET_RTBA
retO st at us

retl rtba

99

CPU services

Returnsthe current valueof rt ba inr et 1.

13.2.4.1. Errors

No possible error.

13.2.5. cpu_yield

trap# FAST TRAP
function# CPU_YI ELD
retO st at us

Suspend execution on the current CPU. Execution may resume for any reason but is guaranteed to resume
for any event that would generate adisrupting trap if pstate.ie == 1.

Programming note

This APl may be used to save power and prevent contention on some CPUs by disabling hardware
strands.

The guest isresponsiblefor handling any race conditionsthat may occur when calling this service
with pstate.ie == 1.

Interrupts which are blocked by some mechanism other than pst at e. i e (for example %pil)
are not guaranteed to cause areturn from this service.

13.2.5.1. Errors

No possible error.

13.2.6. cpu_qgconf

trap# FAST_TRAP
function# CPU_QCONF
argo queue

argl base_ raddr
arg2 nentries
ret0 st at us

Configure queue queue to be placed at real address base_r addr, and of nent ri es entries. nen-
tri es must be a power of two. base_r addr must be aligned exactly to match the queue size. Each
gueue entry is 64 byteslong, so for example, a 32 entry queue must be aligned on a 2048 bytereal address

boundary.
The specified queue is unconfigured if nent ri es isO.

For the current version of this API service the argument queue is defined as follows:

Queue Description
0x3c cpu mondo queue
0x3d device mondo queue

100

CPU services

Queue Description
0x3e resumeable error queue
Ox3f non-resumabl e error queue

Programming note

The maximum number of entries for each queue for a specific CPU may be determined from the
machine description.

13.2.6.1. Errors

EINVAL Invalid queue

EINVAL nent ri es not apower of two
EINVAL nent ri es islessthan two or too large
ENORADDR Invalid base_raddr rea address
EBADALIGN base raddr isincorrectly aligned

13.2.7. cpu_qinfo

trap#t FAST_TRAP
function# CPU_Q NFO
argo gqueue

retO st at us

retl base_raddr
ret2 nentries

Return the configuration info for queue queue. Thebase_r addr isthe currently defined read address
base of the defined queue, and nent r i es isthe size of the queue in terms of number of entries.

For the current version of this API service the argument queue is defined as follows:

Queue Description
0x3c cpu mondo queue
0x3d device mondo queue
0x3e resumeable error queue
Ox3f non-resumabl e error queue

If the specified queue is avalid queue number, but no queue has been defined this service will return
success, but with nent ri es setto 0 and base_r addr will have an undefined value.

13.2.7.1. Errors

EINVAL Invalid queue
13.2.8. cpu_mondo_send
trap# FAST_TRAP

function# CPU_MONDO_SEND

101

CPU services

arg0/argl cpulist
arg2 dat a
retO st at us

Send amondo interrupt to CPU list cpul i st with 64 bytes of data pointed to by dat a. dat a must bea
64 byte aligned real address. The mondo data will be delivered to the cpu_mondo queues of the recipient
CPUs.

Inall cases, (error or no), the CPUsincpul i st towhich the mondo has been successfully delivered will
be indicated by having their entry incpul i st updated with the value Oxf f f f .

13.2.8.1. Errors

ENOCPU Invalid CPU in cpus

ENORADDR Invalid data mondo real address or invalid CPU list address
EBADALIGN Mondo datais not 64-byte aligned or cpulist is not 2-byte aligned
EWOULDBLOCK Some or all of the listed CPUs did not receive the mondo
EINVAL cpulist includes caller's cpuid

13.2.9. cpu_myid

trap#t FAST_TRAP
function# CPU_MWI D
retO st at us

retl cpuid

Return the hypervisor ID handle for the current CPU. Used by avirtual CPU to discover its own identity.

13.2.9.1. Errors

No errors defined

13.2.10. cpu_state

trap# FAST_TRAP
function# CPU_STATE
arg0 cpuid

retO st at us

retl state

Retrieve the current state of CPU cpui d. The states are:

CPU_STATE_STOPPED 0Ox1 CPU isin the stopped state
CPU_STATE_RUNNI NG 0x2 CPU isin therunning state
CPU_STATE_ERRCR 0x3 CPU isintheerror state

13.2.10.1. Errors

ENOCPU Invalid cpui d

102

CPU services

13.2.11. cpu_tick_npt

trap# FAST_TRAP
function# CPU_TI CK_NPT
arg0 enabl ed

retO st at us

Thiscall enables (ar g0 == 1) or disables (ar g0 == 0) the tick.npt bit on the calling CPU.

On success, the call returns a status of EOK. Otherwise, it returns one of the following errors.

13.2.11.1. Errors

EINVAL Invalid argument

13.2.12. cpu_stick_npt

trap#t FAST_TRAP
function# CPU_STI CK_NPT
arg0 enabl ed

retO st at us

Thiscall enables (ar g0 == 1) or disables (ar g0 == 0) the stick.npt bit on the calling CPU.

On success, the call returns a status of EOK. Otherwise, it returns one of the following errors.

13.2.12.1. Errors

EINVAL Invalid argument

103

Chapter 14. MMU services

These hypervisor services control the behavior of address transations handled by the hypervisor.

A basic sundv guest operating system, need not use any of these servicesat all. Thedefault/initial operating
environment for a guest iswith virtual address trandation disabled. In this mode all instructions and data
references are made with real addresses.

If a guest operating system enables MMU trandations, then virtual to real mappings may be specified
in one of three different ways; either as permanent mappings, or as mappings that may be evicted and
reloaded into system TLBs directly via MMU service functions, or indirectly via Trandation Storage
Buffers(TSBs). Moreover, with tranglations enabled, aguest Operating System must declare a Fault Status
areafor the hypervisor to provide information in the event of atranslation fault.

14.1. Translation Storage Buffer (TSB) specification

The TSB functions control two sets of TSBs, one for when the virtual address context is zero, and one for
when it is hot zero. The demap functions remove translations from hardware TLBs.

A TSB description isamemory data structure that defines asingle TSB:

Table 14.1. TSB descriptor layout

Offset Size Contents
0 2 page size to use for index shiftin TSB
2 2 associativity of TSB
4 4 size of TSB in TTES (16 bytes)
8 4 context_index
12 4 page size bitmask
16 8 real address of TSB base
24 8 reserved

The maximum TSB associativity supported is indicated in the guest machine description (see Sec-
tion 8.19.3, “cpu node”).

14.1.1. Page sizes

The sundv architecture defines value encodings of page size for trand ation table entries (TTES). The page
size bitmask indicates which of these encodings may be specified for TTEs within a given TSB. For each
bit in the page size bitmask, if set, the sundv page size may be specified. For example, bit 0 corresponds
to an 8KByte page size, bit 1 to a 64K page size, and so on in multiples of 8 of the page size for each

bit in thefield:
Bit Page Size
0 8K
1 64K
2 512K
3 4MB
4 32MB

104

MMU services

Bit Page Size
256MB

2GB

16GB

Bits 8 through 15 are reserved and must be set to zero.

The index shift page size indicates the page size to use for computing the TSB index for TTE retrieval.
Thisvalue is the same as the page size value that may be specified in an individual sundv TTE:

Bit Page Size assumed for index computation
8K

64K

512K

4MB

32MB

256MB

2GB

16GB

N oo~ W|IN|FL|O

Values 8 though 15 arereserved. Theindex shift value must correspond to the smallest page size specified
in the page size bit mask.

14.1.2. Context index

This TSB description field enables TSBs to be defined where the context value for a page trandation is
supplied within each entry of the TSB, or where asingle value appliesto thewhole TSB. Thelatter enables
asingle TSB to be used for multiple context values (the context field within each TSB entry (TTE) is
required to be zero). The context index field within a TSB description selects which of these two modes
the TSB is defined to use.

If acontext index field value of - 1 (Oxf fffffff)isgiveninthe TSB description, the TSB is defined
to use the context field within each TTE.

If a context index field contains a value between 0 and rmu- #shar ed- cont ext s, the context val-
ue used for every entry in the TSB (TTE) will be taken from sundv context register identified by the
context index field at the time the TTE is used. For example, a translation required for (express or im-
plied) ASI PRI MARY and matched by a TTE in the TSB, will take its context value from the register
PRI MARY_CONTEXT1 if the context index field of the TSB descriptionis 1.

Any other value supplied in the context index field isinvalid.

The value of nru- #shar ed- cont ext s isprovided in the cpu node (Section 8.19.3, “cpu node”) of
the machine description for each virtual CPU.

14.2. MMU flags

The MMU APIs are designed to function for both instruction and data address trandations. Therefore,
many of these interfaces take an MMU “flags’ argument in order to specify whether the operation is
relevant to instruction or data mappings, or both. To ensure consistency between the MMU services this
flags argument is defined here, and as follows.

105

MMU services

The flags argument applies the APl operation to instruction trandlations if bit 1 is set, and in addition
applies the API operation to data translation entriesiif bit 0 is set. For every API service requiring aflags
argument, at least one of bit 0 and/or bit 1 must be set.

It is a programming error to request an instruction mapping (using the mapping flags) whose TTE's X
bit is zero.

| mplementation note

For hardware implementations with unified instruction and data functions (for example; TLBS);
Mapping an instruction translation entry may also cause an identical data translation entry to be
mapped, and vice-versa even if not explicitly requests by the flags argument. Similarly, demap-

ping an instruction translation entry may also cause the data translation entry to be demapped,
and vice-versaeven if not explicitly requested by the flags setting.

14.3. Translation table entries

A TTE inaTSB describes virtual addressesto real address mappings.

Figure 14.1. Trandation Table Entry (TTE) for mat

TSB tag word:

6 4 4 4 4

3 8 7 21 0
T SR o e m e e e e e e e e e e e — o - +
| Cont ext | reserved | VA[63: 22] |
T SR o e m e e e e e e e e e e e — o - +
TSB data word:

6 6 6 55 11 11

3 2 1 65 32 10 9 8765430
B T T Sy ey B T T S S S R S
| VINFQ SW | RA[NN: 13] | | E| E| CP| CV| P| X WSW | SZ |
B T T Sy ey B T T S S S R S

Sundv specifiesa TSB entry format with featured as described in the following sections.

14.3.1. TSB entry tag word
The 64-bit TSB entry tag word has a 16-bit context field, and a 42 bit VA field.

All 16-bits of the context field are significant. However, platformsare not required to support the full range
(O through 65535) of possible context values, thus certain context values are reserved and should not be
used in the context field of the TSB entry tag. Use of areserved context value resultsin a TSB entry miss.
The guaranteed minimum range of supported context valuesis 0 through 8191. The availability of values
between 8192 and 65535 is platform dependent. The maximum context val ue supported on aspecific CPU
is given in the machine description provided to a guest operating system.

The reserved field must be written as 0. Any non-zero valuesin thisfield will result in a TSB miss.

The VA field holds the upper 42 bits of the virtual address to be matched for this TSB entry. All bits of
this field are significant. For page sizes larger than 4MB, the appropriate lower VA address bits must be
zero, or a TSB entry miss results.

106

MMU services

Platforms are not required to support the full range of 64-bit virtual addresses, however for platforms
supporting fewer than 64 VA bits the highest order hit is sign-extended through bit 63 and compared with
the entire VA field of the TTE entry tag word. This sign extension of virtual addressesresultsin a*“hole’
in the supported virtual address spaces. TSB entries whose VA tag fields fall within the hole will result
inaTSB missfor that entry.

Therange of virtual address bits supported for a specific CPU is given in the machine description provided
to aguest operating system.

14.3.2. TSB entry data word

The sundv TTE's range of the real address spaceis 56 bits.

The UltraSPARC-1 TTE's lock hit has been removed from sundv. Non faulting translation entries can be
specified by privileged code via. ahypervisor API call.

The sundv TTE data bit fields are as follows:

Bit Field

Mnemonic

Meaning

63

\Y

Valid. =1if TTEisavalid entry.

62

NFO

Non Faulting Only. If set to 1 this TTE is intended to match only loads
using the non-faulting ASls

61-56

Software usabl e bits

55-13

Real address bits 55 to 13. For page sizes larger than 8KB, the low order
address bits below the page size are ignored.

12

Invert endianness

11

Side effect. If the side-effect bit it set, speculative loads will trap for ad-
dresses within the page, non-cacheable memory addresses other than block
loads and stores are strongly ordered against other E-bit accesses and non-
cacheabl e stores are not merged. Thisbit should be set for pagesthat map 1/
O devices having side-effects. Note: the E bit does not prevent normal in-
struction prefetching. The E bit has no effect for instruction fetches. Note:
The E bit does not force non-cacheable access. It is expected, but not re-
quired that the CP and CV bits are cleared to 0 with the E bit. If both CP
and CV are set to 1 along with the E bit, the result is undefined Note: The
E bit and the NFO bit are mutually exclusive: both bits should never be
setinany TTE.

10-9

CP-CV

Cacheable Physical & Cacheable Virtual. These two bits are passed to the
cache memory sub-system on any access and determine the cacheability of
that access asfollows: If CPisset to 1 then the mapped data or instructions
may be cached in any physically indexed cache. If CP and CV are both set
to 1 thenthe mapped data or instructions may be cached in any physically or
virtually index cache. If CPiscleared to O then the contents of the mapped
page are non-cacheable.

Privileged. If Pis set to 1 then this mapping will only match in the TLB if
the processor i sin privileged mode (PSTATE.priv = 1)

eXecute. If the X bitsis set to 1 instructions may be fetched and executed
from this page.

=

Writable. If theW bitisset to 1, datamapped by this page may bewrittento.

Software usabl e bits

107

MMU services

Bit Field Mnemonic M eaning

3-0 Sz Size: page size 0 = 8KB, 1=64KB, 2=512KB, 3=4MB, 4=32MB,
5=256MB, 6=2GB, 7=16GB, Sizes 8 through 15 are reserved.

The size field of the sundv TSB entry format is four bits wide. Page size values 0 through 7 are defined,
whilevalues 8 through 15 are reserved and should not be used. Attemptsto specify page sizesintherange8
through 15 result in an instruction_access_exception or data_access_exception indicating an invalid page
size.

14.4. Translation storage buffer (TSB) configuration

TSBs are configured by privilege mode code via a hypervisor API call.

Each TSB can be configured in one of two different modes; context-match or context-ignore. The mode
determines how a TSB entry is matched when the TSB is searched:

In context-match mode the context field of the TTE tag is matched against one of the nucleus, primary or
secondary context registers (as specified by the actual or implied access ASl). This mode enables a TSB
to be used for caching translation entries belonging to different contexts. Matching with the context field
allows only those trandations belonging to the current contexts to loaded into the TLB.

In context-ignore mode the context field of a TSB entry is ignored when the TSB is searched. A TSB
configured in this mode must have the context field of each trandation entry set to 0. When avalid TSB
entry is matched it is loaded into the TLB with a context value provided from one of the primary or
secondary context registers. The choice of primary or secondary is determined by the actual or implied
access ASI, theindex of the context register is specified as part of the TSB configuration. Context-ignore
mode enables TSB entries to be used with more than one context.

Note: pleaserefer to the section above on context registers, and in particular the possibility of multi-match-
ing TLB entries.

14.5. Permanent and non-permanent mappings

It isan error to attempt to create overlapping permanent mappings. It is an error to create non-permanent
mappings that conflict with permanent mappings. These errors are not necessarily detected, but may result
in undefined behavior.

14.6. MMU Fault status area

MMU related faults have their status and fault address information placed into a memory region made
available by privileged code. Like the TSBs above, the fault status area for each virtual processor is de-
clared to the hypervisor viaa hypervisor APl call.

Itispossible for MMU related faultsto be delivered either by the hypervisor or directly by processor hard-
wareif so implemented. For this reason, the MMU fault areais arranged on an aligned address boundary
with instruction and data fault fields arranged into distinct 64-byte blocks.

The layout of the MMU fault status areais described in the table below:

Table 14.2. MM U Fault Status Area L ayout

Offset Size Contents

0x00 0x8 Instruction Fault Type (IFT)
0x08 0x8 Instruction Fault Address (IFA)
0x10 0x8 Instruction Fault Context (IFC)

108

MMU services

Offset Size Contents

0x18 0x28 reserved

0x40 0x8 Data Fault Type (DFT)
0x48 0x8 Data Fault Address (DFA)
0x50 0x8 Data Fault Context (DFC)
0x58 0x28 reserved

The reserved fields must not be used. Their contents are undefined, and are not guaranteed preserved if
written.

The definition of the values of the instruction and data fault type fields is as follows:

Table 14.3. MMU Fault Type values

Code Fault Type

1 fast MMU miss

2 fast protection fault
3 MMU miss

4 invalid RA

5 privilege violation
6 protection violation
7 NFO access

8 so page/ NFO side effect
9 invalid VA

10 invalid ASI

11 NC atomic

12 privileged action
13 reserved

14 unaligned access
15 invalid page size
16t0-2 reserved

-1 (Oxffff.ffff.fFff.FEFF) multiple errors

For each MMU-related trap, the fault status area is updated as follows; (a blank entry for IFT, IFA, IFC,
DFT, DFA, or DFCindicatesthefield isnot updated for the particular condition and istherefore undefined,
and abullet (“+”) indicates the field is updated with the relevant fault type, address or context information
for the trap).

Table 14.4. MM U Fault Type values

sundv trap type Fault Type IFT|IFA|IFC|DFT|DFADFC Comments
instruction_access_exception invalid RA (0x4) o | o instruction fetch to
real address out of
range
privilegeviolation (OX5) | * | ¢ | « non-privileged in-
struction access

109

MMU services

sundv trap type Fault Type IFT |IFA|IFC|DFT|DFADFC Comments
to privileged page
(TTE.p=1)
NFO access (0x7) L A) instruction access

to non-faulty load
page (TTE.nfo=1)

invalid VA (0x9)

instruction virtual
access out of range

invalid TSB entry (0x10)

Hardware table
walk found anin-
vaidRA inaTTE
loaded from a TSB

protection vi-
olation (0x6)

Instruction access
to page without ex-
ecute permission

multiple error (-1)

Hardware encoun-
tered multiple er-
rors

instruction_access MMU_miss

MMU miss (0x3)

instruction fetch to
real address out of
range

data_access exception

invalid RA (0x4)

real address out of
range

privilege violation (0x5)

Non-privileged data
access to privileged
page (TTE.p=1)

NFO access (0x7)

Data accessto
non-faulting page
(TTE.nfo=1) with
ASI other than a
non-faulting AS|

SO page/ NFO
side effect (0x8)

Non-faulting ASI
data access to
side-effect page
(TTE.e=1)

invalid VA (0x9)

Data or branch vir-
tual access out of
range

invalid ASI (Oxa)

Invalid ASI for in-
struction

NC atomic (0xb)

Atomic accessto
non-cacheable page
(TTE.cp=0)

privileged action (0xc)

Data access by non-
privileged software
using a privileged
or hyper-privileged
ASI

110

MMU services

sundv trap type Fault Type IFT |IFA|IFC|DFT|DFADFC Comments
invalid page size (0xf) . Invalid page sizein
TTE
Multiple errors (-1) . Hardware encoun-
tered multiple er-
rors
data_access MMU_miss MMU miss (0x3) e | o | ¢ |TSBmiss
data_access protection protection vi- e | o | e |storetonon-
olation (0x6) writable mapping
mem_address not_aligned, unaligned access (0xe) e | « |Dataaccessisnot
LDDF_mem_address not_aligned, properly aligned

STDF_mem_address not_aligned,
LDQF_mem_address not_aligned,
STQF_mem_address not_aligned

fast_instruction_access MMU_miss fast miss (Ox1) o | o TLB miss
fast_data access MMU_miss fast miss (Ox1) e | ¢ |TLB miss
fast_data access protection fast protection (0x2) e | ¢ |Storedataaccessto
page without write
protection
privileged action privileged action (0xc) e | ¢ [Useof privi-
leged ASI when
pstate.priv=0

14.7. Global MMU Operations

The Global MMU services allow for broadcast demap operations.

When the guest requests one of the global demap services, the API will return a status for that operation.
This status will fall into one of the following categories:

Successful operation The global demap has completed successfully. The status EOK is re-
turned.

Failed operation The global demap has failed and will never be completed. A status indi-
cating failure is returned. For example, EINVAL, EBUSY, or ENOAC-
CESS has been returned.

Incompl ete operation The global demap operation istill in progress and has not yet either com-
pleted successfully or failed permanently. A status of EPENDING isre-
turned.

A guest must not issue anew global demap request while a previous request is in the incomplete state.

A global demap operation isonly considered to have completed when astatus other than EPENDING isre-

turned. If aglobal demap operation returns EPENDING, the global demap status service (Section 14.8.18,

“mmu_global_demap_status’), must be used to compl ete the demap operation.

The demap is not globally visible across all processors until the operation has successfully completed.

If the demap completes with any failure status then mappings may still exist in one or more CPUs.

111

MMU services

If astatus of EBUSY isreturned for ademap request, a previous demap operation has not been compl eted.
The guest must use the global demap status service (Section 14.8.18, “mmu_global_demap_status’) to
complete the previous demap operation before attempting to initiate a new demap operation.

14.8. API calls
14.8.1. mmu_tsb_ctx0

trap#
function#
argo

argl

ret0

FAST_TRAP
MVU_TSB_CTXO0
nt sbs
tshdptr

st at us

Configures the TSBs for the current CPU for virtual addresses with context zero. t sbdpt r is apointer
to an array of nt sbs TSB descriptions.

Note: the maximum number of TSBsavailabletoavirtual CPU isgiven by thenmu- max- #t sbs property
of the CPU's corresponding ¢ pu node in the machine description.

14.8.1.1. Errors

EINVAL

ENORADDR
EBADALIGN

EBADPGSZ
EBADTSB

14.8.2. mmu_tsb_ctxnonO

trap#
function#

arg0
argl
retO

Invalid nt sbs, or invalid context index in a TSB descriptor, or index page
size not equal to smallest page size in page size bitmask field.

Invalidt sbdpt r or TSB basein aTSB descriptor

t sbhdpt r isnot aligned to an 8-byte boundary or TSB base in a descriptor is
not aligned for aTSB size

Invalid page size in a TSB descriptor
Invalid associativity or sizein a TSB descriptor

FAST_TRAP
MVU_TSB_CTXNONO
nt sb

t sbhdptr

st atus

Configures the TSBs for the current CPU for virtual addresses with non-zero contexts. t sbdptr isa
pointer to an array of nt sbs TSB descriptions.

A maximum of 16 TSBs may be specified in the TSB description list.

14.8.2.1. Errors

EINVAL

ENORADDR
EBADALIGN

Invalid nt sbs, or invalid context index in a TSB descriptor, or index page
size not equal to smallest page size in page size bitmask field.

Invalid tsbdptr or TSB base in a TSB descriptor

t shdpt r isnot aligned to an 8-byte boundary or TSB base in adescriptor is
not aligned for aTSB size

112

MMU services

EBADPGSZ Invalid page sizein a TSB descriptor
EBADTSB Invalid associativity or sizein a TSB descriptor

14.8.3. mmu_demap_page

trap#t FAST_TRAP
function# MVU_DENVAP_PAGE
arg0 reserved

argl reserved

arg2 vaddr

arg3 cont ext

argd flags

retO st at us

Demaps any page mapping of virtual address vaddr in context cont ext for the current virtual CPU.
Any virtual tagged caches are guaranteed to be kept consistent. Thef | ags argument is defined according
to Section 14.2, “MMU flags’.

Argumentsar g0 and ar g1 arereserved and must be set zero.

14.8.3.1. Errors

The implementation of this function is not required to check for all possible errors, and may return the
following error codes:

EINVAL Invalid vaddr , cont ext , or f | ags value
ENOTSUPPORTED ar g0 or ar g1 isnon-zero

14.8.4. mmu_demap_ctx

trap# FAST_TRAP
function# MMJ_DEMAP_CTX
arg0 reserved

argl reserved

arg2 cont ext

arg3 flags

retO st at us

Demaps al non-permanent virtual page mappings previously specified for context cont ext for the cur-
rent virtual CPU. Any virtual tagged caches are guaranteed to be kept consistent.

Thef | ags argument is defined according to Section 14.2, “MMU flags’.

Argumentsar g0 and ar g1 arereserved and must be set zero.

14.8.4.1. Errors

The implementation of this function is not required to check for all possible errors, and may return the
following error codes:

113

MMU services

EINVAL
ENOTSUPPORTED

14.8.5. mmu_demap_all

trap#
function#
argo

argl

arg2

retO

Invalid cont ext orfl ags value
ar g0 or ar g1 isnon-zero

FAST_TRAP

MV _DEMAP_ALL
reserved
reserved
flags

st at us

Demaps al non-permanent virtual page mappings previously specified for the current virtual CPU. Any
virtual tagged caches are guaranteed to be kept consistent.

Thef | ags argument is defined according to Section 14.2, “MMU flags’.

Arguments ar g0 and ar g1 arereserved and must be set zero.

14.8.5.1. Errors

The implementation of this function is not required to check for all possible errors, and may return the

following error codes:

EINVAL
ENOTSUPPORTED

14.8.6. mmu_map_addr

trap#
argo
argl
arg2
arg3
ret0

Invalidf | ags value
ar g0 or ar g1 isnon-zero

MMU_MAP_ADDR
vaddr

cont ext

TTE

flags

st at us

This API service creates a non-permanent mapping using the TTE to virtual addressvaddr for cont ext
for the calling virtual CPU. Thef | ags argument is defined according to Section 14.2, “MMU flags’.

Given aTTE specified with theval i d bit clear, this service will have undefined behavior.

Note: This API call isfor privileged code to specify temporary translation mappings without the need to
create and manage a TSB.

14.8.6.1. Errors

The implementation of this function is not required to check for all possible errors, and may return the

following error codes:

EINVAL

Invalid vaddr , cont ext , or f | ags value

114

MMU services

EBADPGSZ Invalid page size value
ENORADDR Invalid real addressin TTE

14.8.7. mmu_map_perm_addr

trap#t FAST_TRAP

function# MMU_VAP_PERM ADDR
arg0 vaddr

argl cont ext

arg2 TTE

arg3 flags

retO st at us

This APl service creates a permanent mapping using the TTE to virtual address vaddr for the calling
virtual CPU for context 0. The reserved field must be specified as zero.

A maximum of 8 such permanent mappings may be specified by privileged code. Mappings may be re-
moved with nmru_unmap_per m addr below.

This service guarantees an automatic demap of any conflicting non-permanent mappings.

It isan error to attempt to create overlapping permanent mappings. It is an error to create non-permanent
mappings that conflict with existing permanent mappings.

Thef | ags argument is defined according to Section 14.2, “MMU flags’.

Given aTTE specified with theval i d bit clear, this service will have undefined behavior.
Programming Note: This API call is used to specify address space mappings for which privileged code
does not expect to receive misses. For example, this mechanism can be used to map kernel nucleus code

and data.

Programming Note: To effect automatic demap, this service may demap all non-permanent mappings.

14.8.7.1. Errors

EINVAL Invalidvaddr orf | ags value
EBADPGSZ Invalid page size value

ENORADDR Invalid real addressin TTE

ETOOMANY Too many mapping (maximum of 8 reached)

14.8.8. mmu_unmap_addr

trap# MMU_UNMAP_ADDR
arg0 vaddr

argl cont ext

arg2 flags

retO st at us

115

MMU services

Demaps virtual address vaddr in context cont ext on this CPU. This function is intended to be used
to demap pages mapped with nmu_nmap_addr .

Thef | ags argument is defined according to Section 14.2, “MMU flags’.

Attempting to perform an unmap operation for a previously defined permanent mapping will have unde-
fined results.

14.8.8.1. Errors

The implementation of this function is not required to check for all possible errors, and may return the
following error codes:

EINVAL Invalid vaddr , cont ext , or f | ags value

14.8.9. mmu_unmap_perm_addr

trap#t FAST_TRAP

function# MVU_UNVAP_PERM_ADDR
arg0 vaddr

argl reserved

arg2 flags

ret0 st at us

Demaps any permanent page mapping (established viammu_nmap_per m addr) of virtual addressvad-
dr for context Ofor the current virtual CPU. Any virtual tagged caches are guaranteed to be kept consistent.

Thef | ags argument is defined according to Section 14.2, “MMU flags’.

14.8.9.1. Errors

EINVAL Invalidvaddr or fl ags value
ENOMAP Specified mapping was not found

14.8.10. mmu_fault_area_conf

trap# FAST_TRAP

function# MVU_FAULT_AREA CONF
arg0 raddr

retO st at us

retl previous mmu fault area raddr

Configurethe MMU fault status areafor the calling CPU. A 64-byte aligned real addressr addr specifies
where MMU fault status information is placed. The return value is the previously specified area, or O for
thefirst invocation. Specifying afault area at real address O is not allowed.

14.8.10.1. Errors

ENORADDR Invalid rea address

116

MMU services

EBADALIGN Invalid alignment of fault area

14.8.11. mmu_enable

trap# FAST_TRAP
function# MMU_ENABLE
arg0 enabl e_fl ag
argl return_target
ret0 st at us

This function either enables or disables virtual address translation for the calling CPU within the virtual
machine domain. If the enabl e_f | ag is zero, trandation is disabled, any non-zero value will enable
trandlation.

When this function returns, the newly selected trandation mode will be active. The argument
return_target isavirtual addressif trandation isbeing enabled, or r et ur n_t ar get isarea ad-
dress in the event that translation is to be disabled.

Upon successful completion, this API service will return control to ther et ur n_t ar get address with
the new operating mode. In the event of call failure, the previous operating mode remains, and the service
simply returns to the caller with the appropriate error code in retO.

14.8.11.1. Errors

ENORADDR Invalid real address when disabling translation

EBADALIGN return_target isnot aligned to an instruction

EINVAL enabl e_f | ag requests current operating mode (e.g., disable when already
disabled)

14.8.12. mmu_tsb_ctx0_info

trap# FAST_TRAP

function# MVU_TSB_CTX0_I| NFO
arg0 maxt sbs

argl buf ferptr

retO st at us

retl nt sbs

This function returns the TSB configuration as previously defined by nmu_t sb_ct x0 into the buffer
provided by ar g1. The size of the buffer isgiveninar g0 interms of number of TSB description entries.

Upon return, r et 1 always contains the number of TSB descriptions previously configured.

If zero TSBswere configured, then EOK isreturned with r et 1 containing O.
14.8.12.1. Errors

ENORADDR Invalid real address for buffer at buf f er ptr
EBADALIGN buf f er pt r isbadly aligned

117

MMU services

EINVAL supplied buffer size (maxt sbs) istoo small

14.8.13. mmu_tsb_ctxnonO info

trap# FAST_TRAP

function# MMJ_TSB_CTXNONO_ | NFO
arg0 maxt sbs

argl bufferptr

ret0 st at us

retl nt sbs

Thisfunction returnsthe TSB configuration as previously defined by nmru_t sb_ct xnon0 into the buffer
provided by ar g1. The size of the buffer isgiveninar g0 in terms of number of TSB description entries.

Upon return r et 1 always contains the number of TSB descriptions previously configured.

If zero TSBswere configured, then EOK isreturned withr et 1 containing O.

14.8.13.1. Errors

ENORADDR Invalid real address for buffer at buf f er ptr
EBADALIGN buf f er ptr isbadly aligned
EINVAL supplied buffer size (maxt sbs) istoo small

14.8.14. mmu_fault_area info

trap# FAST_TRAP

function# MVU_FAULT_AREA | NFO
ret0 st at us

retl fara

ThisAPI servicereturnsthe currently defined MMU fault status areafor the current CPU. Thereal address
of thefault status areaiisreturnedinr et 1, or Oisreturned inr et 1 if no fault status areais defined.

Note: mru_f aul t _ar ea_conf may be caled with the return value (r et 1) from this service if there
isaneed to save and restore the fault areafor a cpu.

14.8.14.1. Errors
No errors are defined

14.8.15. mmu_global_demap_page

trap# FAST_TRAP

function# MVU_GLOBAL_DEMAP_PAGE
arg0 vaddr

argl ctx

arg2 flags

118

MMU services

retO
retl

st at us
cooki e

This API service demaps any non-permanent page mapping of virtual address vaddr in context ct x
acrossal CPUs. Thef | ags argument is defined according to Section 14.2, “MMU flags’.

14.8.15.1. Errors

EOK
EINVAL
EBUSY

ENOACCESS
EPENDING

The global demap of the page has completed successfully.
Invalidvaddr, ct x, or f | ags value.

A new global demap operation cannot be initiated due to previous such oper-
ations not having compl eted.

The global demap operations are unavailable.

The newly-initiated global demap operation has been initiated but
not completed. The globa demap status service (Section 14.8.18,
“mmu_global_demap_status’) must be used to determine when the operation
has completed.

14.8.16. mmu_global_demap_ctx

trap#
function#
argo

argl

ret0

retl

FAST_TRAP
MMJ_GLOBAL_DEMAP_CTX
ctx

flags

status

cooki e

This API service demaps all non-permanent virtual page mappings with in context ct x across all CPUs.
Thef | ags argument is defined according to Section 14.2, “MMU flags’.

14.8.16.1. Errors

EOK
EINVAL
EBUSY

ENOACCESS
EPENDING

The global demap of the context has completed successfully.
Invalidct x or f | ags value.

A new globa demap operation cannot be initiated due to previous such oper-
ations not having compl eted.

The global demap operations are unavailable.

The newly-initiated global demap operation has been initiated but
not completed. The globa demap status service (Section 14.8.18,
“mmu_global_demap_status’) must be used to determine when the operation
has completed.

14.8.17. mmu_global_demap_all

trap#
function#

argo

FAST_TRAP
MMJ_GLOBAL_DEMAP_ALL
flags

119

MMU services

retO
retl

st at us
cooki e

This API service demaps all non-permanent virtual page mappings in al contexts across all CPUs. The
f | ags argument is defined according to Section 14.2, “MMU flags’.

14.8.17.1. Errors

EOK
EINVAL
EBUSY

ENOACCESS
EPENDING

The global demap has completed successfully.
Invalidf | ags value.

A new global demap operation cannot be initiated due to previous such oper-
ations not having compl eted.

The global demap operations are unavailable.

The newly-initiated global demap operation has been initiated but
not completed. The globa demap status service (Section 14.8.18,
“mmu_global_demap_status’) must be used to determine when the operation
has completed.

14.8.18. mmu_global_demap_status

trap#
function#

argo
retO

FAST_TRAP
MVU_GLOBAL_DEMAP_STATUS
cooki e

st at us

If any of the global demap services return EPENDING, the demap operation has not yet completed across
all CPUs. In this case, this service must be invoked using the cooki e value returned by the previous
global demap service. The call must be repeated until it returns success viathe st at us value of EOK.

Only when success is returned is it guaranteed that the effects of the global demap are visible across all
processors. Failure to wait for completion may result in unpredictable behavior.

This service must be invoked on the same processor that invoked the original global demap service using
the cooki e value returned by that service.

14.8.18.1. Errors

EOK

EINVAL
ENOACCESS
EPENDING

The global demap corresponding to cooki e has completed successfully.
Invalid cooki e value.
The global demap operations are unavailable.

The global demap operation corresponding to cooki e has has not yet com-
pleted. Repeat this service.

120

Chapter 15. Cache and Memory
services

In general, caches and memory are not exposed to the supervisor, athough they are described to it in the
machine description.

15.1. APl calls

15.1.1. mem_scrub

trap# FAST_TRAP
function# MEM_SCRUB

arg0 raddr

argl [ength

retO st at us

retl | engt h scrubbed

This service zeros the memory contents for the memory address range raddr to raddr+length-1. It also
creates avalid error-checking code for the memory address range raddr to raddr+length-1.

This service starts scrubbing at raddr, but may scrub less than length bytes of memory. On success the
actual length scrubbed is returned in retl.

The arguments raddr and length must be aligned to an 8K page boundary or must contain the start address
and length from a sundv error report.

Note: There are two uses for this function: The first use is to block clear and initialize memory and the
second is to scrub an uncorrectable error reported via a resumable or non-resumable trap. The second use
requires the arguments to be equal to the raddr and length provided in a sundv memory error report.

15.1.1.1. Errors

EINVAL length is zero
ENORADDR Invalid real address
EBADALIGN Either the start address or the length are not correctly aligned

15.1.2. mem_sync

trap# FAST_TRAP
function# MEM _SYNC

arg0 raddr

argl | ength

retO st at us

retl | engt h synced

For the memory address range raddr to raddr+length-1, this service forces the next access within that range
to be fetched from main system memory.

121

Cache and Memory services

This service starts syncing at raddr, but may sync less than length bytes of memory. On success the actual
length synced is returned in retl.

The arguments raddr and length must be aligned to an 8K page boundary.

15.1.2.1. Errors

EINVAL length is zero
ENORADDR Invalid real address
EBADALIGN Either the start address or the length are not correctly aligned

122

Chapter 16. Device interrupt services

Deviceinterrupts are allocated to system bus bridges by the hypervisor, and described to the boot firmware
in the machine description. OBP then describes them to Solaris viathe device tree. The services described
here are the generic interrupt services only, it is expected that the system bus nexus drivers will have
additional APIsfor functions that are specific to that bridge.

16.1. Definitions

These definitions apply to the following services:

cpuid

devhandle

devino

Sysino

intr_state

intr_enabled

A unique opaque value which represents a target cpu.

Device handle. The device handle uniquely identifiesasundv device. It consists of the
the lower 28-bits of the hi-cell of the first entry of the sundv device's "reg" property
as defined by the Sundv Bus Binding to Open Firmware.

Device interrupt number. Specifies the relative interrupt number within the device.
The unique combination of devhandle and devino are used to identify aspecific device
interrupt. Note: The devino valueisthe same asthe valuesin the "interrupts' property
or "interrupt-map" property in the sundv device.

System Interrupt Number. A 64-bit unsigned integer representing a unique interrupt
within avirtual machine. Note: this argument is only valid for legacy interrupt inter-
faces and is considered deprecated. cookie A 64-bit value set by the guest operating
system for aspecific devhandle, devino combination. Management of cookievaluesis
the responsibility of the guest operating system, and the hypervisor makes no attempt
to enforce uniqueness.

A flag representing theinterrupt statefor agiveninterrupt. The statevaluesare defined
as:

Table 16.1. Interrupt states

Name Value Definition
I NTR_I DLE 0 Nothing pending
| NTR_RECEI VED 1 Interrupt received by hard-
ware
| NTR_DELI VERED 2 Interrupt delivered to
queue

A flag representing the enabled state for agiven interrupt. The state values are defined
as:

Table 16.2. Interrupt states

Name Value Definition
| NTR_DI SABLED 0 Interrupt not enabled
| NTR_ENABLED 1 Interrupt enabled

123

Deviceinterrupt services

16.2. API calls

16.2.1. vintr_getcookie

trap# FAST_TRAP
function# VI NTR_GETCOXI E
arg0 devhandl e

argl devi no

ret0 st at us

retl cooki e_val ue

ThisAPI returnsthecooki e_val ue that will be delivered in word 0 of adev_mondo packet to a guest.
In the event that no cookie has been set, avaue of O is returned.

16.2.1.1. Errors

EINVAL Invalid devhandl e or devino
ENOTSUPPORTED (Virtual) device does not support cookies

16.2.2. vintr_setcookie

trap# FAST_TRAP
function# VI NTR_SETCOXKI E
arg0 devhandl e

argl devi no

arg2 cooki e_val ue
retO st at us

Sets the cooki e_val ue that will be delivered in word O of a dev_mondo packet to a guest. A call to
this APl will overwrite any previous cookie values set via the same API. If cooki e_val ue is 0 the
interrupt source is returned to the state of having no cookie assigned, and interrupts are explicitly disabled
for the device.

16.2.2.1. Errors

EINVAL Invalid devhandl e or devi no, or cooki e_val ue isin range 1..2047
ENOTSUPPORTED (Virtual) device does not support cookies
EWOULDBLOCK Operation would block

16.2.3. vintr_getenabled

trap# FAST_TRAP
function# VI NTR_GETENABLED
arg0 devhandl e

argl devi no

ret0 st at us

124

Deviceinterrupt services

retl intr_enabl ed

Returns state in i ntr_enabl ed for the interrupt specified by devi no. Return vaues are
| NTR_ENABLED or | NTR_DI SABLED.

16.2.3.1. Errors

EINVAL Invalid devhandl e or devi no
ENOTSUPPORTED (Virtual) device does not support the interface

16.2.4. vintr_setenabled

trap# FAST_TRAP
function# VI NTR_SETENABLED
arg0 devhandle

argl devi no

arg2 i ntr_enabl ed

ret0 st at us

Setsthe enabled state of theinterrupt devi no. Legal valuesfori nt r _enabl ed are: | NTR_ENABLED
or | NTR_DI SABLED.

16.2.4.1. Errors

EINVAL Invalid devhandl e, devi no, ori nt r _enabl ed value
ENOTSUPPORTED (Virtual) device does not support the interface

16.2.5. vintr_getstate

trap# FAST_TRAP
function# VI NTR_GETSTATE
arg0 devhandl e

argl devi no

ret0 st at us

retl intr_state

Returns the current state of the interrupt given by thedevi no arguments.

16.2.5.1. Errors

EINVAL Invalid devhandl e or devi no
ENOTSUPPORTED (Virtual) device does not support the interface

16.2.6. vintr_setstate

trap#t FAST_TRAP
function# VI NTR_SETSTATE
arg0 devhandl e

125

Deviceinterrupt services

argl devi no
arg2 intr_state
retO st at us

Sets the current state of the interrupt given by the devi no argument to the value given in the argument
intr_state.

Programming note

Setting the stateto | NTR _I DLE clears any pending interrupt for devi no.
16.2.6.1. Errors

EINVAL Invalid devhandl e, devi no,ori ntr_st at e value
ENOTSUPPORTED (Virtual) device does not support the interface

16.2.7. vintr_gettarget

trap# FAST_TRAP
function# VI NTR_GETTARGET
arg0 devhandl e

argl devi no

retO st at us

retl cpuid

Returnsthe cpui d that isthe current target of the interrupt given by the devi no argument. Thecpui d
valuereturned is undefined if the target has not been set viavi ntr _sett ar get.

16.2.7.1. Errors

EINVAL Invalid devhandl e or devi no
ENOTSUPPORTED (Virtual) device does not support the interface

16.2.8. vintr_settarget

trap# FAST_TRAP
function# VI NTR_SETTARGET
arg0 devhandl e

argl devi no

arg2 cpuid

retO st at us

Set the target cpu for the interrupt defined by the argument devi no to the target cpu value defined by
the argument cpui d.

16.2.8.1. Errors

EINVAL Invalid devhandl e or devi no

126

Deviceinterrupt services

ENOCPU Invalid cpui d
ENOTSUPPORTED (Virtual) device does not support the interface

16.3. Deprecated API calls

The following API calls correspond to the legacy sysino interrupt interfaces discussed in Section 6.6,
“Sysinos and cookies’. These interfaces have now been deprecated. They are documented here (for the
time being) for completeness.

16.3.1. intr_devino_to_sysino

trap#t FAST_TRAP

function# INTR_DEVINO2SYSINO
arg0 devhandl e

argl devi no

retO st at us

retl sysi no

Converts a device specific interrupt number given by the arguments devhandl e and devi no into a
system-specific interrupt number (sysi no).

16.3.1.1. Errors
EINVAL Invalid devhandl e or devi no

16.3.2. intr_getenabled

trap# FAST_TRAP
function# | NTR_GETENABLED
arg0 sysi no

ret0 st at us

retl i ntr_enabl ed

Returns state in i ntr_enabl ed for the interrupt defined by sysino. Return values are:
| NTR_ENABLED or | NTR_DI SABLED.

16.3.2.1. Errors
EINVAL Invalid sysi no

16.3.3. intr_setenabled

trap# FAST_TRAP
function# | NTR_SETENABLED
arg0 sysi no

arg2 i ntr_enabl ed
retO st at us

127

Deviceinterrupt services

Sets the enabled state of the interrupt sysi no legal valuesfori nt r _enabl ed are: | NTR_ENABLED
or | NTR_DI SABLED.

16.3.3.1. Errors
EINVAL Invalidsysi no ori ntr_enabl ed value

16.3.4. intr_getstate

trap# FAST_TRAP
function# | NTR_GETSTATE
arg0 sysi no

ret0 st at us

retl intr_state

Returns the current state of the interrupt given by the sysi no argument.
16.3.4.1. Errors
EINVAL Invalid sysi no

16.3.5. intr_setstate

trap# FAST_TRAP
function# | NTR_SETSTATE
arg0 sysi no

arg2 intr_state
ret0 st at us

Sets the current state of the interrupt given by the sysi no argument to the value given in the argument
intr_state.

Programming note

Note: Setting the stateto | NTR_| DLE clears any pending interrupt for sysi no.
16.3.5.1. Errors
EINVAL Invalidsysi noorinvalidi ntr_state

16.3.6. intr_gettarget

trap# FAST_TRAP
function# I NTR_GETTARGET
arg0 sysi no

retO st at us

retl cpuid

128

Deviceinterrupt services

Returnsthe cpui d that isthe current target of the interrupt given by the sysi no argument. Thecpui d
value returned is undefined if the target has not been set viai ntr _sett ar get.

16.3.6.1. Errors
EINVAL Invalid sysi no

16.3.7. intr_settarget

trap#t FAST_TRAP
function# | NTR_SETTARGET
arg0 sysi no

argl cpuid

retO status

Set the target cpu for the interrupt defined by the argument sysi no to the target cpu value defined by
the argument cpui d.

16.3.7.1. Errors

EINVAL Invalid sysi no
ENOCPU Invalid cpui d

16.4. Interrupt API version control

In introducing the interrupt cookie based interrupt API calls, the legacy interrupt interfaces needed to be
deprecated. Thisis achievable using the version negotiation APIs.

However the legacy sysino interfaces were grouped with the core hypervisor APIs (group 0x1).

Toresolvethisproblem, al theinterrupt interfaces are now moved to anew group (group 0x2). The legacy
(deprecated) API functions will be available to a guest when it negotiates version 1.0 in this group.

The list of APIsbeing migrated to group Ox2 are as follows:

ntr _devi no2sysi no
ntr_get enabl ed
ntr_set enabl ed
ntr_getstate
ntr_setstate
ntr_gettarget
ntr_settarget

The behavior of these APIswill not change and they will continue to function as described. A guest has
to negotiate version 1.0 in group 0x2 prior to accessing these APIs. The new interrupt APIs specified
above allow a guest to specify asingle 64-bit cookie that will be delivered in the first word (word 0) of a
dev_mondo packet. These APIsusethedevhandl e and devi no to refer to the interrupt source instead
of thesysi no provided by the Hypervisor viathei ntr _devi no2sysi no API.

The new interrupt API functionswill be available to a guest when it negotiates version 2.0 in the interrupt
API group 0x2. When aguest negotiatesversion 2.0, all interrupt sourceswill only support using the cookie
interface, and any attempt to use the version 1.0 interrupt APIs humbered 0xa0 to Oxa6 will result in

129

Deviceinterrupt services

the ENOTSUPPORTED error being returned. Interrupts from all sources are explicitly disabled until the
guest that negotiated v2.0 in group 0x2, sets avalid cookie value for the interrupt source.

A guest may upgrade to using the cookie based interrupt APIs, by negotiating version 2.0 in group 0x2,
even if it had previously negotiated version 1.0 in group Ox2. Subsequent accessesto v1.0 interrupt APIs
in group 0x2 will fail with ENOTSUPPORTED. Two different guests running in a system can negotiate
different versionsin API group 0x2, but asingle guest can negotiate either version 1.0 or 2.0 in group 0x2
and use the corresponding APIs.

130

Chapter 17. Time of day services

The time of day (TOD) is maintained by the hypervisor on a per-domain basis. Setting the TOD in one
domain does not affect any other domain.

Timeis described by a single unsigned 64-bit word equivalent to atime_t for the POSIX time(2) system
call. The word contains the time since the Epoch (00:00:00 UTC, January 1, 1970), measured in seconds.

17.1. API calls

17.1.1. tod_get

trap# FAST_TRAP
function# TOD _GET

retO st at us

retl ti me- of - day

Returns the current time-of-day. May block if TOD access is temporarily not possible.

17.1.1.1. Errors

EWOULDBLOCK TOD resource is temporarily unavailable
ENOTSUPPORTED TOD resource not supported

17.1.2. tod_set

trap#t FAST_TRAP
function# TOD_SET

arg0 ti me- of - day
retO stat us

The current time-of-day is set to the value specified in arg0. May block if TOD accessis temporarily not
possible.

17.1.2.1. Errors

EWOULDBLOCK TOD resource istemporarily unavailable
ENOTSUPPORTED TOD resource not supported

131

Chapter 18. Console services

This section describes the APl services provided for a guest console.

18.1. APl calls

18.1.1. cons_getchar

trap# FAST_TRAP
function# CONS_GETCHAR
retO status

retl character

Returns acharacter from the console device. If no character is availablethen an EWOULDBLOCK error is
returned. If acharacter isavailable, then thereturned st at us isEOK and the character valueisinr et 1.

A virtual BREAK isrepresented by the 64-bit value - 1.

A virtual HUP signal is represented by the 64-bit value -2.

18.1.1.1. Errors

EWOULDBLOCK No character available

18.1.2. cons_putchar

trap# FAST_TRAP
function# CONS_PUTCHAR
arg0 char act er

ret0 stat us

This service sends a character to the console device. Only character values between 0 and 255 may be
used. Values outside this range are invalid except as follows: A virtual BREAK may be sent using the
64-hit value -1.

18.1.2.1. Errors

EINVAL Illegal character
EWOULDBLOCK Output buffer currently full, would block

18.1.3. cons_read

trap#t FAST_TRAP
function# CONS_READ
arg0 raddr

argl si ze

retO st atus

retl retval

132

Console services

Reads up to si ze characters from the console device and places them in the buffer provided starting at
therea addressr addr .

Onsuccess, st at us containseither aspecia value (asper cons_get char) or the number of characters
placed into the supplied buffer. The number of characters returned may be less than or equal to the buffer
size specified. If r et 0 isnot EOK, then no characters (special or otherwise) have beenread andr et val
isinvalid.

A virtual BREAK isrepresented by the 64-bit value-1inr et val .
A virtual HUP signal is represented by the 64-bit value-2inr et val .
18.1.3.1. Machine description properties
A optional property cons-read-buffer-size in the machine description's platform node provides a hint as

to the size of the console's internal input buffering. A guest OS may use this property in determining the
appropriate size of the read buffer to pass to this API call.

18.1.3.2. Errors

ENOADDR Invalid real address
EWOULDBLOCK Cannot complete operation without blocking
EIO 1/O error

18.1.4. cons_write

trap# FAST_TRAP
function# CONS_WRI TE
arg0 raddr

argl si ze

retO st at us

retl retval

Writes up to si ze characters to the console device from the buffer provided starting at the real address
raddr.

On success, r et val contains the actual number of characters written to the console device, which may
be fewer than the requested number of characters.

If st at us isnot EOK, then no characters have been written to the consoledeviceandr et val isinvalid.

18.1.4.1. Machine description properties

A optional property cons-write-buffer-size in the machine description's platform node provides a hint as
to the size of the console's internal output buffering. A guest OS may use this property in determining the
appropriate size of the write buffer to passto thisAPI call.

18.1.4.2. Errors

ENOADDR Invalid real address
EWOULDBLOCK Cannot complete operation without blocking

133

Console services

EIO I/O error

134

Chapter 19. Domain state services

This section describes the APl services provided for a guest to report its operational state to an external
entity.

19.1. APl calls

The following APl services are provided to get and set the current domain state.

19.1.1. soft_state set

trap# FAST_TRAP

function# SOFT_STATE_SET
arg0 software_state

argl software_description_ptr
ret0 status

This service enables the guest to report its soft state to the hypervisor. The soft state of the guest consists
of two primary components: The first identifies whether the guest software is running or not. The sec-
ond contains optional details specific to the software. The current soft state may be retrieved using the
soft _state_get API service.

Thesof t war e_st at e argument is a 64-bit value used to indicate whether the guest software is oper-

ating normally or in a transitional state. The states “normal” and “in-transition” are defined in the Sun
Indicator Standard.

Table 19.1. Guest Softwar e States

Name Value Definition
SI'S_NORMAL 1 Guest software is operating normally
SIS _TRANSI TI ON 2 Guest softwareisin transition

Theargumentsof t war e_descri pti on_ptr isareal addressof adatabuffer of size 32 bytesaligned
on a 32-byte boundary. This buffer provides additional details specific to the guest software its operating
state. The contents of this buffer are treated as a NUL -terminated and padded 7-bit ASCII string of up to
31 characters not including the NUL termination. This string isto be defined by the guest software— no
registry or convention is defined by this API, and guest softwareisfreeto use any appropriate string value.

Once the soft-state APl group has been successfully negotiated the initial soft state is set to
SI'S _TRANSI TI ONwith an empty string for the software description.

19.1.1.1. Errors

EINVAL sof t war e_st at eisnotvalid,orsof t war e_descri pti onisnot NUL-
terminated

ENORADDR sof tware_descri ptionisnotavalidrea address

EBADALIGN sof t ware_descri pti onisnot correctly aligned

135

Domain state services

19.1.1.2. Programming Notes

This service enables aguest operating system, or boot |oader, to indicate its state to an entity external to the
guest'svirtua machine environment. Two simple states; “normal” or “transition” enable aguest to indicate
whether it is operating normally, or in a transitional state such as booting or shutting down. The ability
to provide a short message string enables the guest to supply additional human-readable information to
supplement the two basic states.

Examples of this human readable string could be:

“OpenBoot before boot”
“OpenBoot booting”
“Solaris booting”
“Solaris panicked”

This serviceis enabled by successfully negotiating aversion of its APl service group.

Before the group has been enabled a hypervisor may externally report the guest state as unavailable or as
SI'S_NORMAL (with a default string such as “operating normally” depending upon implementation. The
current soft state is not visible to the guest itself until the service is enabled.

Once the soft state group has been enabled, the initial stateissetto SI S TRANSI Tl ON with an empty
string. Thevirtual machine soft stateisinitially settoSI' S_ TRANSI Tl ONin the expectation that the guest
operating environment will set the stateto SI S NORMAL once successfully started.

For example, while loading Solaris, OpenBoot may ignore, or set the state to transition several times
(updating the informational string to identify different stepsin the boot process), once booted and running
Solaris may set the stateto SI S__NORMAL indicating that it booted successfully. Similarly, when shutting
down or panicking, Solaris may set the stateto SI S_TRANSI TI ON.

The state strings used by a guest are to be defined within the context of that guest software, there are
no commonly defined strings to be used by all guests. The intended use of the soft state strings is as
presentation messages to human readers. Use of commonly defined strings is strongly discouraged so
as to prevent interpretation and use by external automated management software. External management
software should only ascribe meaning to the well defined software state values.

19.1.2. soft_state get

trap# FAST_TRAP

function# SOFT_STATE_GET
arg0 software_description_ptr
retO status

retl software_state

This service retrieves the current value of the guest's software state.

Thesof tware_descri pti on_ptr argument is the real address of a guest provided 32 byte buffer
to be aligned on a 32-byte boundary. The API service will return the current value of the guest software
description in this buffer. The hypervisor is only guaranteed to return up to and including the first NUL
byte of the software description buffer contents (seesof t _state_set).

19.1.2.1. Errors

ENORADDR sof tware_descri ptionisnotavalidreal address

136

Domain state services

EBADALIGN sof t war e_descri pti onisnot correctly aligned

137

Chapter 20. Core dump services

When privileged code in a domain crashes/panics it may provide a capability to dump its internal state
for later debugging. Such “core dumps’ can be provided from the field to help diagnose field problems.
However the hypervisor virtualizes much of the platform hardware, thus obscuring information about the
physical resourcesthat can be useful in diagnosing configuration related bugs.

Instead of adding a core dumping capability to the hypervisor, this APl allows the domain's privileged
code to dump platform and hypervisor-specific information as part of its own core dumping procedure.
Privileged code allocates a section of its own memory space and informs the hypervisor that this may be
used as a“dump buffer” for the hypervisor to place hypervisor specific debug/dump information.

Once declared, adump buffer can be used at any time by the hypervisor to record private debug informa-
tion, thus avoiding having such logs within the hypervisor itself. The required size of the dump buffer is
provided to the domain as part of theinitial machine description.

During a core-dump operation, a guest requests that the hypervisor update any information in the dump
buffer in preparation to being dumped as part of the domain's memory image.

Dump buffer information is highly platform and hypervisor specific. The format and content of the buffer
are hypervisor private and should not be considered usable by sundv code. Some platform hypervisors
may provide no dump buffer information for security reasons.

20.1. APl calls

20.1.1. dump_buf_update

trap#t FAST_TRAP
function# DUMP_BUF_UPDATE
arg0 raddr

argl size

ret0 status

retl minsize

This function declares adomain dump buffer to the hypervisor. Ther addr suppliesthereal base address
of the dump-buffer and must be 64-byte aligned.

The si ze field specifies the size of the dump buffer allocated, and may be larger than the minimum size
specified in the machine description.

The hypervisor will fill the dump buffer with opague data.

Note: a guest may elect to include dump buffer contents as part of a crash dump to assist with debugging.
This function may be called any number of times so that a guest may relocate a dump buffer, or create
“snapshots’ of any dump-buffer information. Each call to dunp_buf _updat e atomically declares the
new dump buffer to the hypervisor.

A specified si ze of 0 unconfigures the dump buffer.

If raddr isanillega or badly aligned real address, then any currently active dump buffer is disabled
(equivalent to passing a size of 0) and an error is returned.

138

Core dump services

In the event that the call failswith EINVAL, r et 1 contains the minimum size required by the hypervisor
for avalid dump buffer.

20.1.1.1. Errors

EINVAL si ze isnon-zero but less than the minimum size required
ENORADDR r addr isnot avalid real address
EBADALIGN r addr isnot aligned on a 64-byte boundary

ENOTSUPPORTED not supported for the current logical domain

20.1.2. dump_buf_info

trap# FAST_TRAP
function# DUMP_BUF_I NFO
retO status

retl raddr

ret2 size

This service returns the currently configured dump buffer description.

A returned si ze of 0 bytes indicates an undefined dump buffer. In this case the returned real address
(r addr) is undefined.

20.1.2.1. Errors

No errors defined.

139

Chapter 21. Trap trace services

The hypervisor provides atrap tracing capability for privileged code running on each virtual CPU. Priv-
ileged code provides a round-robin trap trace queue within which the hypervisor writes 64 byte entries
detailing hyperprivileged traps taken on behalf of privileged code. Thisis provided as a debugging capa-

bility for privileged code.

21.1. Trap trace buffer control structure

The trap trace control structure is 64 bytes long and placed at the start (offset 0) of the trap trace buffer.

The format of the control structureis as follows:

Table21.1. Trap Trace Control Structure

Offset Size Contents
0x00 8 Head offset
0x08 8 Tail offset
0x10 48 Reserved

The head offset is the offset of the most recently completed entry in the trap-trace buffer.

Thetail offset isthe offset of the next entry to be written.

The control structureis owned and modified by the hypervisor. A guest may not modify the control struc-

ture contents. Attempts to do so will result in undefined behavior for the guest.

21.2. Trap trace buffer entry format

Trap trace entries al have the following format:

Table21.2. Trap Trace Buffer Entry Structure

Offset Size Name Description
0x00 1 TTRACE_ENTRY_TYPE Indicates hypervisor or guest entry
0Ox01 1 TTRACE_ENTRY_HPSTATE Hyper-privileged state
0x02 1 TTRACE_ENTRY_TL Trap level
0x03 1 TTRACE_ENTRY_GL Globals level
0x04 2 TTRACE_ENTRY_TT Trap type
0x06 2 TTRACE_ENTRY_TAG Extended trap identifier
0x08 8 TTRACE_ENTRY_TSTATE Privileged trap state
0x10 8 TTRACE_ENTRY_TI CK %tick
0x18 8 TTRACE_ENTRY_TPC Trap %pc
0x20 8 TTRACE_ENTRY_F1 Entry-specific
0x28 8 TTRACE_ENTRY_F2 Entry-specific state
0x30 8 TTRACE_ENTRY_F4 Entry-specific
0x38 8 TTRACE_ENTRY_F4 Entry-specific

140

Trap trace services

For each entry the TTRACE_ENTRY_TYPE field value is defined as follows:;

Table21.3. Trap Trace Entry Types

Value Name Description
0x00 TTRACE_TYPE_UNDEF Entry content undefined
0x01 TTRACE_TYPE_HV Hypervisor trap entry
Oxff TTRACE_TYPE_GUEST Guest entry viat t race_addent r y service
21.3. API calls

21.3.1. ttrace_buf_conf

trap#t FAST_TRAP
function# TTRACE_BUF_CONF
arg0 raddr

argl nentries

retO status

retl nentries

This function requests hypervisor trap tracing and declares a virtual CPU's trap trace buffer to the hyper-
visor. Ther addr suppliesthe real base address of the trap trace queue and must be 64-byte aligned.

Thenent ri es argument specifies the size in 64-byte entries of the buffer allocated. Specifying avalue
of zerofor nent r i es disablestrap tracing for the calling virtual cpu. The buffer allocated must be sized
for apower of two number of 64 byte trap trace entries plus an initial 64 byte control structure.

This function may be called any number of times so that a virtual cpu may relocate a trap trace buffer,
or create “ snapshots’ of information.

If raddr isanillega or badly aligned real address, then trap tracing is disabled (equivalent to passing a
nent ri es value of 0) and an error is returned.

Upon successr et 1 isnentries.

Upon failurewith EINVAL thisservicecall returnsinr et 1 (nent r i es) the minimum number of buffer
entries required. Upon other failurer et 1 is undefined.

21.3.1.1. Errors

EINVAL nentri es istoo smal
ENORADDR r addr isnot avalidrea address
EBADALIGN raddr isnot aligned on a 64-byte boundary

21.3.2. ttrace_buf_info

trap#t FAST TRAP
function# TTRACE_BUF _|I NFO
retO status

141

Trap trace services

retl raddr
ret2 nentries

This function returns the size and location of the previously declared trap-trace buffer. In the event that

no buffer was previously declared, or the buffer disabled (e.g. viaat t r ace_buf conf call withasize
of zero), this call will return asize of zero (0) entries.

21.3.2.1. Errors
No errors defined.

21.3.3. ttrace_enable

trap# FAST_TRAP
function# TTRACE_ENABLE
arg0 enable

retO status

retl previous_enable

This function enables (or disables) trap tracing, returning the previously enabled state in r et 1. Future
systems may define various flags for the enabl e argument (ar g0), for the moment a guest should pass
(uint64_t)-1 to enable, and (uint64 _t)0 to disable all tracing— which will ensure future compatibility.

21.3.3.1. Errors

EINVAL No buffer currently defined

21.3.4. ttrace_freeze

trap# FAST_TRAP
function# TTRACE_FREEZE
arg0 freeze

retO status

retl previous_state

This function freezes (or unfreezes) trap tracing, returning the previous freeze state in ret 1. A
guest should pass a non-zero value to freeze and a zero value to unfreeze al tracing. The returned
previ ous_st at e isOfor not frozen, and 1 for frozen.

21.3.4.1. Errors

EINVAL No buffer currently defined

21.3.5. ttrace_addentry

trap# TTRACE_ADDENTRY
arg0 tag (16-bits)
argl dataword O
arg2 dataword 1

142

Trap trace services

arg3 dataword 2
ret0 status

This function adds an entry to the trap trace buffer. Upon return only ar g0/r et 0 is modified - none of
the other registers holding arguments are volatile across this hypervisor service.

21.3.5.1. Errors

EINVAL No buffer currently defined

143

Chapter 22. Logical Domain Channel
services

The hypervisor provides communication channels to services and other domains. These channels are cre-
ated by the Logical Domain Manager, and manifest themselves within adomain as an endpoint. Two end-
points are connected together and traffic is transferred by the hypervisor thus forming alogica domain
channel (LDC).

22.1. Endpoints

Endpoints available within a domain are described within the Machine Description available via the
mach_desc hypervisor API call. This API specification makes no assumptions about the peer on the
other end of aLDC— the LDC APIs serve simply as alink communications layer with which higher level
protocols are used for communication in and out of alogical domain. The details of these higher level
protocols are usage specific and outside the scope of this link-layer specification.

Communication viaan LDC occurs in the form of short fixed-length (64-byte) message packets. Logical
Domain Channels form bi-directional point-to-point links so all traffic sent to alocal endpoint will arrive
only at the corresponding endpoint at the other end of the channel.

This fixed-length point-to-point nature means there is no address header or switching/routing operation
performed by the hypervisor as part of packet delivery.

LDCs are not guaranteed as reliable link-level communication channels. If a reliable or larger packet
communication mechanism is required it must be provided as a protocol on top of this basic link-level
communication mechanism.

22.2. LDC queues

LDC packetsare delivered to an endpoint and deposited by the hypervisor into aqueue provided by aguest
operating system from its real address space. Only one receive queue may be allocated for each endpoint,
and achannel directionisconsidered “ down” while no receive queueis provided. Messagesfrom achannel
are deposited by the hypervisor at the“tail” of aqueue, and the receiving guest indicates receipt by moving
the corresponding “head” pointer for the queue.

A receive queue is defined to be consistent with other sundv architecture queues, i.e. with the same re-
strictions as the cpu/device and error mondo queues. The guest identifies the queue to the hypervisor using
an APl call (I dc_r xq_conf) that is consistent with other queue API cals (for example cpu_qgconf).
The head and tail pointers for an endpoint's receive queue are held by the hypervisor. Both the head and
tail pointers are available viaa hypervisor API call, but only the head pointer may be modified by a guest
— also using a hypervisor API call.

To send L DC messages a guest operating system uses atransmit queue allocated from its own real address
space. Only one transmit queue may be defined per-endpoint, undefined behavior for the sending guest
occurs if the same memory is used for two or more different endpoint transmit queues. Like the receive
gueue, the transmit queue is defined to be consistent with other sundv architecture queues such as the
device and cpu mondo queues.

The transmit queue's head and tail pointers are accessed via hypervisor API call.

To send a packet down an LDC, a guest deposits the packet into its transmit queue for the local endpoint,
and then uses ahypervisor API cal to updatethetail pointer for thetransmit queue. If anLDCis“up”, then
fromthe point at which atransmit queue becomes non-empty (aguest updatesthetail pointer for itstransmit

144

Logica Domain Channel services

gueue), LDC packets are transferred from the transmit queue to the receive queue of the corresponding
endpoint.

The assignment of a transmit queue does not affect whether an LDC is up or down.

22.3. LDC interrupts

To avoid the need for polling, LDC endpoints may be enabled to deliver interrupts to a guest domain
indicating a change of endpoint state. Interrupts appear as mondos on the device mondo queue, with the
mondo payload indicating thelocal L DC endpoint wha's status has changed. The following endpoint states
may be enabled to cause aninterrupt; LDC isdown, LDC isup, receive queue is non-empty, receive queue
isfull, transmit queue is empty, transmit queue is not-full.

22.4. APl calls

Thefollowing API calls are provided for LDC usage.
22.4.1. ldc_tx_gconf

trap# FAST_TRAP
function# LDC _TX_ QCONF
arg0 Idc_id

argl base raddr

arg2 nentries

ret0 status

Configuretransmit queuefor LDC endpoint | dc_i d to be placed at real address base, and of nent ri es
entries. nent ri es must be a power of two number of entries. base_r addr must be aligned exactly to
match the queue size. Each queue entry is 64 byteslong, so for example, a 32 entry queue must be aligned
on a 2048-byte real address boundary.

Upon configuration of a valid transmit queue the head and tail pointers are set to an hypervisor specific
identical value indicating that the queue initialy is empty.

The endpoint's transmit queue is unconfigured if nent ri es isO.

Programming note: The maximum number of entries for each queue for a specific cpu may be determined
from the machine description.

Programming note: A transmit queue may be specified even in the event that the LDC is down (peer
endpoint has no receive queue specified). Transmission will begin as soon as the peer endpoint defines
areceive queue.

Programming note: It isrecommended that aguest wait for atransmit queue to empty prior to reconfiguring
it, or unconfiguring it. Reconfiguring or unconfiguring a non-empty transmit queue behaves exactly as
defined above, however it is undefined as to how many of the pending entries in the origina queue will
be delivered prior to the reconfiguration taking effect. Furthermore, as the queue configuration causes a
reset of the head and tail pointers there is no way for a guest to determine how many entries have been
sent after the configuration operation.

22.4.1.1. Errors

EINVAL nent ri es not apower of two in number or, nent ri es islessthan two or
too large.

145

Logica Domain Channel services

ENORADDR
EBADALIGN
ECHANNEL

22.4.2. ldc_tx_qginfo
trap#

function#
argo
ret0
retl
ret2

base_raddr isnotavalidreal address
base_raddr isnot correctly aligned for itssize
Invalidl dc_i d

FAST_TRAP
LDC TX_Q NFO
Idc_id

status

base raddr
nentries

Return the configuration info for the transmit queue of LDC endpoint | dc_i d. The base raddr is the
currently defined real address base of the defined queue, and nent r i es isthe size of the queue in terms

of number of entries.

If the specified | dc_i d isavalid endpoint number, but no transmit queue has been defined this service
will return success, but with nent ri es set to 0 and base _raddr will have an undefined value.

22.4.2.1. Errors

ECHANNEL

Invalidl dc_i d

22.4.3. ldc_tx_get_state

trap#
function#
arg0

ret0

retl

ret2

ret3

FAST_TRAP

LDC TX GETSTATE
Idc_id

status

head_offset
tail_offset
channel_state

Return the transmit state, and the head and tail queue pointers for the transmit queue of LDC endpoint
| dc_i d. The head and tail values are the byte offset of the head and tail positions of the transmit queue

for the specified endpoint.

The channel_state has the following defined values:

LDC_CHANNEL_DOWN
LDC_CHANNEL_UP 1

22.4.3.1. Errors

EINVAL No transmit queue defined
ECHANNEL Invalidl dc_i d
EWOULDBLOCK Operation would block

146

Logica Domain Channel services

22.4.4. ldc_tx_set_qtail

trap#t FAST_TRAP
function# LDC _TX_ SET_QTAI L
arg0 Idc_id

argl tail_offset

retO status

Update the tail pointer for the transmit queue associated with the LDC endpoint | dc_i d.

Thespecifiedt ai | _of f set must bealigned on a64-byte boundary, and calculated so asto increase the
number of pending entries on the transmit queue. Any attempt to decrease the number of pending transmit
gueue entries is considered an invalid tail offset and will result in an EINVAL error.

Programming note: Sincethetail of thetransmit queue may not be moved “backwards’, the transmit queue
may be“flushed” by configuring anew transmit queue, whereupon the hypervisor will configuretheinitial
transmit head and tail pointersto be equal (queue empty).

22.4.4.1. Errors

EINVAL No transmit queue defined, or invalidt ai | _of f set value
EBADALIGN tai |l _of fset isnot correctly aligned

ECHANNEL Invalidl dc_i d

EWOULDBLOCK Operation would block

22.4.5.ldc_rx_qconf

trap# FAST_TRAP
function# LDC_RX_QCONF
argo Idc_id

argl base raddr

arg2 nentries

retO status

Configure receive queue for LDC endpoint | dc_i d to be placed at real address base, and of nent ri es
entries. nent ri es must be apower of two number of entries. base_r addr must be aligned exactly to
match the queue size. Each queue entry is 64 byteslong, so for example, a 32 entry queue must be aligned
on a 2048-byte real address boundary.

The endpoint's receive queue is unconfigured if nent ri es isO.

If avalid receive queue is specified for a local endpoint the LDC is in the up state for the purpose of
transmission to this endpoint.

Programming note: The maximum number of entries for each queue for aspecific cpu may be determined
from the machine description.

Programming note: As receive queue configuration causes a reset of the queue's head and tail pointers
there is no way for a guest to determine how many entries may have been received between a preceding
| dc_get rx_state API cal and the completion of the configuration operation. It should be noted

147

Logica Domain Channel services

that datagram delivery is not guaranteed via domain channels anyway, and therefore any higher protocol
should be resilient to datagram loss if necessary. However, to overcome this specific race potential it is
recommended, for example, that a higher level protocol be employed to ensure either retransmission, or
to ensure that no datagrams are pending on the peer endpoint's transmit queue prior to the configuration
operation.

22.4.5.1. Errors

EINVAL nent ri es not apower of two in number or, nent ri es islessthan two or
too large.

ENORADDR base_ raddr isnotavalidrea address

EBADALIGN base_raddr isnot correctly aligned for itssize

ECHANNEL Invaidl dc_i d

22.4.6.1dc_rx_ginfo

trap#t FAST_TRAP
function# LDC RX_Q NFO
arg0 Idc_id

retO status

retl base raddr

ret2 nentries

Return the configuration info for the receive queue of LDC endpoint | dc_i d. Thebase_r addr isthe
currently defined real address base of the defined queue, and nent r i es isthe size of the queue in terms
of number of entries.

If the specified | dc_i d is avalid endpoint number, but no receive queue has been defined this service
will return success, but withnent ri es setto 0 and base_r addr will have an undefined value.

22.4.6.1. Errors

ECHANNEL Invalid| dc_i d

22.4.7.ldc_rx_get_state

trap# FAST_TRAP

function# LDC RX_GET_STATE
arg0 Idc_id

ret0 status

retl head _offset

ret2 tail_offset

ret3 channel_state

Return the receive state and the head and tail queue pointers of the receive queue for LDC endpoint
| dc_i d. The head and tail values are the byte offset of the head and tail positions of the receive queue

for the specified endpoint.

The channel_state has the following defined values:

148

Logica Domain Channel services

LDC_CHANNEL_ DOWN
LDC_CHANNEL_UP

22.4.7.1. Errors

EINVAL No receive queue defined
ECHANNEL Invaidl dc_i d
EWOULDBLOCK Operation would block

22.4.8.ldc_rx_set_ghead

trap# FAST_TRAP

function# LDC _RX_SET_CQHEAD
argo Idc_id

argl head offset

retO status

Update the head pointer for the receive queue associated with the LDC endpoint | dc_i d.

Thehead_of f set specified must be aligned on a64-byte boundary, and cal culated so asto decrease the
number of pending entries on the receive queue. Any attempt to increase the number of pending receive
gueue entries is considered an invalid head offset and will result in an EINVAL error.

Programming note: The receive queue may be “flushed” by setting the head offset equal to the current
tail offset.

22.4.8.1. Errors

EINVAL No receive queue defined, or invalid head_of f set value
EBADALIGN head_of f set isnot correctly aligned

ECHANNEL Invalidl dc_i d

EWOULDBLOCK Operation would block

22.5. Shared Memory API calls

Thel dc_set _map_tabl e,l dc_get _map_t abl e, and| dc_copy APIs are usable when version
1.0 of the API group is negotiated.

Thel dc_mapi n,| dc_unmap and| dc_r evoke APIsare availablein addition to the 1.0 APIs when
version 1.1 of the API group is negotiated.

22.5.1. ldc_set_map_table

trap# FAST_TRAP

function# LDC SET_MAP_TABLE
arg0 channel

argl base ra

arg2 nentries

149

Logica Domain Channel services

retO status

This API service enables a guest to declare an export map table and bind that map table to the specified
logical domain channel .

The map table must consist of a power of two number of entries specified by the nent ri es argument.
The minimum number of entriesis 2. The export map table base real addressis specifiedinbase _ra and
must be aligned to the same boundary as the overall size of the table in bytes (nent ri es*8).

Specifying zero (0) for nent ri es unbinds any map table previously bound to the domain channel. If
nentri es iszero, base_r aisignored. Unbinding amap table does not automatically revoke exported
pages, any pages till in use by an importing domain may remain accessible by that domain for an inde-
terminate period of time, or until the exporting domain exits.

22.5.1.1. Errors

EINVAL nentri es isinvalid, or specified domain channel does not support a
shared memory interface

ENORADDR Invalid base_r a or real address range for the map table

EBADALIGN Map table base_r a isnot correctly aligned for the size of the table

ECHANNEL Invalid domain channel

EWOULDBLOCK Operation would block

22.5.2.ldc_get_map_table

trap#t FAST_TRAP

function# LDC_GET_MAP_TABLE
arg0 channel

retO status

retl base ra

ret2 nentries

ThisAPI serviceretrievesthe current map table configuration associated with the givendomainchannel .

If no map tableis configured, both base_r a and nent ri es arereturned as zero.
22.5.2.1. Errors

ECHANNEL Invalid domain channel
EWOULDBLOCK Operation would block

22.5.3.1dc_copy

trap# FAST_TRAP
function# LDC_COPY
arg0 channel

argl flags

arg2 cookie

150

Logica Domain Channel services

arg3 raddr
argd length
retO status
retl ret_length

This API service copies data into or out of alocal memory region from or to the logical domain at the
other end of the specified domain channel .

The local memory buffer to be used is a contiguous real address buffer starting at r addr , and of size
| engt h. Bothr addr and | engt h must be aligned to 8-byte boundaries. The exported page to be ac-
cessed by the copy operation isidentified by cooki e.

A copy-in or copy-out operationisspecified by thef | ags argument, for which thefollowing valuesapply:

Copy from remote exporting domain into buffer of local domain
Copy from buffer of local domain into page exported by remote domain

LDC COPY_IN O
LDC CoPY_OQUT 1
All other valuesfor flags areillegal.

In the event of success, the return st at us is EOK, and r et _| engt h contains the actual number of
bytes copied. Inthisevent0<=ret _| engt h <=1 engt h.

22.5.3.1. Errors

ECHANNEL Invalid domain channel

EINVAL Invalidf | ags value

EBADALIGN Badly aligned r addr , | engt h, or cooki e.

ENORADDR Bad real address range for local buffer

ENOMAP cooki e refersto aninvalid map table entry on the exporting side
ENOACCESS Requested copy operation is not permitted by exporter's map table entry
EBADPGSZ Page size of cooki e does not match page size specified in the map table entry
EWOULDBLOCK Operation would block

22.5.4. ldc_mapin

trap# FAST_TRAP
function# LDC_MAPI N
argo channel

argl cookie

ret0 status

retl raddr

ret2 perms

This API service attemptsto map into the local guest'sreal address space the page identified by the shared
memory cooki e. Upon success the service returns the real address the page was mapped at in r addr ,
and the access permissions granted to that page by the exporter for cpu and 10 access in per ns. Bit 0
in the per ns value corresponds to bit 4 in the export table entry — namely CPU read permission. Bit 1

151

Logica Domain Channel services

in per s corresponds to bit 5 in the export map table entry, and so on. Bits 5 through 63 of per ns are
undefined and should be ignored.

22.5.4.1. Errors

ECHANNEL
EINVAL
EBADALIGN
ENOMAP
ENOACCESS
EBADPGSZ
ETOOMANY
EWOULDBLOCK

22.5.5. 1dc_unmap

Invalid domain channel

Invalidf | ags value

Badly aligned cooki e

cooki e refersto aninvalid map table entry on the exporting side

Requested map operation is not permitted by exporter's map table entry

Page size of cooki e doesnot match page size specified in the map table entry
Too many mapins already exist

Operation would block

trap# FAST_TRAP
function# LDC_UNMVAP
arg0 raddr
retO status

This API service attempts to unmap from the local guest's real address space the imported page mapped
at thereal addressr addr .

This API may fail if the guest has not already removed any virtual or IOMMU mappings associated with

this page.
22.55.1. Errors

ENORADDR
EBADALIGN
ENOMAP
EWOULDBLOCK

22.5.6. ldc_revoke

Illegal r addr value

Badly aligned r addr

r addr refersto anon-existent imported page
Operation would block

trap# FAST_TRAP
function# LDC REVCKE
arg0 channel

argl cookie

arg2 revoke cookie
retO status

This API service attempts to forcibly unmap from a remote guest's real address space a page previously
exported by the local guest. The remote guest isthe peer on the other end of the LDC channel specified by
channel . The cooki e isthe cookie originally passed to that remote guest, ther evoke_cooki e is
the revocation cookie supplied by the hypervisor to assist with this API call. This unmapping mechanism

152

Logica Domain Channel services

also forcibly unmaps any virtual or IOMMU mappings that the remote guest may be using corresponding
to this exported page.

Note

As an optimization, in the event that this API fails with EWOULDBLOCK, the caller should
re-read the revocation cookie from the corresponding export table entry; in the event that the
revocation cookie has been set to zero, this API should no longer be necessary.

22.5.6.1. Errors

ECHANNEL Invalid domain channel
EINVAL Invalidr evoke_cooki e
EBADALIGN Badly aligned cooki e
EWOULDBLOCK Operation would block

153

Chapter 23. PCI I/O Services

23.1. Introduction

This section details Hypervisor servicesin support of PCI, PCI-X and PCl_Express interfaces.

23.1.1. External documents

The following documents are either referenced in this section, or should be consulted in together with
this section:

e sundv Bus Binding to Open Firmware [http://arc.opensolaris.org/caselog/FWARC/2005/111]
([sundvbind])

 vPCI Bus Binding to Open Firmware

» PCI Express Base Specification 1.0a [http://www.pcisig.com/specifications/pciexpress/base/archive/]
([pcie2002])

23.2. 10 Data Definitions

cpuid A unique opaque value which represents a target cpu.

devhandle Device handle. The device handle uniquely identifies asundv device. It consists of thethe
lower 28-bits of the hi-cell of thefirst entry of the sundv device's"reg" property asdefined
by the Sun4v Bus Binding to Open Firmware.

devino Device Interrupt Number. An unsigned integer representing an interrupt within a specific
device.
sysino System Interrupt Number. A 64-bit unsigned integer representing auniqueinterrupt within
a 13 Syga.nl) i
23.3. PCI IO Data Definitions
devhandle

Device handle. The device handle uniquely identifies a sundv device. It consists of the the lower 28-
bits of the hi-cell of the first entry of the sundv device's "reg" property as defined by the Sundv Bus
Binding to Open Firmware.

tsbnum
TSB Number. Identifieswhich IOTSB is used. For this version of the spec, tsbnum must be zero.

tshindex
TSB Index. Identifies which entry in the tsb isis used. Thefirst entry is zero.

tshid
A 64-hit aligned data structure which contains atsbnum and atsbindex. bits 63:32 contain the tsbnum.
bits 31:00 contain the tshindex.

io_attributes
1O Attributes for IOMMU mappings. Attributesfor IOMMU mappings. One or more of the following
attribute bits stored in a 64-bit unsigned int.

154

http://arc.opensolaris.org/caselog/FWARC/2005/111
http://arc.opensolaris.org/caselog/FWARC/2005/111
http://www.pcisig.com/specifications/pciexpress/base/archive/
http://www.pcisig.com/specifications/pciexpress/base/archive/

PCI 1/0 Services

6

3 8 7 0
oo e oo [- +
| 0000 | 000000WVR|
oo e oo [- +
PCI_MAP_ATTR_READ 0x01 Transfer direction is from memory
PCI_MAP_ATTR WRITE 0x02 Transfer direction isto memory

Bits 63:2 are unused and must be set to zero for version 1.0 of the specification.

Version 1.1io_attributes:

6 33 11

3 21 6 5 8 7 0

o m e e e e e o e e e e oo S Fomm e o - +
| 0000 | BBBBBBBB DDDDDFFF| 0 | OOPPOLWR|
o m e e e e e o e e e e oo S Fomm e o - +
The additional 10 attributesin version 1.1:

PCI_MAP_ATTR_ 0x04 Requested DMA transaction can be relaxed ordered
RELAXED_ORDERING within the root complex (RC).

PCI_MAP_ATTR_ bits Value of PCl Express and PCI-X phantom function
PHANTOM_FUNCTION <5:4> configuration. Its encoding isidentical t the “Phan-

tom Function Supported” field of the “Device Ca
pabilities Register”, offset 0x4 in the “PCl Express
Capability Structure”. The structure is part of the
device's config space.

PCI_MAP_ATTR_BDF bits Bus, device and function number of the device that
<31:16> isgoing to issue DMA transactions. The BDF values
are used to guarantee the mapping is only accessed
by the specified device. If the BDF is set to all zeros,
BDF-based (Requester ID based) protection will be
disabled for the mapping.

Relaxed Ordering (L) isadvisory. Not al hardware implements relaxed ordering. If the relaxed order-

ing attribute is not implemented in hardware, the implementation is permitted to ignore the Relaxed
Ordering attribute.

Version 1.0 Reserved io_attribute bits
For compatibility with future versions of this specification, the caller must set 63:2 to zero.
Version 1.1 Reserved io_attribute bits

For compatibility with future versions of this specification, the caller must set bits 3, 15:16,
and 63:32 to zero.

155

PCI 1/0 Services

Note

For compatibility with existing hardware and guest behavior, the R (Read) bit is implied
for al valid mappings. Future versions of this specification may change this behavior by
requiring the R bit to be set for any mapping intended to be readable by the device.

Note

Note: Some hardware implementations do not implement an R (Read) bit in the hardware. In
thiscase, theRattributeisimplied by any valid|OMMU mapping, anditisnot possibleto cre-
ate awrite-only mapping. In this case, and for legacy guest support, pci _i onmru_get map
may return the Rio_attribute Set even if it wasn't Set when pci _i omru_map was called
to create that mapping.

r_addr
A 64-bit Real Address.

pci_device
A PCI device address. A PCI device addressidentifiesaspecific device on aspecific PCl bus segment.
A PCI device address is a 32-bit unsigned integer with the following format:

00000000. bbbbbbbb. dddddf f f . 00000000

Where:

bbbbbbbb is the 8-bit pci bus number
ddddd is the 5-hit pci device number
fff isthe 3-bit pci function number
00000000 is the 8-hit literal zero.

pci_config_offset
Configuration Space offset. For conventional PCl, an unsigned integer intherange 0..255 representing
the offset of the field in PCI config space.

For PCI implementations with extended configuration space, an unsigned integer in therange 0..4095,
representing the offset of the field in configuration space. The conventional PCI config spaceis offset
0..255. Extended config space is offset 256..4095

Note: For PCI config space accesses, the offset must be 'size' aligned.

error_flag
Error flag

A return value specifiesif the action succeeded or failed, where:

0 No error occurred while performing the service
non-zero An error occurred while performing the service

io_sync_direction
“direction” definition for pci_dma_sync.

156

PCI 1/0 Services

A value specifying the direction for amemory/io sync operation, The direction value is aflag, one or
both directions may be specified by the caller.

0x01 For device (device read from memory)
0x02 For CPU (device write to memory)

io_page list
A list of io_page addresses. Each io_page addressisan r_addr.

io_page list_ p
A pointer to anio_page list. io_page list_ pisanr_addr.

“size-based byte swap”
Some functions do size-based byte swapping which allows software to access pointers and counters
in native form when the processor operatesin a different endianness than the 1/0 bus. Size-based byte
swapping converts a multi-byte field between big-endian format and little-endian format as follows:

Size Original Value Swapped Value
2 0x0102 0x0201
0x01020304 0x04030201
8 0x01020304. 05060708 0x08070605. 04030201
23.4. API calls

The following APIs are provided for PCI services.

23.4.1. pci_iommu_map

trap# FAST_TRAP
function# PCl _I OWU_MAP
arg0 devhandle

argl tshid

arg2 #ites

arg3 io_attributes

argd io_page list_p
retO status

retl #tes mapped

Create IOMMU mappings in the sundv device defined by the argument devhandl e. The mappings are
created in the tsb defined by the tsbnum component of thet sbi d argument. The first mapping is created
inthetsb index defined by the tshindex component of thet sbi d argument. The call createsupto#t t es
mappings, thefirst one at t sbnumt sbi ndex, the second at t sbnumt sbi ndex+1, etc.

All mappings are created with the attributes defined by thei o_at t ri but es argument.

The page mapping addresses are described in the io page list defined by the argument
i o_page_|ist_p,whichisapointer to theio_page list. The first entry in theio_page list is the ad-
dressfor thefirst IOTTE, the 2nd entry for the 2nd IOTTE, and so on.

Eachi o_page address inthei o_page | i st must be appropriately aligned.

157

PCI 1/0 Services

#1t t es must be greater than zero.
For this version of the spec, the tshnum component of thet sbi d argument must be zero.

Returns the actual number of mappings created, which may be less than or equal to the argument #t t es.
If the function returns a value which is less than the #t t es, the caller may continue to call the function
with anupdatedt sbi d, #ttes,i o_page_ | i st _p argumentsuntil al pages are mapped.

Note: This function does not imply an IOTTE cache flush. The guest must demap an entry before re-
mapping it.

23.4.1.1. Errors

EINVAL Invalid devhandl e, tsbnum, tshindex, io_attributes
EBADALIGN r _addr isnot correctly aligned
ENORADDR i 0o_page |ist _pisnotavalidrea addressor an entry intheio_page list

isnot avalid real address

23.4.2. pci_iommu_demap

trap# FAST_TRAP
function# PCl _| OWU_DENVAP
arg0 devhandle

argl tshid

arg2 #ites

retO status

retl #ttes demapped

Demap and flush IOMMU mappings in the device defined by the argument devhandl e.

Demapsupto#t t es entriesin the tsb defined by the tsbnum component of thet sbi d argument, starting
at the tsb index defined by the tshindex component of thet sbi d argument.

For this version of the spec, the tsbnum component of thet sbi d argument must be zero.
#t t es must be greater than zero.

Returns the actual number of ttes demapped in the return value #t t es_demapped, which may be less
than or equal totheargument #t t es. If #t t es_demapped islessthan #t t es, the caller may continue
to call thisfunction with updated t sbi d and #t t es arguments until al pages are demapped.

Note: Entries do not have to be mapped to be demapped. A demap of an unmapped page will flush the
entry from the TTE cache.

23.4.2.1. Errors

EINVAL Invalid devhandl e, tsbnum, tsbindex

23.4.3. pci_iommu_getmap

trap# FAST_TRAP
function# PCl _ 1 OMVU_CGETMVAP

158

PCI 1/0 Services

argo
argl
retO
retl
ret2

devhandle
tshid

status
io_attributes
r_addr

Read and return the mapping in the device given by the argument devhandl e andt sbi d. If successful,
thei o_attri but es shall bereturnedinr et 1, the page address of the mapping shall be returned in

ret2.

For this version of the spec, the tshnum component of t sbi d must be zero.

23.4.3.1. Errors

EINVAL

ENOMAP

Invalid devhandl e, tsbnum, tshindex
Mapping is not valid, no translation exists

23.4.4. pci_iommu_getbypass

trap#
function#
argo

argl

arg2

ret0

retl

FAST_TRAP

PCl _| OWU_CGETBYPASS
devhandle

r_addr

io_attributes

status

io_address

Create a“ special” mapping in the device given by the argument devhandl e for the arguments given by
r _addr andi o_attri butes.Returntheioaddressinr et 1 if successful.

Note: The error code ENOTSUPPORTED indicates that the function exists, but is not supported by the

implementation.

23.4.4.1. Errors

EINVAL

ENORADDR

Invalid devhandl e, io_attributes
r _addr isnotavalidreal address

ENOTSUPPORTED Function is not supported in this implementation

23.4.5. pci_config_get

trap#
function#
argo
argl
arg2
arg3

FAST_TRAP

PCl _CONFI G_GET
devhandle
pci_device
pci_config_offset
size

159

PCI 1/0 Services

retO status
retl error_flag
ret2 data

Read PCI configuration space for the PCI adapter defined by the argument devhandl e.

Read si ze (1, 2 or 4) bytes of datafor the PCI device defined by the argument pci _devi ce, fromthe
offset from the beginning of the configuration space defined by theargument pci _confi g_of f set . If
therewas no error during theread access, setr et 1 (error _f | ag)tozeroand setr et 2 tothe dataread.
Insignificant bitsinr et 2 are not guaranteed to have any specific value and therefore must be ignored.

Thedat a returned inr et 2 is size-based byte-swapped.
If an error occursduring theread, setr et 1 (error _f | ag) to anon-zero value.

pci _config_of f set mustbe“si ze” aigned.

23.4.5.1. Errors

EINVAL Invalid devhandl e, pci _devi ce, of f set, si ze

EBADALIGN pci _confi g_of f set isnot size-aligned

ENOACCESS Access to this offset is not permitted

EWOULDBLOCK io domain not ready for config space access (See Section 23.5.2.1,

“pci_iov_root_configured”

23.4.6. pci_config_put

trap# FAST_TRAP
function# PCl _CONFI G_PUT
arg0 devhandle

argl pci_device

arg2 pci_config_offset
arg3 size

arg4 data

retO status

retl error_flag

Write PCI config space for the PCI adapter defined by the argument devhandl e.

Writesi ze bytes of datain asingle operation. The argument si ze must be 1, 2 or 4. The configuration
space address is described by the arguments pci _devi ce andpci _confi g_of f set.

pci _confi g_of f set istheoffset fromthe beginning of the configuration space given by the argument
pci _devi ce. Theargument dat a containsthe datato bewritten to configuration space. Prior to writing
the datais size-based byte swapped.

If an error occurs during the write access, do not generate an error report, dosetret 1 (error _fl ag)
to anon-zero value. Otherwise, set r et 1 to zero.

pci _confi g_of f set must besize-aligned.

160

PCI 1/0 Services

This function is permitted to read from offset zero in the configuration space described by the argument
pci _devi ce if necessary to ensure that the write access to config space completes.

23.4.6.1. Errors

EINVAL Invalid devhandl e, pci _devi ce, of f set, si ze

EBADALIGN pci _confi g_of f set isnot size-aligned

ENOACCESS Access to this offset is not permitted

EWOULDBLOCK io domain not ready for config space access (See Section 23.5.2.1,

“pci_iov_root_configured”

23.4.7. pci_peek

trap# FAST_TRAP
function# PCl _PEEK
arg0 devhandle
argl r_addr

arg2 size

ret0 status

retl error_flag
ret2 data

Attempt to read the io-address given by the argumentsdevhandl e, r _addr andsi ze. si ze must be
1, 2, 4 or 8. Theread is performed as a single access operation using the given size. If an error occurs
when reading from the given location, do not generate an error report, but return anon-zerovalueinr et 1
(error_fl ag). If the read was successful, return zeroinr et 1 (err or _f | ag) and return the actual
datareadinr et 2 (dat a). Thedatareturnedinr et 2 is size-based byte-swapped.

Non-significant bitsinr et 2 (dat a) are not guaranteed to have any specific value and therefore must be
ignored. If ret 1 (error _fl ag) isreturned as non-zero, the data value is not guaranteed to have any
specific value and should be ignored.

The caller must have permission to read from the given devhandl e, r _addr, which must be an io
address. Theargument r _addr must be asize-aligned address.

The hypervisor implementation of this function must block access to any io address that the guest does
not have explicit permission to access.

23.4.7.1. Errors

EINVAL Invalid devhandl e or size
EBADALIGN r _addr isnot correctly aligned
ENORADDR r _addr isnotavalid real address
ENOACCESS Access to this offset is not permitted

23.4.8. pci_poke

trap# FAST_TRAP

161

PCI 1/0 Services

function# PCl _POKE
arg0 devhandle

argl r_addr

arg2 size

arg3 data

argd pci_device
retO status

retl error_flag

Attempt to write data to the io-address described by the arguments devhandl e, r _addr.
The argument si ze defines the size of the 'write' in bytesand must be 1, 2 4 or 8.

The write is performed as a single operation using the given size. Prior to writing, the data is size-based
byte swapped.

If an error occurs when writing the data to the given location, do not generate an error report, but return
anon-zerovalueinret 1 (error _fl ag). If the write operation was successful, return the value zero
inretl (error_flag).

pci _devi ce describes the configuration address of the device being written to. The implementation
may safely read from offset O with the configuration space of the device described by devhand| e and
pci _devi ce in order to guarantee that the write portion of the operation completes.

Any error that occurs due to the read shall be reported using the normal error reporting mechanisms—
the read error is not suppressed.

Thecaller must have permissiontowritetothegivendevhandl e,r _addr , which must beanio address.
Theargument r _addr must be a size-aligned address. The caller must have permission to read from the
givendevhandl e, pci _devi ce configuration space offset 0.

The hypervisor implementation of this function must block access to any io address that the guest does
not have explicit permission to access.

23.4.8.1. Errors

EINVAL Invalid devhandl e, pci_device, or size
EBADALIGN r _addr isnot correctly aligned
ENORADDR r _addr isnotavalidreal address
ENOACCESS Access to this offset is not permitted

ENOTSUPPORTED Function is not supported in this implementation

23.4.9. pci_dma_sync

trap# FAST_TRAP
function# PCl _DVA _SYNC
arg0 devhandle

argl r_addr

arg2 size

162

PCI 1/0 Services

arg3 io_sync_direction
ret0 status
retl #synced

Synchronize a memory region described by the arguments r _addr, si ze for the device defined by
the argument devhandl e using the direction(s) defined by theargumenti o_sync_di recti on. The
argument si ze isthe size of the memory region in bytes.

Return the actual number of bytes synchronized in the return value #synced, which may be less than or
equal totheargumentsi ze. If thereturnvalue#synced islessthansi ze, thecaller must continueto call
thisfunction with updated r _addr and si ze arguments until the entire memory region is synchronized.

23.4.9.1. Errors

EINVAL Invalid devhandl e ori o_sync_direction
ENORADDR r _addr isnotavalid rea address

23.5. Static Direct I/0O
23.5.1. SDIO Definitions

root domain A domain that owns configuration and mangement of asundv pci virtual root complex.

io domain A domain that has access to devices below a sundv pci virtual root complex but is not
the root domain.

23.5.2. SDIO API Definitions

23.5.2.1. pci_iov_root_configured

trap# FAST_TRAP

function# PCl _| OV_ROOT_CONFI GURED
arg0 devhandle

ret0 status

The root complex identified by devhandl e isready to be shared. The root domain guest calls thiswhen
it's ready for other io guests to begin using shared devices under the root complex identified by the argu-
ment devhandl e, which must be the devhandle of aroot complex device node owned by this guest.

Thiscall isan indication to the hypervisor that any other guest sharing the devices under thisroot complex
may now access the configuration space of those devices.

In any io guest domain, pci _confi g_get and pci _confi g_put shall return EWOULDBLOCK
on any attempted access to config space under the root complex defined by the argument devhandl e
until this API is called in the root domain. If the root domain is reset, behavior reverts back to theinitial

behavior until this APl iscalled in the root domain.

23.5.2.1.1. Errors

EINVAL Invalid devhandl e
ENOACCESS No access, the guest is not the root domain for thisroot complex devhandl e

163

PCI 1/0 Services

23.5.2.2. pci_real_config_get

trap#t FAST_TRAP

function# PCl _REAL_CONFI G_GET
arg0 devhandle

argl pci_device

arg2 pci_config_offset

arg3 size

retO status

retl error_flag

ret2 data

Read the real PCI configuration space for the PCI adapter defined by the argument devhandl e.

Read si ze (1, 2 or 4) bytes of datafor the PCI device defined by the argument pci _devi ce, fromthe
offset from the beginning of the configuration space defined by theargument pci _confi g_of f set . If
therewas no error during theread access, setret 1 (error _f | ag)tozeroand setr et 2 tothe dataread.
Insignificant bitsinr et 2 are not guaranteed to have any specific value and therefore must be ignored.

Thedat a returned inr et 2 is size-based byte-swapped.
If an error occursduring theread, setr et 1 (error _f | ag) to anon-zero value.

pci _confi g_of f set mustbe“si ze” aligned.

23.5.2.2.1. Errors

EINVAL Invalid devhandl e, pci_device, offset, size
EBADALIGN pci _confi g_of f set isnot size-aligned
ENOACCESS Access to this offset is not permitted or not the root domain for this root com-

plex devhandl e

23.5.2.3. pci_real _config_put

trap# FAST_TRAP

function# PCl _REAL_CONFI G_PUT
arg0 devhandle

argl pci_device

arg2 pci_config_offset

arg3 size

argd data

retO status

retl error_flag

Write real PCI config space for the PCl adapter defined by the argument devhandl e.

Write si ze bytes of datain asingle operation. The argument si ze must be 1, 2 or 4. The configuration
space address is described by the arguments pci _devi ce andpci _confi g_of f set.

164

PCI 1/0 Services

pci _confi g_of f set istheoffset fromthebeginning of the configuration space given by the argument
pci _devi ce. Theargument dat a containsthe datato bewritten to configuration space. Prior to writing
the datais size-based byte swapped.

If an error occurs during the write access, do not generate an error report, dosetret 1 (error _fl ag)
to anon-zero value. Otherwise, set r et 1 to zero.

pci _confi g_of f set must be size-aligned.

This function is permitted to read from offset zero in the configuration space described by the argument
pci _devi ce if necessary to ensure that the write access to config space completes.

23.5.2.3.1. Errors

EINVAL Invalid devhandl e, pci _devi ce, of f set, si ze
EBADALIGN pci _confi g_of f set isnot size-aligned
ENOACCESS Access to this offset is not permitted or not the root domain for this root com-

plex devhandl e

23.5.2.4. pci_error_send

trap# FAST_TRAP
function# PCl _ERROR_SEND
arg0 devhandle

argl devino

arg2 pci_device

retO status

Send an error packet to any io guest sharing the device identified by the argument pci _devi ce inthe
fabric identified by the argument devhandl e.

devhandl e must be the devhandle of a PCI root complex, owned by this guest. devi no must be the
devino associated with pci error packets for this root complex.

pci _devi ce is the device reporting the error. If pci _devi ce is zero, al other guests sharing this
pci fabric will receive an error packet. If pci _devi ce isnon-zero, only those guests sharing the device
identified by the pci _devi ce argument will receive the error packet.

The error packet is delivered to the dev mondo queue of the io guest sharing this device, if any. Thefirst
entry, SYSI NO, will be the correct value for the devhandl e, devi no in that guest that represents the
shared root complex, identified by the argumentsdevhandl| e, devi no for this guest.

Note
The epkt is never delivered to the domain that called this API.
Refer to [vpcierrs] for definition of the contents of pci error packets.

The packet shall contain the following fields:

0x00 sysi no devhandle, devino of io guest's root complex

0x08 ehdl unigque error handle, generated by hypervisor

165

PCI 1/0 Services

0x10 stick timestamp, the value of the %stick register
0x18 desc see below, error-specific

0x20 0

0x28 0

0x30 0

0x38 0

The DESC field shall contain the following values:

31:28 - Block - value 1 - hostbus

27:24 - O - Value 0

23:20 - Phase - Value O

19:16 - Cond - Value O

15:12 - Dir - value O

11: 0 - Flags, bit 11 (STOP) Set, everything else Cear.

23.5.2.4.1. Errors

EINVAL Invalid devhandl e, pci _devi ce, or devi no
ENOACCESS Not the root domain for this root complex devhandl e

166

Chapter 24. PCI MSI Services

MSI services are effectively part of PCI, however, they arelogically grouped into a separate set of services
defined in this section.

24.1. Message Signaled Interrupt (MSI)

Message Signaled Interrupt as defined in the PCI Local Bus Specification and the PCI Express Base Spec-
ification. A devicesignalsaninterrupt viaM Sl using aposted write cycleto an address specified by system
software using a data val ue specified by system software. The M S| capability data structure containsfields
for the PCI address and data val ues the device uses when sending an M Sl message on the bus. MSI-X isan
extended form of MSI, but uses the same mechanism for signaling the interrupt as MSl. For the purposes
of this document, the term “MSI” refersto MSI or MSI-X.

Root complexes that support MS| define an address range and set of data values that can be used to signal
MSls.

sundv/PCI requirements for MSI:

The root complex defines two address ranges. One in the 32-bit PCI memory space and one in the 64-bit
PCl memory address space used as the target of a posted write to signal an MSl.

The root complex treats any write to these address ranges as signaling an MSI, however, only the data
value used in the posted write signalsthe MS|.

24.2. MSI Event Queue (MSI EQ)

The MS| Event Queue is a page-aligned main memory data structure used to store MS| data records.

Each root port supports several MSI EQs, and each EQ has a system interrupt associated with it, and can
be targeted (individually) to any cpu. The number of MSI EQs supported by aroot complex is described
by a property defined in [sundvbind]. Each MSI EQ must be large enough to contain al possible MS
data records generated by any one PCI root port. The number of entriesin each MSI EQ is described by
aproperty defined in [sundvbind].

Each M S| EQiscompliant with the definition of interrupt queues described in [pcie2002], however, instead
of accessing the queue head/tail registers via ASl-based registers, an API is provided to access the head/
tail registers.

The sundv/PCl-compliant root complex has the ability to generate a system interrupt when the MSI EQ
is non-empty.

24.2.1. MSI/Message/INTx Data Record format

Each data record consists of 64 bytes of data, aligned on a 64-byte boundary. The data record is defined
asfollows:

167

PCl MSI Services

Where,

6666555555555544444444443333333333222222222211111111110000000000
3210987654321098765432109876543210987654321098765432109876543210
0x00:
WWWWWWWWWWWIWWWWWWWWWWYWVWVVVVVVX XX XXX XX XXX XX XXXXXXXXXXXTTTTTTTT
0x08:
frrerrerreererreereereererrrererrrrrr et e r e e e e e e e rrrrrrnl
0x10:

XXXXKXXXKXXKXXKXX XXX KX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX X
0x18:

5SS SSS
0x20:
XXX XXX RRRRRRRRRRRRRRRR
0x28:
AA

XXX XXX

XX..XX are unused bits and must be ignored by software.

W..WV is the version number of this data record For this release of the spec, the version number field
must be zero.

TTTTTTTT isthe datarecord type. The upper 4 bits are reserved, and must be zero.

0000
0001
0010
0011
0100

0111
1000
1001

1110
1111

Not an MSI datarecord, reserved for software use
MSG

MSI32

MSle4

Reserved

Reserved

Reserved

INTX

Reserved

Reserved

Reserved

Not an MSI data record, reserved for software use

All other encodings are reserved.

I1..11 isthe sysino for INTx (software-defined value), otherwise zero.

SS.SSisthe message time-stamp if available.

If supported by the implementation, a non-zero value in this field is a copy of the %stick register at the
time the message is created. If unsupported, this field will contain zero.

168

PCl MSI Services

RR..RRisthe requester ID of the device that initiated the MSI/MSG and has the following format:

bbbbbbbb.dddddfff, Where bb..bb is the bus number, dd..dd is the device number and fff is the function
number.

Notethat for PCI devicesor any message wherethe requester isunknown, thismay be zero, or thedevice-id
of an intermediate bridge.

For INTx messages, thisfield should be ignored.

AA.AA is the MSI address. For MSI32, the upper 32-bits must be zero. (for data record type MSG or
INTX, thisfield isignored)

DD..DD isthe MSI/MSG data or INTXx number

For MSI-X, hits 31..0 contain the data from the MSI packet which is the msi-number. bits 63..32 shall
be zero.

For MSI, bits 15..0 contain the data from the MSI message which is the msi-number. bits 63..16 shall
be zero

For MSG data, the message code and message routing code are encoded as follows:
63: 32 - 0000. 0000. 0000. 0000. 0000. 0000. GEEG. GCCG
32: 00 - 0000. 0000. 0000. 0OCCC. 0000. 0000. MVVM MVWVM

Where,

GG..GG isthe target-id of the message in the following form:

bbbbbbbb. dddddf f f

where bb..bb is the target bus number, ddddd is the target device ID, and fff is the target function number.
CCC isthe message routing code as defined by [pcie2002]
MM..MM is the message code as defined by [pcie2002]

For INTx data, bits 63:2 must be zero and the low order 2 bits are defined as follows:

00 INTA
01 INTB
02 INTC
03 INTD
24.3. Definitions
cpuid A unigue opague value which represents atarget cpu.

devhandle Device handle. The device handle uniquely identifies asundv device. It consists of thethe
lower 28-bits of the hi-cell of thefirst entry of the sundv device's"reg" property as defined
by the Sun4v Bus Binding to Open Firmware.

msinum A value defining which M S| is being used.

169

PCl MSI Services

msighead
msiqtail

msitype

msigid

msigstate

msiqualid

msistate

msivalid

msgtype

msgvalid

24.4. API calls

The offset value of agiven MSI-EQ head.
The offset value of agiven MSI-EQ tail.
Type specifier for MSI32 or M SI64:

MSI32
1 MSI64

A number from O .. 'number of MSI-EQs - 1', defining which MSI EQ within the device
is being used.

An unsigned integer containing one of the following values:

PCI_MSIQSTATE_IDLE (idle, non-error state)
PCI_MSIQSTATE_ERROR (error state)

An unsigned integer containing one of the following values:

PCI_MSIQ_INVALID (disabled/invalid)
1 PCI_MSIQ VALID (enabled/valid)

An unsigned integer containing one of the following values:

PCI_MSISTATE_IDLE (idle/not enabled)
1 PCI_MSISTATE_DELIVERED (MS! delivered)

An unsigned integer containing one of the following values:

PCI_MSI_INVALID (disabled/invalid)
1 PCI_MSI_VALID (enabled/valid)

A value defining which MSG type is being used. An unsigned integer containing one of
the following values, as per PCle spec 1.0a

0x18 PCIE_PME_MSG PME message

Oxlb PCIE_PME_ACK_MSG PME ACK message
0x30 PCIE_CORR_MSG Correctable message
0x31 PCIE_NONFATAL_MSG Non-fatal message
0x33 PCIE_FATAL_MSG Fatal message

An unsigned integer containing one of the following values:

PCI_MSG_INVALID (disabled/invalid)
1 PCl_MSG_VALID (enabled/valid)

24.4.1. pci_msig_conf

trap#

FAST_TRAP

170

PCl MSI Services

function# PCl _Vsl Q_CONF
arg0 devhandle

argl msiqid

arg2 r_addr

arg3 nentries

retO status

Configure the MS| queue given by the argumentsdevhandl e, nsi qi d for use and to be placed at red
addressr _addr , and of nent ri es entries. nent ri es must be a power of two number of entries.

r _addr must be aligned exactly to match the queue size. Each queue entry is 64 bytes long, so for
example, a 32 entry queue must be aligned on a 2048 byte real address boundary.

The MSI-EQ Head and Tail areinitialized so that the MSI-EQ is empty.

Implementation Note: Certain implementations have fixed sized queues. In that case nent ri es must
contain the correct value.

24.4.1.1. Errors

EINVAL Invalid devhandl e, nsi gi d, or nentries
ENORADDR r _addr isnotavalid real address
EBADALIGN r _addr isnot properly aligned

24.4.2. pci_msiqg_info

trap# FAST_TRAP
function# PCl _MBI Q I NFO
argo devhandle

argl msiqid

ret0 status

retl r_addr

ret2 nentries

Return configuration information for the MSI queue given by the argumentsdevhandl e, nsi qi d.

The base address of the queue isreturned inr _addr . The number of entries in the queue is returned in
nentries.

If the queue isunconfigured r _addr isundefined and zero isreturned innent ri es.

24.4.2.1. Errors
EINVAL Invalid devhandl e or nsi gi d

24.4.3. pci_msiqg_getvalid

trap# FAST_TRAP
function# PCl _Vsl Q GETVALI D

171

PCl MSI Services

arg0 devhandle
argl msigid
retO status
retl msigvalid

Get the valid state of the MSI-EQ defined by the argumentsdevhand| e and nsi gi d.
24.4.3.1. Errors

EINVAL Invalid devhandl e orsi qi d

24.4.4. pci_msiqg_setvalid

trap# FAST_TRAP

function# PCl _MSI Q SETVALID
arg0 devhandle

argl msiqgid

arg2 msigvalid

retO status

Set the valid state of the MSI-EQ defined by the arguments devhandl e and nsiqgid to
the state described by the argument nsi gval i d. nsi qval i d must be PCI _MSI Q VALI D or
PCl _MSI Q_| NVALI D.

24.4.4.1. Errors

EINVAL Invaliddevhandl e, nsi qi d,ormsi qval i d valueortheMSI EQ isunini-
tidized.

24.4.5. pci_msiq_getstate

trap# FAST_TRAP

function# PCl _IVBl Q GETSTATE
arg0 devhandle

argl msiqgid

retO status

retl msigstate

Get the state of the MSI-EQ defined by the argumentsdevhandl e and nsi qi d.
24.4.5.1. Errors
EINVAL Invalid devhandl e ormsi qi d

24.4.6. pci_msiq_setstate

trapt FAST TRAP
functiontt PCI _MSI Q SETSTATE

172

PCl MSI Services

arg0 devhandle
argl msigid
arg2 msigstate
retO status

Set the state of the MSI-EQ defined by the arguments devhandl e and nsiqid to the
state described by the argument nsi st at e. nsi gst at e must be PCl _MSI QSTATE | DLE or
PCl _MSI QSTATE_ERROR

24.4.6.1. Errors

EINVAL Invaliddevhandl e, nrsi qi d, or nsi gst at e valueor MSI EQ isuninitial-
ized

24.4.7. pci_msiqg_gethead

trap# FAST_TRAP
function# PCl _Vsl Q GETHEAD
arg0 devhandle

argl msiqid

retO status

retl msighead

Return the current msighead for the MSI-EQ described by the arguments devhandl e, nsi gi d.
24.4.7.1. Errors
EINVAL Invalid devhandl e or nsi gi d or MSI EQ isuninitialized

24.4.8. pci_msiqg_sethead

trap# FAST_TRAP
function# PCI MBI Q SETHEAD
arg0 devhandle

argl msigid

arg2 msighead

ret0 status

Set the MSI EQ queue head in the MSI EQ described by the arguments devhandl e, nsi qi d to the
value given by the nsi ghead argument.

24.4.8.1. Errors
EINVAL Invalid devhandl e, nsi qgi d, or msi ghead or MSI EQ is uninitialized

24.4.9. pci_msiqg_gettail

trap# FAST_TRAP

173

PCl MSI Services

function# PCl _MSI Q GETTAI L
arg0 devhandle

argl msiqid

retO status

arg2 msiqtail

Return the current si gt ai | for the MSI-EQ described by the arguments devhandl e, nsi qi d.
24.49.1. Errors
EINVAL Invalid devhandl e or nsi gi d or MSI EQ is uninitialized

24.4.10. pci_msi_getvalid

trap# FAST_TRAP

function# PClI MBI _GETVALI D
arg0 devhandle

argl msinum

retO status

retl msivalidstate

Return in msi val i dst at e the current valid/enabled state for the MSI defined by the arguments de-
vhandl e, nsi num

24.4.10.1. Errors
EINVAL Invalid devhandl e or msi num

24.4.11. pci_msi_setvalid

trap# FAST_TRAP

function# PCl _MSI _SETVALI D
arg0 devhandle

argl msinum

arg2 msivalidstate

ret0 status

Set the valid/enabled state of the MS| described by the arguments devhandl e, nsi numto the valid/
enabled state defined by the argument nsi val i dst at e

24.4.11.1. Errors
EINVAL Invalid devhandl e, nsi num or nsi val i dst at e

24.4.12. pci_msi_getmsiq

trap# FAST_TRAP
function# PCl _MSI _GETMVSI Q

174

PCl MSI Services

arg0 devhandle
argl msinum
retO status

retl msigid

For the MS! defined by the argumentsdevhandl e, msi numreturn the MSI EQ that thisMSI is bound
tointhe return value nsi qi d.

24.4.12.1. Errors
EINVAL Invalid devhandl e or nsi numor MSI is unbound

24.4.13. pci_msi_setmsiq

trap# FAST_TRAP
function# PCl MBI _SETMSI Q
arg0 devhandle

argl msinum

arg2 msiqid

arg3 msitype

ret0 status

Set the target M S| queue of the MSI defined by the argumentsdevhandl e, nsi numto the MSI EQ ID
defined by the argument si qi d.

24.4.13.1. Errors
EINVAL Invalid devhandl e, nsi num or si qi d

24.4.14. pci_msi_getstate

trap# FAST_TRAP

function# PCl _NVSI _GETSTATE
arg0 devhandle

argl msinum

retO status

retl msistate

Return the state of the M Sl defined by the argumentsdevhandl e, nsi num If the MSl isnot initialized,
returns the state PCI _MSI STATE_| DLE.

24.4.14.1. Errors
EINVAL Invalid devhandl e or msi num
24.4.15. pci_msi_setstate

trap# FAST_TRAP

175

PCl MSI Services

function# PCl _\VSI _SETSTATE
arg0 devhandle

argl msinum

arg2 msistate

retO status

Set the state of the MSI defined by the arguments devhandl e, nsi numto the state defined by the
argument nsi st at e.

24.4.15.1. Errors

EINVAL Invaliddevhandl| e, nsi num or nsi st at e

24.4.16. pci_msg_getmsiq

trap# FAST_TRAP
function# PCl _MSG_GETMSI Q
arg0 devhandle

argl msgtype

retO status

retl msiqgid

For the msg defined by the argumentsdevhandl e, nsgt ype return the MS| EQ that this msg is bound
tointhereturn valuensi qi d.

24.4.16.1. Errors

EINVAL Invalid devhandl e or nsgt ype

24.4.17. pci_msg_setmsiq

trap# FAST_TRAP
function# PCl _MSG_SETMSI Q
arg0 devhandle

argl msgtype

arg2 msigid

retO status

Set thetarget msiq of the msg defined by the argumentsdevhandl e, nsgt ype totheMSI EQ id defined
by the argument nsi qi d.

24.4.17.1. Errors
EINVAL Invalid devhandl e, nsgt ype, or nsi qi d

24.4.18. pci_msg_getvalid

trap# FAST_TRAP

176

PCl MSI Services

function# PCl _MSG_GETVALI D
arg0 devhandle

argl msgtype

retO status

retl msgvalidstate

Return in nsgval i dst at e, the current valid/enabled state for the msg defined by the arguments de-
vhandl e, nsgt ype.

24.4.18.1. Errors

EINVAL Invalid devhandl e or nsgt ype

24.4.19. pci_msg_setvalid

trap# FAST_TRAP

function# PCl _MSG_SETVALI D
arg0 devhandle

argl msgtype

arg2 msgvalidstate

retO status

Set the valid/enabled state of the msg described by the arguments devhandl e, nsgt ype to the valid/
enabled state defined by the argument nsgval i dst at e

24.4.19.1. Errors

EINVAL Invalid devhandl e, nsgt ype, or nsgval i dst at e

177

Chapter 25. Cryptographic services

The following APIs provide access via the Hypervisor to hardware assisted cryptographic functionality.
These APIs may only be provided by certain platforms, and even then may not be available to all virtual
machines. Restrictions on the use of these APIs may be imposed in order to support live-migration and
other system management activities.

25.1. Random Number Generation

The UltraSPARC-T2 incorporates a hardware random number generator to support cryptographic func-
tionality. This provides a source of entropy to be used by Operating System cryptographic frameworks to
ultimately provide efficient random number generation to higher layers of software.

Therandom number generation (RNG) APIsprovidetwo formsof accessto the underlying RNG hardware;
configuration & management, and random number data access.

25.1.1. Trusted Domains

In order to provide system-wide security, the configuration & management APIs are restricted in multiple
domain configurations to use only by Trusted Domains, for example the Control Domain.

Only Trusted domains are allowed configuration and diagnostic control of the RNG.

Trusted domains are designated by the L Dom manager with enforcement of such designation implemented
within the Hypervisor. Attempts by anon-trusted domain to access Control or Diagnostic related API entry
points will fail with ENOACCESS errors.

Note that accessto Control and Diagnostic entry pointsis dynamic and can be taken away at anytime from
adomain. Exactly one (1) domain must exist as the Trusted Domain to ensure proper RNG behavior.

In the 1.0 AP, trusted domains were able to execute ther ng_get _di ag_cont r ol call, which gave
them exclusive access to the trusted domain API calls. Inthe 2.0 AP, this call has been dropped and only
one domain, as specified by the LDoms manager, is allowed access to the trusted domain API calls.

The RNG operations are restricted as follows for the 1.0 API:

Trusted Domain(s) Any Domain
RNG_GETDIAG_CONTROL RNG_DATA_READ
RNG_CTL_READ

RNG_CTL_WRITE

RNG_DATA_READ_DIAG

The RNG operations are restricted as follows for the 2.0 API:

Trusted Domain(s) Any Domain
RNG_CTL_READ RNG_DATA_READ
RNG_CTL_WRITE

RNG_DATA_READ DIAG

25.1.2. RNG Control Register data structure

Each RNG has both aread-only data register and a control register. The control register is used to modify
the behavior of the random number generator, while the dataregister contains each of the random numbers
consumed by client software. Both registers are 64-bits wide.

178

Cryptographic services

The RNG generates random numbers by using three independent noise generators. Each of these noise
generators may be individually programmed by writing to the same RNG control register a bit string in
bits 3:0 that specifies which noise generator needs to be programmed. If none of the bits are set, the noise
cells are turned off. If any combination of two or more bits are set, all of the noise generators are selected.
In this way, there are four ways in which the noise generator apparatus may be programmed. One can
select noise cell 1, cell 2, cell 3, or al of the cells at once.

Due to this noise generator selection scheme, four successive writes to the same control register with
different settingsin bits 3:0 will completely configure the RNG.

To expedite writing out the control register'sfour possible settings, the control register read and write APIs
use a data structure comprised of all four possible control register settings.

Offset Size Field Description

0 8 rng ctll Control bit for cell selection 1
8 8 rng ctl2 Control bit for cell selection 2
16 8 rng_ctl3 Control bit for cell selection 3
24 8 rng_ctl4 Control bit for cell selection 4

25.1.3. RNG State

Specifies the state of the RNG and isset duringrng_ct | _wri t e operations.

Table25.1. RNG states

Name Value
RNG_STATE_UNCONFIGURED 0
RNG_STATE_CONFIGURED 1
RNG_STATE_HEALTHCHECK 2
RNG_STATE_ERROR 3

When “configured” the RNG is available for general r ng_dat a_r ead operations. In “health check”
mode the RNG is generally unavailable and assumed to be going through a health check sequence viaa
Trusted domain. Once the health check is complete the Trusted domain will return the RNG to a*“ config-
ured” state. If the health check determines that the RNG is faulty then it will be left in the “error” state
and thus unavailable for any r ng_dat a_r ead operations.

25.1.4. Maximum Data Read Length

The minimum length in bytes that can be read from the hardware RNG Data Register by
rng_dat a_r ead_di ag isdefined to be 8 bytes.

The maximum length in bytes that can be read from the hardware RNG Data Register by
rng_data_read_di ag isdefined to be 128K bytes (128 * 1024).

25.1.5. RNG Mutual Exclusion

All of the RNG hypervisor entry points are protected through mutual exclusion by the hypervisor to ensure
that only one thread of control is operating on the RNG at atime. This is necessary to prevent against
competing threads (or OS Guests) from re-initializing the RNG hardware while a Data read is possibly
in progress from ancther thread.

179

Cryptographic services

The hypervisor does not block waiting for access to the RNG device, instead it will return to the caller
with a EWOULDBLOCK error indicating that the hardware device was temporarily unavailable.

25.1.6. RNG Data Availability

The hypervisor will return EWOULDBLOCK errorswhen attempts are madeto read datawhen no random
datais available.

25.1.7. RNG Watchdog Timeout

Each RNG device may be configured for a specific amount of time. Once that timeout value is reached,
the RNG device is transitioned to the “unconfigured” state. The watchdog delta is the number of system
ticks until the RNG transfersto the “unconfigured” state.

25.1.8. rng_data_read

trap# FAST_TRAP
function# RNG_DATA READ
arg0 raddr

retO st at us

retl delta

API for reading a single 64-hit quantity from the RNG Data Register. The contents of the RNG Data
Register are stored into the buffer specified by r addr . The buffer address must be a real address and 8-
byte aligned.

The RNG register must be in the RNG_STATE_CONFI GURED state in order to successfully read from
the Data Register.

The client specifies the RNG to which it wants access by providing ther ng_i d (ar g3) associated with
that RNG. If ther ng_i d isinvalid then EINVAL isreturned.

If this function returns EWOULDBLOCK, indicating that the hardware isn't ready to respond to the re-
quest, then it also returns a system clock tick valueinr eady_del t a indicating how many system clock
ticks before the RNG will be available for a subsequent operation. Note that it is also possible for the
caller to encounter an EWOULDBLOCK error should another thread simply be doing a RNG operation
at the same time. In this situation the returned r eady _del t a will likely be O indicating that the RNG
isimmediately available for retrying.

25.1.8.1. Errors

EIO RNG is currently Unconfigured or in a Healthcheck

ENOACCESS RNG isin the Error state and unavailable

EBADALIGN Pointer addressis not correctly aligned

ENORADDR Pointer addressis not avalid real address

EWOULDBLOCK RNG currently in use by another thread or it has not yet reached its steady state

25.1.9. rng_ctl_read (2.0)

trap# FAST_TRAP
function# RNG CTL_READ

180

Cryptographic services

arg0 raddr

argl rng id

retO st at us

retl state

ret2 ready _delta
ret3 wat chdog_del ta
ret4 write status

ThisAPI will storethe contents of the RNG control register into the structure pointedtoby r addr (ar g0).
Thisaddress must be areal address, physically contiguous, and aligned on an 8-byte boundary. If ar g0 is
NULL (0), then no control register information will be stored. ThisAPI will also returnthe current st at e
(retl),thecurrentready_del t a (r et 2), which specifiesin how many system clock ticks from the
present time the RNG data register will be available for reading, thewat chdog del t a (r et 3), which
specifies in how many system clock ticks from the present time the RNG will transition to an error state,
andthewri t e_st at us* (r et 4), which provides the status of the last write operation on the control
register for this RNG.

If ther eady_del t a hasavalue of zero, it indicates that the RNG dataregister isimmediately available.

If wat chdog_del t a has avalue of zero, it means that either the RNG has transitioned to the uncon-
figured state or that it was set initially to keep its current state in perpetuity. The client is responsible
for checking st at e to see in which way the watchdog timeout was used. If st at e refersto either the
healthcheck or configured states, it means that the watchdog timeout was not set. If st at e refersto the
unconfigured state, it means that the RNG needs to be re-programmed.

The client specifies the RNG to which it wants access by providing ther ng_i d (ar g1) associated with
that RNG. If ther ng_i d isinvalid an error is returned.

Itispossiblefor the caller to encounter an EWOULDBLOCK error should another thread be doing aRNG
operation on the same r ng_i d at the same time. If the RNG currently has a write operation pending,
an EBUSY error will be returned. If Hypervisor returns an EBUSY error, thevalueinwr i t e_st at us
is undefined.

25.1.9.1. Programming note
The actual N2 RNG hardware control register does not return the same contents that were written from

a previous write operation. Thus, the Hypervisor will keep a snapshot of what was written on a previous
rng_ctl _write andsimply returnsthisinformation whenever r ng_ct | _r ead iscalled.

25.1.9.2. Write status

EOK Success
EIO Last write operation failed, the RNG contains the last valid configuration

25.1.9.3. Errors

EBADALIGN Pointer addressis not correctly aligned
EINVAL Invalid RNG ID

EBUSY RNG has a pending write operation
ENORADDR Pointer addressis not avalid real address

181

Cryptographic services

EWOULDBLOCK RNG currently in use by another thread, caller should retry
ENOACCESS Caller does not have permission to call this API

25.1.10. rng_ctl_write (2.0)

trap# FAST_TRAP
function# RNG _CTL_WRI TE
arg0 raddr

argl newst at e

arg2 wat chdog_ti neout
arg3 rng_id

retO status

Thisisthe API for initializing the RNG hardware by writing to the RNG control register with the contents
of the structure pointed to by r addr (ar g0). Write operations are asynchronous. Before returning to
the caller, the hypervisor will schedule the control register to be written out at a future time. If the caller
attempts to write to the same RNG before the prior write attempt completes, this call will return with an
EBUSY error number.

r addr isareal addressand must be physically contiguous and aligned on an 8-byte boundary. The state of
the RNG will besetto newst at e (ar g1) and must be one of the state val ues specified in Section 25.1.3,
“RNG State”.

The ready delta of the RNG will be determined by finding the largest wait counter value from the control
register settings specified by r addr . That value will be used by Hypervisor to monitor reads of the RNG
dataregister. EWOULDBLOCK will be returned when the pool is empty and reads of the dataregister are
attempted before the wait counter has been exhausted.

When setting the state to RNG_STATE_CONFI GURED the caller also specifiesawat chdog_t i neout

(arg2), in system ticks (delta from the current time), to indicate when the current configura-
tion setting will effectively expire. Once this time has expired the RNG will be placed into the
RNG_STATE_UNCONFI GURED state thus taking the RNG out of the pool for data reads. Specifying a
wat chdog_t i meout valueof zero (0) disablesthe watchdog timeout for the new configuration setting.
Theintent of providing atimeout isto allow a Trusted Guest to enforceapolicy of periodic “ health checks’
of the RNG hardware if required. Thewat chdog_t i meout argument isignored when specifying any
state other than RNG_STATE_CONFI GURED.

For the sake of backwards compatibility, there will be a watchdog timeout threshold. If the client sets a
value at or below that threshold, the value is assumed to be zero. The threshold is 60 seconds worth of
system ticks.

The client specifies the RNG to which it wants access by providing ther ng_i d (ar g3) associated with
that RNG. If ther ng_i d isinvalid then EINVAL isreturned.

Itispossible for the caller to encounter an EWOULDBLOCK error should another thread be doinga RNG
operation on the same RNG at the same time.

25.1.10.1. Errors

EIO Writeto RNG control register failed
EBUSY A write operation for the specific RNG is still pending
EINVAL Specified stateis not avalid value or an invalid RNG 1D was specified

182

Cryptographic services

EBADALIGN Pointer addressis not correctly aligned
ENORADDR Pointer addressis not avalid real address
EWOULDBLOCK RNG currently in use by another thread
ENOACCESS Caller does not have permission to call this API

25.1.11. rng_data_read_diag (2.0)

trap# FAST_TRAP

function# RNG_DATA_READ DI AG
arg0 raddr

argl si ze

arg2 rng_id

retO st at us

retl ready_delta

This API provides access to 64-bit quantities from the RNG Data Register. The contents of the RNG Data
Register are repeatedly read and stored into consecutive locations starting at the specified r addr .

The buffer addressin r addr must be areal address, size aligned, and physically contiguous. The buffer
si ze specifies the size of the buffer in bytes and must be a multiple of 8. If the size is greater than 8
then the RNG Data Register will be re-read into consecutive locations in the buffer for each multiple of 8
specified by size. For example, if abuffer size of 32 is specified then the RNG Data Register will be read
4 times (32/8) with each read consecutively stored into the buffer address.

If this function returns EWOULDBLOCK, indicating that the hardware isn't ready to respond to the re-
quest, then it also returns a system clock tick valueinr eady_del t a indicating how many system clock
ticks from the current time that the RNG will be available for a subsequent operation.

25.1.11.1. Programming Note

The caller of this APl must have Diagnostic Control of the RNG in order to invoke this operation (see
Section 25.1.12.1, “rng_get_diag_control (1.0)").

25.1.11.2. Errors

EINVAL Specified buffer sizeisnot valid or aninvalid RNG ID has been specified

EBADALIGN Pointer addressis not correctly aligned

ENORADDR Pointer addressis not avalid real address

EWOULDBLOCK RNG is currently in use by another thread or it has not yet reached its steady
state. The caller should retry inr eady_del t a system clock ticks.

ENOACCESS Caller does not have permission to call this API

25.1.12. Deprecated RNG 1.0 APIs
25.1.12.1. rng_get_diag_control (1.0)

trap# FAST_TRAP
function# RNG_GET_DI AG_CONTROL

183

Cryptographic services

retO

st at us

This API gives the calling Guest OS diagnostic control over the RNG for performing subsequent
rng_ctl_witeandrng_data_read_di ag operations. Only one Guest at atime is permitted to
execute the af orementioned diagnostic operations. Control will remain with the current Guest until another
Guest takes control by invoking this same entry point.

25.1.12.1.1. Errors

EWOULDBLOCK RNG currently in use by another thread

ENOACCESS

Caller does not have permission to call this API

25.1.12.2. rng_ctl _read (1.0)

trap#
function#
arg0

retO

retl

ret2

FAST_TRAP
RNG_CTL_READ
raddr

st at us

state

delta

This APl will store the contents of the RNG Control registersinto the RNG control structure pointed to by
r addr . This address must be areal address, physically contiguous, and aligned on an 8-byte boundary.
If raddr is NULL (0), then no Control register information will be stored. This APl will aso return
the current st at e, and the current ready del t a which specifies how many system clock ticks from the
present time that the RNG will be available for further operations. A value of zero indicates that the RNG
isimmediately available.

25.1.12.2.1. Programming note

The actual N2 RNG hardware control register does not return the same contents that were written from
a previous write operation. Thus, the Hypervisor will keep a snapshot of what was written on a previous
rng_ctl _write andsimply return thisinformation whenever r ng_ct | _r ead iscalled.

25.1.12.2.2. Errors

EBADALIGN Pointer addressis not correctly aligned

ENORADDR Pointer addressis not avalid real address
EWOULDBLOCK RNG currently in use by another thread, caller should retry
ENOACCESS Caller does not have permission to call this API

25.1.12.3. rng_ctl_write (1.0)

trap#
function#
argo

argl

arg2

ret0

FAST_TRAP

RNG _CTL_WRI TE
raddr

newst at e

ti meout

status

184

Cryptographic services

retl delta

This APl is used to initialize the RNG hardware by writing to the RNG Control register with the contents
of the structure pointed to by r addr . This address must be a real address, physically contiguous, and
aligned on an 8-byte boundary. The state of the RNG will be set to newst at e and must be one of the
state values specified in Section 25.1.3, “RNG State”.

When setting the state to RNG_STATE_CONFI GURED the caller also specifiesat i meout , in system
ticks (a delta from the current time), to indicate when the current configuration setting will effectively
expire. Once this time has expired the hypervisor will put the RNG into the RNG_STATE_ERROR state
thus making the RNG unavailable for Data Reads. A t i neout value of zero (0) indicates an infinite
lifetime for the new configuration setting.

If this function returns EWOULDBLOCK, indicating that the hardware isn't ready to respond to the re-
quest, it also returnsavaluein delta (in system clock ticks) indicating when the RNG will be availablefor a
subsequent operation. Thisdelay in having the RNG available occurs after apreviousrng_ctl _wite
operation and isto alow the RNG to reach a steady state after it has been configured.

25.1.12.3.1. Programming note

Theintent of providing atimeout isto allow a Trusted Guest to enforce apolicy of periodic “ health checks’
of the RNG hardware if required. The timeout argument is ignored when specifying any state other than
RNG_STATE_CONFI GURED.

Note also that the caller must have Diagnostic Control of the RNG in order to invoke this operation (see
Section 25.1.12.1, “rng_get_diag_control (1.0)").

25.1.12.3.2. Errors

EIO The calling Guest does not currently have Diagnostic Control to manipulate
the RNG settings. Caller must first invoker ng_get _di ag_control .

EINVAL Specified state is not avalid value

EBADALIGN Pointer addressis not correctly aligned

ENORADDR Pointer addressis not avalid real address

EWOULDBLOCK RNG currently in use by another thread or it has not yet reached its steady state,
caller should retry in delta clock ticks.

ENOACCESS Caller does not have permission to call this API

25.1.12.4. rng_data_read_diag (1.0)

trap# FAST_TRAP

function# RNG DATA READ DI AG
arg0 raddr

argl si ze

retO st at us

retl delta

This API provides access to 64-bit quantities from the RNG Data Register. The contents of the RNG Data
Register are repeatedly read and stored into consecutive locations starting at the specified r addr . The
buffer addressinr addr must be areal address, size aligned, and physically contiguous. The buffer si ze
specifies the size of the buffer in bytes and must be a multiple of 8.

185

Cryptographic services

If the size is greater than 8 then the RNG Data Register will be re-read into consecutive locations in the
buffer for each multiple of 8 specified by size. For example, if a buffer size of 32 is specified then the
RNG Data Register will be read 4 times (32/8) with each read consecutively stored into the buffer address.

If this function returns EWOULDBLOCK, indicating that the hardware isn't ready to respond to the re-
quest, then it also returns a system clock tick value in del t a indicating how many system clock ticks
from the current time that the RNG will be available for a subsequent operation.

25.1.12.4.1. Programming Note

The caller of this APl must have Diagnostic Control of the RNG in order to invoke this operation (see
Section 25.1.12.1, “rng_get_diag_control (1.0)").

25.1.12.4.2. Errors

EIO The calling Guest does not currently have Diagnostic Control to manipulate
the RNG settings. Caller must first invoker ng_get _di ag_control .

EINVAL Specified buffer sizeis not valid

EBADALIGN Pointer addressis not correctly aligned

ENORADDR Pointer addressis not avalid real address

EWOULDBLOCK RNG currently blocked

ENOACCESS Caller does not have permission to call this API

25.2. Niagara crypto services

This sections describes the Niagara Crypto Service (NCS) Hypervisor APl for the UltraSPARC-T1 and
UltraSPARC-T2 processors. This API is designed to resemble the queuing interfaces provided by other
hypervisor APIs.

This interface is designed to be used by a more generic cryptographic framework provided by a guest
Operating System. (For example the Solaris Cryptographic Framework). Therefore these hypervisor ser-
vices only provide access to chip specific functionality, rather than providing more generic cryptographic
operations.

25.2.1. Versioning

Theinterface presented hererepresentsversion 2.0. The previousNCS hypervisor APl representing version
1.x is now deprecated.

25.2.2. Work queues

The UltraSPARC-T1 processor provides a multiply-accumulate-unit associated with each processor core
to be used for accelerating bulk cryptographic operations. UltraSPARC-T2 extended thisfunctionality and
added arandom number generator, and support for more advanced cryptographic operationsviathe CWQ.
A full description of thisfunctionality can befound in the programmer'sreference manuals for these chips,
and so is not discussed further here.

Work issubmitted to a cryptographic unit viaaqueue, and similarly results are enqueued by the hypervisor
upon completion. A queue type parameter is used to select between MAU and CWQ functionality for
work submission.

The queues are managed as circular arrays with head and tail pointers indicating where active jobs are
present— Operation of the queues is analogous to the interrupt queues. Note: Byte ordering of all fields
isBig-endian.

186

Cryptographic services

25.2.2.1. Queue Type

The queue type parameter specifies whether the queue being operated on represents either the MAU or
CWQ, and has one of the values as specified below:

Table 25.2. Niagara Crypto queue types

NCS_QTYPE_MAU

0x01

NCS_QTYPE_CWQ

0x02 (UltraSPARC-T2 only)

The queue handle parameter specifies a 64-bit unsigned integer value that uniquely identifies the queue
being operated on.

25.2.2.2. MAU queue

The MAU queueisdescribed by an array of 64-byte entrieswhere each entry is described by the following
structure:

Table 25.3. Niagara Crypto MAU queue entry

Offset | Size Name Description
0 8 nhd_state State
Valid values:
ND_STATE_FREE 0 Entry is unused
ND_STATE_PENDI NG 1 Allocated and pending submission to
MAU
ND_STATE_BUSY 2 Entry has been submitted to MAU
ND_STATE_DONE 3 Entry has been successfully executed
ND_STATE_ERROR 4 Entry completed execution, with an
error
8 8 nhd_type Bit flags to delineate independent MAU jobs which may be comprised
of one or more queue entries. Interrupts are only sent to the OS when
the Last entry in ajob has been compl eted.
Valid values:
ND_TYPE_UNASSI GNED 0x00 Entry is unused
ND_TYPE_START 0x01 Entry isthe start of ajob
ND_TYPE_CONT 0x02 Continuation of an existing job
ND_TYPE _END 0x80 Entry isthe end of ajob
16 32 nhd_regs Valuesto beinstaled in the MAU hardware registers.
Thenhd_r egs field is a 32 byte structure with the following format:
Offset Size Name Description
8 nr_ctl MA Control Register
nT_npa MA Physical Address Register

187

Cryptographic services

Offset | Size Name Description
Offset Size Name Description
16 8 nT_na MA Memory Address Register
24 8 nr_np MA NP Register

The exact definition of theseregistersisgiven in the Programmer's Ref-
erence Manua for the UltraSPARC-T1 or UltraSPARC-T2 processors,
and is beyond the scope of this document.

48 8 nhd_errstatus Bit flags indicating type of MAU error which may have occurred with
respect to descriptor.

Valid values:
ND _ERR OK 0x00 No Error

ND _ERR | NVOP 0x01 Invalid MAU operation
ND_ERR_HWE 0x02 Hardware error detected by MAU

56 8 Padding Padding out to 64 bytes.

25.2.2.3. CWQ queue (UltraSPARC-T2 only)

The CWQ queueisdescribed by an array of 64-byte entrieswhere each entry is described by the following
structure:

Table 25.4. Niagara Crypto CWQ queue entry

Offset Size Name Description

0 8 cw ctlbits Control bits indicating the nature of
the respective control word.

8 8 CW_src_addr Real address of source data.

16 8 cw_aut h_key_ addr Real address of location containing
authentication key.

24 8 cw_ auth_iv_addr Real address of location containing
initial value for authentication.

32 8 cw final _auth_state addr |Rea addressof thelocation that will
be used to hold the final authentica-
tion state.

40 8 cw_enc_key_addr Real address of location containing
encryption key.

48 8 cw_enc_i v_addr Real address of location containing
encryption initialization vector.

56 8 cw_dst _addr Real address of destination buffer.

The PRM for UltraSPARC-T2 details the exact definition of these fields.
25.2.3. ncs_gconf

trap# FAST_TRAP
function# NCS_ QCONF

188

Cryptographic services

argo queue_type
argl raddr/handle
arg2 si ze

retO st at us

retl handl e

This API is used for configuring or unconfiguring either aMAU queue or a CWQ queue as specified by
gueue_t ype (ar g0).

The the real address of the base of the queueisgiveninr addr (ar g1) and must be aligned on a queue
size boundary. For example, a 32 entry MAU or CWQ queue must be aligned on a 2048-byte real address
boundary. When unconfiguring a queue, the handl e (ar g1) represents the queue to be unconfigured.

The number of entriesin the queueisgiveninsi ze (ar g2) and must be a power of 2. A value of zero
(0) unconfigures the given queue represented by the queue handl e (ar g1).

25.2.3.1. Programming note

Upon success, when configuring a queue, the caller is returned a queue handl e (r et 1) which must be
used for subsequent queue operations. Note that the queue being configured is only of the MAU/CWQ for
the processor core containing the CPU upon which the caller is executing.

The calling thread should bind itself to the current CPU to ensure its context does not get switched to a
different CPU and possibly a different core during the operation.

25.2.3.2. Errors

EINVAL Specified queue type is not recognized, or specified queue size is not a power
of 2, or queue handleisinvalid

ENOACCESS CPU does not have accessto a MAU/CWQ

EBADALIGN Base address of queue is not correctly aligned

ENORADDR Pointer addressis not avalid real address

25.2.4. ncs_ginfo

trap#t FAST_TRAP
function# NCS_Q NFO
arg0 handl e
retO st at us

retl type

ret2 raddr

ret3 si ze

ThisAPI retrievesthe queuet ype and thereal address of the base of the queue (inr addr), and the queue
si ze for the queue identified by the queue handl e (ar g0).

25.2.4.1. Errors

EINVAL Queue handleisinvalid

189

Cryptographic services

25.2.5. ncs_gethead

trap#t FAST_TRAP
function# NCS_GETHEAD
arg0 handl e

retO st at us

retl of f set

This APl retrieves the head offset for the queue identified by handl e (ar g0). The head of f set repre-
sents the current beginning point for queue jobs to be processed. There is no guarantee that subsequent to
calling this entry point that the head will not move forward.

25.2.5.1. Errors

EINVAL Queue handleisinvalid

25.2.6. ncs_sethead_marker

trap# FAST_TRAP

function# NCS_SETHEAD MARKER
arg0 handl e

argl of f set

retO st at us

This API tells the hypervisor to set the head of f set (ar g1) for a given queue handle (ar g0) to the
specified value. This value is used to effectively determine how far along the caller has processed the
gueue of descriptorsrelative to where the CWQ hardwareis currently operating. ThisvalueisNOT stored
into the actual CWQ hardware Head register since that register is managed by hardware once a queue has
been configured and enabled.

The of f set must be aligned on a 64-byte boundary. Any attempt to specify a head offset value that
resides after the hardware's notion of the current head and before the hardware's notion of the current tail
will result in an EINVAL error.

25.2.6.1. Errors

EINVAL Queue handl e isinvalid or specified queue head of f set valueisinvalid

25.2.7. ncs_gettail

trap#t FAST_TRAP
function# NCS_GETTAI L
arg0 handl e

ret0 st at us

retl of f set

This API retrievesthe tail of f set (r et 1) for the queue identified by the queue handl e (ar g0).

The tail represents the current point for enqueuing new jobs. Changes in the tail can only happen viathe
ncs_settail API.

190

Cryptographic services

25.2.7.1. Errors

EINVAL Queue handl e isinvalid

25.2.8. ncs_settail

trap# FAST_TRAP
function# NCS_SETTAI L
arg0 handl e

argl tail _of fset
retO st at us

This API tells the hypervisor to set thet ai | _of f set for agiven queue handl e (ar g0) to the value
specified inof f set (ar g1). The hypervisor will automatically start processing of operations starting at
the current head pointer, if not already in progress.

The offset must be aligned on a 64-byte boundary and cal culated so as to increase the number of pending
entries on the queue. Any attempt to decrease the number of pending queue entriesisconsidered aninvalid
tail offset and will result in an EINVAL error.

25.2.8.1. Programming note

Care must be taken with multi-threaded guest code where a scheduler may move the calling thread to
another virtual CPU. To ensure that the caller does not get switched to a different CPU and thus possibly
adifferent core and crypto queue between enqueuing ajob and callingthencs_sett ai | API, thecaler
should bind itself to the target CPU.

The caller can wait for an asynchronous interrupt indicating completion of ajob in the queue at which
point the caller must check the current head/tail pointersto verify whether their job has completed.

25.2.8.2. Errors

EINVAL Queue handl e isinvalid or queuet ai | _of f set valueisinvalid
ENORADDR Buffer address referenced in queue entry isnot avalid real address

25.2.9. ncs_ghandle_to_devino

trap# FAST_TRAP
function# NCS_(QHANDLE_TO DEVI NO
arg0 handl e

ret0 st at us

retl devi no

This API retrieves the interrupt number (devi no) for the crypto unit represented by the given queue
handl e (ar g0).

25.2.9.1. Errors

EINVAL Queue handl e isinvalid

191

Cryptographic services

25.2.10. ncs_ulgconf (version 2.1)

trap# FAST TRAP

function# NCS UL QCONF

arg0 base_ address or queue_handl e
argl page_si ze (encoded)

arg2 gueue_si ze (#entries)

retO st at us

retl gueue_handl e

This APl isfor configuring or unconfiguring the CWQ to set it up for the new User-land mode of opera-
tion of UltraSPARC-KT[ua2007n3]. When configuring a queue the caller isreturned aqueue_handl e
(r et 1) which can be used to unconfigure the given CWQ.

When configuring a queue, the base_addr ess (ar g0) isthe real address of the page that is dedicated
for the queue and all data that is used by this CWQ during user-land operation. The queue itself should
be set up within the first 4K of the page. The page sizes supported are 4M and 256M as the smaller sizes
enabled by the specification (8K and 64K) would be too small for smooth operation.

When unconfiguring a queue, the queue__handl e (ar g0) represents the queue to be unconfigured.

The page_si ze (ar g1) specifies the size of the page to be configured, encoded according to Table
21-18 of [ua2007n3] (that is 3 for 4M and 5 for 256M, other values are invalid).

Thequeue_si ze (ar g2) specifiesthe number of entriesin the queue and must be apower of 2. A value
of zero (0) is used to unconfigure the given queue represented by queue_handl e (ar g0).

Note

The queue being configured is only of the CWQ for the core containing the CPU upon which the
caller is executing. The calling thread should bind itself to the current CPU to ensure its context
does not get switched to adifferent CPU and possibly a different core during the operation.

25.2.10.1. Errors

EINVAL Thespecifiedqueue_si ze isnot apower of two, thepage_si ze isinvalid,
or thequeue_handl e isinvalid

ENOACCESS CPU does not have accessto a CWQ

EBADALIGN base_addr ess isimproperly aligned

ENORADDR base_addr ess isnot avalid real address

25.3. Trusted Platform Module Physical Access

A platform's TPM is expected to be used by a guest assuming the role of the control domain. These APIs
are intended to be used by that guest. Virtual TPMs are expected to be used by all other guests.

25.3.1. TPM Definitions

25.3.1.1. TPM Locality

Locality isdefined in the PC Client specification[tpmpc]. Following isabrief summary of TPM Localities.

192

Cryptographic services

Locality is a concept that allows various trusted processes on the platform to communicate with the TPM
such that the TPM isaware of which trusted processis sending commands. There are six Localities defined
(numbered 0-4 and Legacy). Their use is defined as:

Locality 4 Trusted hardware. Thisisthe Dynamic RTM.

Locality 3 Auxiliary components. Use of thisis optional and, if used, it is implementation
dependent.

Locality 2 This s the run-time environment for the Trusted Operating System.

Locality 1 An environment for use by the Trusted Operating System.

Locality O The legacy environment for the Static RTM and its chain of trust.

Legacy locality ThisisLocality 0 using TPM 1.1 type 1/O ports.

25.3.1.2. TPM Registers

The registers specified by the PC Client specification[tpmpc] for Locality O are listed below.

Table 25.5. TPM Registers

Offset Size Register Description
0x00 1 TPM_ACCESS Used to gain ownership of port
0x08 4 TPM_| NT_ENABLE Controlsinterrupts
0x0c 1 TPM_I NT_VECTOR SIRQ vector to be used by the TPM
0x10 4 TPM_ I NT_STATUS Interrupt status
0x14 4 TPM_| NTF_CAPABI LI TY Interrupt capabilities
0x18 4 TPM _STS Status register
0x24 4 TPM_DATA_FI FO Read or write FIFO
0xf00 4 TPM DI D VID Device ID/Vendor ID
0xf04 1 TPM RI D Devicerevision ID
Oxf05-0xf7f TCG-defined config registers
Oxf80-0xfff Vendor-defined config registers

All registers are architected to be exposed to “untrusted” software. There are various protocols to disable
certain functionality before the “untrusted” software is handed control. The guest may have access to all

of the programmable registersjust asin atypical personal computing environment.

25.3.2. TPM Hypervisor Calls

The following API calls are used to access a platform's TPM and are in the TPM API group.

25.3.2.1. tpm_qget

trap# FAST_TRAP
function# TPM GET

arg0 locality

argl regi ster_of fset

193

Cryptographic services

arg2
retO
retl

access_size
status
regi ster_val ue

This call reads the value of a TPM register as specified by ther egi st er _of f set argument using the
TPM locality specified by | ocal i t y. Thesize of the register accessis specified by theaccess_si ze

argument.

On success, the call returnsa st at us of EOK and the value of the requested TPM register.

25.3.2.1.1. Errors

EINVAL

ENOACCESS

25.3.2.2. tpm_put

trap#
function#
arg0

argl

arg2

arg3

retO

Invalid|l ocal i ty,regi ster_of fset,oraccess_si ze.
Operation administratively prohibited.

FAST_TRAP
TPM_PUT
locality

regi ster_of f set
access_si ze
regi ster_val ue
status

This call writes avalueto a TPM register as specified by ther egi st er _of f set argument using the
TPM locality specified by | ocal i ty. The size of the register accessis specified by theaccess_si ze

argument.

On success, the call returnsa st at us of EOK and the value of the requested TPM register.

25.3.2.2.1. Errors

EINVAL

ENOACCESS

Invalid locality, register_offset, or access size.
Operation administratively prohibited.

194

Chapter 26. UltraSPARC-T2 Network
Interface Unit

26.1. Introduction

The network interface incorporated into the UltraSPARC-T2 processor isdesigned to be high performance
and capable of many sophisticated operations in order to optimize the performance of the UltraSPARC
strands themselves.

Critically in support of virtualization, the device has multiple DMA engines that can be assigned to differ-
ent on-chip processing strands and driven by an on-chip packet filter in order to balance packet processing
load and achieve the greatest possible parallelism.

A detailed discussion of this device is beyond the scope of this document, and the reader is recommended
to read Chapters 22 through 28 [ua2007n2] for more detail.

For the purpose of this document, we assume aworking knowledge of the NIU and concern ourselveswith
accessing the device via programmed 10 operations (PlOs) and the addresses used in read/write requests.
The latter relates to memory protection. Together these two features enable resource (both memory and
DMAS) isolation, which isthe basis of virtualization.

In UltraSPARC T2, since the device is part of the processor, the hypervisor controls how the hardware is
presented to aguest OS. Not all hardware resources support virtualization directly.

The NIU in UltraSPARC T2 is accessed primarily viaload and store instructions and the hypervisor may
organize the hardware as a two-function device split into two different address ranges. Within each func-
tion, two address ranges are defined: one for management, one for virtualization. The entire device may
be accessed through the management addresses. Virtualization addresses, on the other hand, only have
accesses to a set of defined DMAS.

Thecontrol and statusregisters (CSRs) of multiple DMA channels can be grouped into an 8K B pagewithin
thevirtualization addressranges. Thegrouping itself isdefined by atableinthe management addressrange.
To support memory protection, each transmit or receive DMA supportstwo logical pages. The addressesin
the configuration registers, packet gather list pointers on the transmit side, and the allocated buffer pointer
on the receive side will be relocated accordingly. The logical page registers are only accessible via the
management address ranges.

In UltraSPARC T2, the sundv hypervisor software may expose an 8KB page, with afew DMASs defined,
to the driver software thus enabling the driver software to control those DMAs via PIOs. In addition, hy-
pervisor also definesthelogical page registersfor these DMAS, which limits the addresses ranges allowed
in the descriptors for DMA transactions. Together, this protects the system memory with regard to DMA
operations guest OS software may use.

The remainder of this section details the hypervisor APIs calls available to interact with the Ultra
SPARC-T2 NIU, however aworking knowledge of the device is essential to understand these interfaces.

26.2. Definitions

Here we define afew of the abbreviations and acronyms used in the rest of this section.

Logica Device (LD) - A term used generically to refer to a functional block that may ultimately cause
an interrupt.

195

UltraSPARC-T2 Net-
work Interface Unit

Logica Device Group (LDG) - A group of logical devices sharing an interrupt. A group may have only
onelLD.

Logica Device Flag (LDF) - Isalogica 'OR' of someLC

Logical Device Group Interrupt (LDGI) - Theinterrupt associated with aLDG. Thisinterrupt is controlled
by a one shot mechanism, i.e. hardware will issue only one single interrupt, and software will need to arm
the LDG again to enable it to issue another interrupt.

Logica Device State Vector (LDSV) - aread only state vector capturing the LDFs of ALL the LDs.

Logica Domain (LDom) - Separation of platform resources into self-contained partition that is capable
of supporting an operating system.

Logica Page - A contiguous range of memory location. If an address posted by software is within the
logical page, it will be translated to a physical address by replacing the base address of the logical page
with the base address of the physical page. The size of the logical page is programmable.

Receive Block Ring (RBR) - It isaring buffer of memory blocks posted by software.

Receive Completion Ring (RCR) - The ring stores the addresses of the buffers used to store incoming
packets.

Receive DMA Channel (RDC) - It iscomprised of aRBR, a RCR and a set of control and status registers.
A receive DMA channel is selected after an incoming packet is classified. A packet buffer isderived from
the pool and used to store the incoming packet. Each channel is capable of issuing interrupt to software
based on the queue length of the Receive Completion Ring or atime-out.

Transmit Ring (TR) - The datastructure built in system memory for software to post transmission requests.

Transmit DMA Channel (TDC) - Consists of atransmit ring and a set of control and status registers.

26.3. Version 1.0 and version 1.1 APIs

Version 1.0 of the NIU APIs allow a domain that owns a complete NIU device to configure, manage and
send/receive data through the NIU device.

Version 1.1 of the NIU APIs extend this ability to allow adomain to own part of the NIU device, specifi-
cally avirtual region with associated resources. It also adds a set of APIsto enable the domain that owns
the NIU device to share it with another domain.

26.4. Version 1.0 APIs
The following APIs are available by negotiating version 1.0 for the NIU API group.

26.4.1. niu_rx_logical_page_set

trap# FAST_TRAP
function# N2NI U _RX_LP_SET
arg0 chi dx

argl pgi dx

arg2 raddr

arg3 si ze

retO st at us

196

UltraSPARC-T2 Net-
work Interface Unit

This API configures a mapping described by arguments raddr and size in the NIU receive DMA engine
address tranglation (logical page) register indicated by chidx and pgidx.

If there is already a valid mapping for the page specified by pgidx, that mapping is overwritten.
The specified mapping is unconfigured if the sizeis 0. In this case, raddr isignored.

chidx must be between 0 and 15.

pgidx must be 0 or 1.

raddr must be size aligned.

size must be a power of 2.

26.4.1.1. Errors

EBADALIGN Invalid alignment for raddr or size
ENORADDR Invalid real address
EINVAL Invalid index for channel or register

26.4.2. niu_rx_logical_page get

trap#t FAST_TRAP
function# N2NI U _RX_LP_GET
arg0 chi dx

argl pgi dx

retO st at us

retl raddr

ret2 si ze

Return the current mapping in the NIU receive DMA engine address trandation (logical page) register
indicated by chi dx and pgi dx. Thereal addressand size arereturnedinret 1 andr et 2.

chi dx must be between 0 and 15.

pgi dx must be O or 1.

If there is no current mapping for the given chi dx and pgi dx, then thereturn valuesr addr andsi ze
will both be 0.

26.4.2.1. Errors

EINVAL Invalid index for channel or register

26.4.3. niu_tx_logical_page_set

trap# FAST_TRAP
function# N2NI U_TX_LP_SET
arg0 chi dx

argl pgi dx

arg2 raddr

197

UltraSPARC-T2 Net-
work Interface Unit

arg3
ret0

si ze
st at us

Configure amapping described by argumentsr addr andsi ze inthe NIU transmit DMA engine address
trandation (logical page) register indicated by chi dx and pgi dx.

If there is already a valid mapping for the page specified by pgi dx, that mapping is overwritten. The
specified mapping is unconfigured if the sizeis 0. In this case, r addr isignored.

chi dx must be between 0 and 15.

pgi dx must be O or 1.

raddr must be size-aligned.

Si ze must be apower of 2.

26.4.3.1. Errors

EBADALIGN
ENORADDR

EINVAL

Invaid alignment for r addr orsi ze
Invalid real address
Invalid index for channel or register

26.4.4. niu_tx_logical _page get

trap#
function#

argo
argl
ret0
retl
ret2

FAST_TRAP

N2NI U TX_LP_GET
chi dx

pgi dx

status

raddr

si ze

Return the current mapping in the NIU transmit DMA engine address translation (logical page) register
indicated by chi dx and pgi dx. Thereal addressand size arereturnedinr et 1 andr et 2.

chi dx must be between 0 and 15.

pgi dx must be O or 1.

If there is no current mapping for the given chi dx and pgi dx, then thereturn valuesr addr andsi ze

will both be 0.

26.4.4.1. Errors

EINVAL

Invalid index for channel or register

26.5. Version 1.1 APlIs

Version 1.1 APIs are an extension to the preceding version 1.0 APIs. The preceding APIs continue to
function, however by successfully negotiating version 1.1 for the NIU API group the following APIswill
also be available for guest software running on a UltraSPARC-T2 system.

198

UltraSPARC-T2 Net-
work Interface Unit

26.5.1. NIU Virtual Region (VR) Specific APIs

26.5.1.1. vr_assign

trap# FAST_TRAP
function# N2NI U_VR_ASSI GN
arg0 vr_idx

argl ldc_id

retO st at us

retl vr_cooki e

ThisAPI assignsthe specified virtual region to adomain identified by theendpoint | dc_i d of the channel
to the target domain. The returned vr _cooki e can be used by a domain to obtain access to the virtual
region.

vr _i dx isthe Virtualization Region index number (0-7). The NIU has 2 Functions, each Function has 2
Virtualization regions, each region can be split into 2 access protected pages.

Thel dc_i d isthe LDC endpoint in the domain that owns the NIU device and the channel that runs
between and the domain to which the virtual region is being assigned.

Upon success the API returnsin vr _cooki e a 32-hit unique id. This cookie represents a specific NIU
and a specific Virtual Region (VR) within it.

26.5.1.1.1. Errors

ENOACCESS Domain does not own the NIU
ECHANNEL Invalid channel (LDC ID)
EINVAL Invalidvr _i dx or VR isalready assigned

26.5.1.2. vr_unassign

trap# FAST_TRAP

function# N2NI U_VR_UNASSI G\
arg0 vr_cooki e

ret0 stat us

This API freesthe virtua region that was previously assigned to adomain. Only the domain that ownsthe
NIU deviceis alowed to call thisinterface. After the virtual region is unassigned, subsequent access by
the guest will fail with EINVAL to hypervisor calls, or memory access violations.

vr_cooki e is a 32-bit unique id that represents the NIU virtual region as returned by
n2ni u_vr_assign.

26.5.1.2.1. Errors

ENOACCESS Domain does not own the NIU
EINVAL Invalid cookie or VR not assigned

199

UltraSPARC-T2 Net-
work Interface Unit

26.5.1.3. vr_getinfo

trap#t FAST_TRAP
function# N2NI U_VR_GETI NFO
arg0 vr_cooki e

retO stat us

retl real base

ret2 real _size

This API obtainsthe real address base and size for the virtual region corresponding to the specified cookie
value. This API can only successfully be called from the guest that owns the virtual region associated
with that cookie.

vr _cooki e A 32-bit uniqueid that represents a NIU/VR.

real _base isthe base real address of the start of the virtualization region. r eal _si ze isthe size of
the VR mapping.

26.5.1.3.1. Errors

ENOACCESS Cookie not associated with thisdomain
EINVAL Invalid cookie

26.5.2. NIU DMA Channel (DMAC) Specific APIs

26.5.2.1. vr_rx_dma_assign and vr_tx_dma_assign

trap# FAST_TRAP

function# N2NIU_VR_RX_DMA_ASSIGN
argo vr_cooki e

argl gch_i dx

retO st at us

retl vch_i dx

trap# FAST_TRAP

function# N2NIU_VR_TX_DMA_ASSIGN
argo vr_cooki e

argl gch_i dx

ret0 st at us

retl vch_i dx

These two APIs assign TX and RX DMA channel resources to a specific virtual region. A virtual region
has to be assigned to a domain before resources can be assigned to the virtual region. There is a hardware
maximum of 8 channels per virtual region, but implementations may restrict the channels maximum fur-
ther. Each global channel may only be assigned to one virtua region at atime.

vr _cooki e isa32-hit uniqueid that represents an NIU/VR.

200

UltraSPARC-T2 Net-
work Interface Unit

gch_i dx isthe Global DMA channel index number (0-15).

vch_i dx isthe Virtual DMA channel index number (0-7).
Programming Note
The interrupt resources assigned to this channel will be automatically migrated to the guest do-
main. In addition, the interrupt resource is also marked disabled. Its the responsibility of the do-

main that ownsthe NIU device to remove any interrupt handler associated with the channel.

26.5.2.1.1. Errors

ENOACCESS Domain does not own the NIU
EINVAL Invalid cookie or channel
ENOMAP Channel not available

26.5.2.2. vr_rx_dma_unassign and vr_tx_dma_unassign

trap# FAST_TRAP

function# N2NIU_VR _RX_DMA_UNASSIGN
argo vr_cooki e

argl vch_i dx

ret0 st at us

trap# FAST_TRAP

function# N2NIU_VR_TX_DMA_UNASSIGN
argo vr_cooki e

argl vch_i dx

ret0 st at us

This APl unassigns RX and TX DMA channel resources from avirtual region. Accessesto an unassigned
virtual channel in the guest will return EINV AL or memory access violations.

Once achannel has been unassigned it may be reassigned to another region.
vr _cooki e isa32-hit uniqueid that represents the virtual region.

vch_i dx isthe Virtual DMA channel index number (0-7).
Programming Note
The unassign operation will migrate the interrupts back to the domain that owns the NIU device.
It will also disable the channel if it is not aready disabled. The channels are restored back to the
domain that ownsthe NIU device.

26.5.2.2.1. Errors

ENOACCESS Domain does not own the NIU
EINVAL Invalid cookie or channel

201

UltraSPARC-T2 Net-
work Interface Unit

ENOMAP Channel is not assigned

26.5.2.3. vr_get_rx_map and vr_get_tx_map

trap#t FAST_TRAP

function# N2NIU_VR_GET_RX_MAP
argo vr_cooki e

retO st at us

retl dnma_map

trap# FAST_TRAP

function# N2NIU_VR_GET_TX_MAP
argo vr_cooki e

retO st at us

retl drme_map

These APIs obtain alist of TX or RX DMA channel resources assigned to a virtual region.

vr _cooki e isa32-bit uniqueid that represents an NIU/VR. Upon successthe API returnsin dia_map

the Rx/Tx DMA channel map (bit mask) that shows which slotsin the virtual region have DMA channels

mapped. For example, bit N will be set in the map iff virtual channel N (0-7) isassigned in the VR.
26.5.2.3.1. Errors

ENOACCESS Cookie not associated with this domain
EINVAL Invalid cookie

26.5.2.4. vrrx_set_ino and vrtx_set_ino

trap# FAST_TRAP

function# N2NIU_VRRX_SET_INO
arg0 vr_cooki e

argl vch_i dx

arg2 i no

retO st at us

trap# FAST_TRAP

function# N2NIU_VRTX_SET_INO
arg0 vr_cooki e

argl vch_i dx

arg2 i no

retO st at us

This API assigns an interrupt number for the specified RX/TX virtual DMA channel in avirtual region.
A unique interrupt number should be assigned to each channel across all VRs assigned from asingle NIU
device.

202

UltraSPARC-T2 Net-
work Interface Unit

vr _cooki e is a 32-bit unique id that represents an NIU/VR. vch_i dx isthe Virtua DMA channel
index number, retrieved through the n2ni u_vr _get _* map interface (0-7). i no is a unique 32-bit
device interrupt no. (devino) to be associated with this channel. Each DMA Channel corresponds to an
interrupt source and should be assigned a unique interrupt number between 0 and 63.

Programming Note

These device inos must then be assigned an interrupt cookie, (or converted to system wide inter-
rupt numbers sysinos), for use within the domain.

26.5.2.4.1. Errors

ENOACCESS Cookie not associated with this domain
EINVAL Invalid cookie

26.5.2.5. vrrx_get_info and vrtx_get_info

trap# FAST_TRAP

function# N2NIU_VRTX_SET_INO
arg0 vr_cooki e

argl vch_i dx

ret0 st at us

retl group

ret2 | ogdev

trap# FAST_TRAP

function# N2NIU_VRTX_SET_INO
arg0 vr_cooki e

argl vch_i dx

retO st at us

retl group

ret2 | ogdev

These APIsget the virtual group number and logical device associated withaRX/TX virtual DMA channel
inavirtua region. Sinceinterruptsaredelivered viabitsinthe LDSV that correspondstothelogical device,
the guest needs to map each virtual channel to alogical devicein order to identify the interrupted channel
and re-arm the interrupt. The guest will use PIO's using these values to rearm the associated interrupts.

vr _cooki e isa32-hit uniqueid that represents an NIU/VR.
vch_i dx isthe Virtual DMA channel index number (0-7).

Upon successthe API returnsin gr oup the Virtual Group number (Bits 7:5 of the VRARDDR associated
with that VR'sLDSV management, andin| ogdev thelogical device number. Pleaserefer to [ua2007n2]
for more detail.

26.5.2.5.1. Errors

ENOACCESS Cookie not associated with this domain

203

UltraSPARC-T2 Net-
work Interface Unit

EINVAL Invalid cookie
ENOINTR No virtual group exists for that channdl in this domain

26.5.2.6. vrrx_Ip_set and vrtx_Ip_set

trap# FAST_TRAP

function# N2NIU_VRRX_LP_SET
argo vr_cooki e

argl vch_i dx

arg2 pgi dx

arg3 raddr

argd si ze

retO st at us

trap# FAST_TRAP

function# N2NIU_VRTX_LP_SET
arg0 vr_cooki e

argl vch_i dx

arg2 pgdi x

arg2 raddr

arg2 si ze

retO st at us

These APIs configure a mapping described by arguments raddr and size in the NIU DMA engine address
trangdlation (logical page) register indicated by vch_idx and pgidx. If there is already a valid mapping for
the page specified by pgidx, that mapping is overwritten. The specified mapping isunconfigured if thesize
is 0. In this case, raddr isignored. If the size is non-zero, the real address (raddr) should be size aligned
and the size must be a power of 2.

Thisinterface isidentical to the version 1.0 NIU interfaces described above except for the presence of a
cookie, and it uses virtual channelsinstead of global channels. Accessing this memory after the region has
been unassigned will cause access violationsin the guest.

The argument vr_cookie is a 32-bit unique id that represents an NIU/VR. vch_idx is the virtual DMA
channel index number and should be between 0 and 15. pgidx isthe logical page index number and legal
valuesare 0 or 1. raddr isthe logical page real address (size aligned) and sizeisthelogical page size.

26.5.2.6.1. Errors

ENOACCESS Cookie not associated with this domain
EBADALIGN Invalid alignment for raddr or size
EINVAL Invalid cookie or invalid index for channel or page

26.5.2.7. vrrx_Ip_get and vrtx_Ip_get

trapt FAST TRAP
functiontt N2NIU_VRRX_LP GET

204

UltraSPARC-T2 Net-
work Interface Unit

arg0 vr_cooki e
argl vch_i dx
arg2 pgi dx

retO st at us

retl raddr

ret2 si ze

trap# FAST TRAP
function# N2NIU_VRTX_LP GET
arg0 vr_cooki e
argl vch_i dx
arg2 pgi dx

retO st atus

retl raddr

ret2 si ze

These APIsreturn the current mapping in the NIU DMA engine address translation (logical page) register
indicated by vch_idx and pgidx. The real address and size are returned to the caller. If thereis no current
mapping for the given chidx and pgidx, then thereturn valuesraddr and size will both be 0. Thisinterfaceis
identical to the NIU version 1.0 interfaces except for the presence of a cookie, and it uses virtual channels
instead of global channels.

The argument vr_cookie is a 32-bit unique id that represents an NIU/VR. vch_idx is the virtual DMA
channel index number and should be in the range 0 to 7. pgidx is the logical page index number; legal
valuesare O and 1.

The APIsreturn raddr the logical page real address and size the logical page size.
26.5.2.7.1. Errors

ENOACCESS Cookie not associated with this domain
EINVAL Invalid cookie or invalid index for channel or page

26.5.3. Virtualized Access to Non-virtualized NIU registers

The domain that isthe recipient of avirtual region and its DMA channel resourcesisonly allowed limited
access to various registers that control DMA behavior. The APIs specified below allow the domain to set
or get non-virtualized DMA channel registers.

26.5.3.1. vrrx_param_get and vrtx_param_get

trap#t FAST_TRAP

function# N2NIU_VRRX_PARAM_GET
argo vr_cooki e

argl vch_i dx

arg2 param

retO st at us

205

UltraSPARC-T2 Net-
work Interface Unit

retl val ue

trap# FAST_TRAP

function# N2NIU_VRTX_PARAM_GET
arg0 vr_cooki e

argl vch_i dx

arg2 par am

retO st at us

retl val ue

These APIs return the current value of a RX/TX virtual channel parameter. Where vr_cookie is a 32 bit
unique id that represents an NIU/VR. vch_idx is the Virtual DMA channel index number, and param is
the register to query (enumerated lookup) Upon success value contains the register value.

Legal Vauesfor RX params (others return EINVAL):

Register Value Reference
RDC _RED PARA 0 [ua2007n2], Table 25-19

Legal Vauesfor TX params (others return EINVAL):

Register Value Reference
TDC_DMA_MAX 0 [ua2007n2], Table 26-25

26.5.3.1.1. Errors

ENOACCESS Cookie not associated with thisdomain or specified parameter isnot accessible
EINVAL Invalid cookie or invalid index for channel or page

26.5.3.2. vrrx_param_set and vrtx_param_set

trap# FAST_TRAP

function# N2NIU_VRRX_PARAM_SET
argo vr_cooki e

argl vch_i dx

arg2 par am

arg3 val ue

retO st at us

trap# FAST_TRAP

function# N2NIU_VRTX_SET_INO
arg0 vr_cooki e

argl vch_i dx

arg2 par am

arg3 val ue

retO st at us

206

UltraSPARC-T2 Net-
work Interface Unit

These APIs set the value of a RX/TX virtual channel parameter. Wherevr _cooki e is a 32-bit unique
id that representsan NIU/VR. vch_i dx isthe Virtual DMA channel index number. par amspecifiesthe
register to set and val ue istheregister value.

Legal Valuesfor RX params (othersreturn EINVAL):

Register Value Reference
RDC _RED PARA 0 [ua2007n2], Table 25-19

Legal Valuesfor TX params (others return EINVAL):

Register Value Reference
TDC_DVA_NMAX 0 [ua2007n2], Table 26-25

26.5.3.2.1. Errors

ENOACCESS Cookie not associated with thisdomain or specified parameter isnot accessible
EINVAL Invalid cookie or invalid index for channel or page

26.6. Version 2.0 APlIs

The current set of NIU APIs alow adomain that owns the device to configure, manage and send/receive
data through the NIU device, or to assign HW resources to another logical domain.

The new set of hypervisor APIs proposed in this document extend these APIs to reference a specific NIU
on the system. The NIU will beidentified usingadevhandl e — aunique identifier that can be obtained
by reading the cf g- handl e property specified in the NIU device node in the guest MD.

The following APIs are available by negotiating version 2.0 for the NIU API group:

Modified N2NIU_RX_LP_SET
N2NIU_RX_LP GET
N2NIU_TX_LP_SET
N2NIU_TX_LP GET
N2NIU_VR_ASSIGN

Unmodified N2NIU_VR_UNASSIGN
N2NIU_VR_GETINFO
N2NIU_VR_RX_DMA_ASSIGN
N2NIU_VR_RX_DMA_UNASSIGN
N2NIU_VR_TX_DMA_ASSIGN
N2NIU_VR_TX_DMA_UNASSIGN
N2NIU_VR_GET_RX_MAP
N2NIU_VR_GET_TX_MAP
N2NIU_VRRX_SET_INO
N2NIU_VRTX_SET_INO
N2NIU_VRRX_GET_INFO
N2NIU_VRTX_GET_INFO

207

UltraSPARC-T2 Net-
work Interface Unit

N2NIU_VRRX_LP_SET
N2NIU_VRRX_LP_GET
N2NIU_VRTX_LP SET
N2NIU_VRTX_LP GET
N2NIU_VRRX_PARAM_GET
N2NIU_VRRX_PARAM_SET
N2NIU_VRTX_PARAM_GET
N2NIU_VRTX_PARAM_SET

26.6.1. niu_rx/tx_logical _page_set

trap# FAST_TRAP
function# N2NI U_RX_LP_SET
arg0 devhandl e

argl chi dx

arg2 pgi dx

arg3 raddr

argd si ze

ret0 st at us

trap# FAST_TRAP
function# N2NI U _TX _LP_SET
arg0 devhandl e

argl chi dx

arg2 pgi dx

arg3 raddr

argd si ze

retO st at us

These interfaces are identical to Section 26.4.1, “niu_rx_logica page set” and Section 26.4.3,
“niu_tx_logical_page set” except for the addition of the devhandl e argument.

26.6.2. niu_rx/tx_logical page get

trap# FAST_TRAP
function# N2NI U_RX_LP_GET
arg0 devhandl e

argl chi dx

arg2 pgi dx

retO st at us

retl raddr

ret2 si ze

trap# FAST_TRAP

208

UltraSPARC-T2 Net-
work Interface Unit

function# N2NI U _TX LP_GET
arg0 devhandl e

argl chi dx

arg2 pgi dx

retO st at us

retl raddr

ret2 si ze

These interfaces are identical to Section 26.4.2, “niu_rx_logical_page get” and Section 26.4.4,
“niu_tx_logical_page get” except for the addition of the devhandl e argument.

26.6.3. NIU Virtual Region (VR) Specific APIs

26.6.3.1. vr_assign

trap# FAST_TRAP
function# N2NI U_VR_ASSI GN
arg0 devhandl e

argl vr_idx

arg2 ldc_id

retO st at us

retl vr_cooki e

This interface is identical to Section 26.5.1.1, “vr_assign” except for the addition of the devhandl e
argument.

209

Chapter 27. Chip and platform specific
performance counters
27.1. UltraSPARC-T1 performance counters

An UltraSPARC-T1 processor has one JBus, and four DRAM controllersintegrated onto the same circuit.
Each of these components contains countersthat may be programmed to monitor and count specific events.
A complete description of the UltraSPARC-T1 performance counters is given in the UltraSPARC-T1
Supplement to UltraSPARC Architecture 2005 manual .

Access the memory (DRAM) controller and JBus performance counters of a UltraSPARC-T1 processor
systemisprovided viaan hypervisor API service. In asystem configured with more than one guest domain,
only one guest is allowed access to these performance counters.

A machine description property (“perfctraccess’) indicates that a guest is allowed access to the perfor-
mance registers and thisis enforced by the hypervisor.

Each DRAM and JBus performance register is assighed a unique performance register (PerfReg) number
for reading/writing purposes as follows:

Table 27.1. UltraSPARC-T1 J-Bus'DRAM Performance Counters

PerfReg Description

J-Bus Performance control register

J-Bus Performance counter register

DRAM Performance control register 0

DRAM Performance counter register O

DRAM Performance control register 1

DRAM Performance counter register 1

DRAM Performance control register 2

DRAM Performance counter register 2

DRAM Performance control register 3

O O N| OO0 B~ W|IN|FP|O

DRAM Performance counter register 3

27.1.1. niagara_get_perfreg

trap# FAST_TRAP

function# NI AGARA CET_PERFREG
arg0 perfreg

retO status

retl value

This service reads the value of the DRAM/JBus performance register, as selected by the per f r eg argu-
ment. Upon successful completion, it returns an EOK st at us and the performance register value.

27.1.1.1. Errors

ENOACCESS No access alowed to performance registers

210

Chip and platform specif-
ic performance counters

EINVAL Invalid performance register number

27.1.2. niagara_set_perfreg

trap# FAST_TRAP

function# NI AGARA SET_PERFREG
arg0 perfreg

argl value

retO status

This service sets the DRAM/JBus performance register, as specified by per f r eg, to value. Upon suc-
cessful completion, it updates the specified performance register value and returns EOK status.

27.1.2.1. Errors:

ENOACCESS No access allowed to performance registers
EINVAL Invalid performance register number

27.2. UltraSPARC-T1 MMU statistics counters

Thissection describesthe hypervisor API to support MM U statistics collection on aUltraSPARC-T 1 based
system. This APl isintended for UltraSPARC T1-specific performance measurement.

27.2.1. Hypervisor API for UltraSPARC-T1 MMU statistics collection

On UltraSPARC-T1, hypervisor maintains MMU statistics. Privileged code provides Hypervisor a buffer
wherein these statistics can be collected. After the successful configuration of the buffer, it is continuously
updated (hits increased and ticks updated).

27.2.1.1. MMU statistic buffer layout

The MMU statistics buffer has afixed size, layout and content as defined below:

Table 27.2. UltraSPARC-T1 MMU statistic buffer layout

Offset Size Field
0x00 0x08 IMMU TSB hits ctx0, 8KByte TTE
0x08 0x08 IMMU TSB ticks ctx0, 8KByte TTE
0x10 0x08 IMMU TSB hits ctx0, 64KByte TTE
0x18 0x08 IMMU TSB ticks ctx0, 64KByte TTE
0x20 0x10 reserved
0x30 0x08 IMMU TSB hits ctx0, 4AMByte TTE
0x38 0x08 IMMU TSB ticks ctx0, 4MByte TTE
0x40 0x10 reserved
0x50 0x08 IMMU TSB hits ctx0, 256MByte TTE
0x58 0x08 IMMU TSB ticks ctx0, 256MByte TTE
0x60 0x20 reserved
0x80 0x08 IMMU TSB hits ctxnon0O, 8KByte TTE

211

Chip and platform specif-
ic performance counters

Offsat Size Field
0x88 0x08 IMMU TSB ticks ctxnon0, 8KByte TTE
0x90 0x08 IMMU TSB hits ctxnon0, 64KByte TTE
0x98 0x08 IMMU TSB ticks ctxnon0, 64KByte TTE
Oxa0 0x10 reserved
0xb0 0x08 IMMU TSB hits ctxnonO, 4MByte TTE
0xb8 0x08 IMMU TSB ticks ctxnon0, 4MByte TTE
0xcO 0x10 reserved
0xd0 0x08 IMMU TSB hits ctx0, 256MByte TTE
Oxd8 0x08 IMMU TSB ticks ctx0, 256MByte TTE
Oxe0 0x20 reserved
0x100 0x08 DMMU TSB hits ctx0, 8KByte TTE
0x108 0x08 DMMU TSB ticks ctx0, 8KByte TTE
0x110 0x08 DMMU TSB hits ctx0, 64KByte TTE
0x118 0x08 DMMU TSB ticks ctx0, 64KByte TTE
0x120 0x10 reserved
0x130 0x08 DMMU TSB hits ctx0, 4AMByte TTE
0x138 0x08 DMMU TSB ticks ctx0, 4AMByte TTE
0x140 0x10 reserved
0x150 0x08 DMMU TSB hits ctx0, 256MByte TTE
0x158 0x08 DMMU TSB ticks ctx0, 256MByte TTE
0x160 0x20 reserved
0x180 0x08 DMMU TSB hits ctxnon0, 8KByte TTE
0x188 0x08 DMMU TSB ticks ctxnonO, 8KByte TTE
0x190 0x08 DMMU TSB hits ctxnon0, 64KByte TTE
0x198 0x08 DMMU TSB ticks ctxnon0, 64KByte TTE
0x180 0x10 reserved
0x1b0 0x08 DMMU TSB hits ctxnon0, 4MByte TTE
Ox1b8 0x08 DMMU TSB ticks ctxnon0, 4AMByte TTE
0x1c0 0x10 reserved
0x1d0 0x08 DMMU TSB hits ctx0, 256MByte TTE
0x1d8 0x08 DMMU TSB ticks ctx0, 256MByte TTE
Ox1e0 0x20 reserved

Note: "ticks" is the cumulative time spend handling the specified hit measured via deltas in the %tick
register

27.2.2. niagara_mmustat_conf

trap# FAST_TRAP
function# NI AGARA MVUSTAT _CONF

212

Chip and platform specif-
ic performance counters

arg0 raddr
retO status
retl prev_raddr

Thisfunction enablesMMU statistic collection and suppliesthe buffer to deposit the results for the current
virtual CPU. The real address of the buffer, raddr, is supplied in arg0.

Thereturn value, retl, isthe previously specified buffer (prev_raddr), or zero for the first invocation.

If raddr iszero MM U statistic collectionisdisabled for the current virtual CPU and any previously supplied
buffer is no longer accessed.

If an error is returned no statistics are collected (equivalent to passing an raddr of zero).

Theinitia contents of the buffer should be zero otherwise the collected statistics will be meaningless.

27.2.2.1. Errors

ENORADDR Invalid raddr
EBADALIGN raddr not aligned on a 64-byte boundary
EBADTRAP API not supported (all non-UltraSPARC-T1 architectures)

27.2.3. niagara_mmustat_info

trap# FAST_TRAP

function# NI AGARA MMUSTAT _| NFO
retO status

retl raddr

This function provides an idempotent mechanism to query the state and real address of the currently con-
figured buffer.

The real address of the current buffer, r addr , or zero, if no buffer is defined, isreturned inr et 1.

27.2.3.1. Errors

EBADTRAP API not supported (all non-UltraSPARC-T1 architectures)

27.3. Fire performance counter APIs

The UltraSPARC-T1 processor is connected to its 10 sub-systemsvia Sun's J-Businterconnect. The Firel/
OASICisusedin most UltraSPARC-T1 based systemsto bridge between this J-Bus and two PCI-Express
root complexes. The SPARC Hypervisor virtualizes and mostly hidesthis physical infrastructure. This set
of APIs, when available, provide limited access to the internal performance counters of the Fire device.

27.3.1. Definitions

For the purpose of accessing Fire performance counters devhandle as defined in Section 23.2, “10 Data
Definitions” is used to identify the Fire bridge, (and consequently its performance counters), associated
with a particular PCI-Express root complex.

Within each Fire each performance register is assigned a unique performance register (PerfReg) number
for reading/writing purposes as follows;

213

Chip and platform specif-
ic performance counters

Table 27.3. Fire performance counters

PerfReg

Description

J-Bus Performance control register

J-Bus Performance counter register 0

J-Bus Performance counter register 1

PCle IMU Performance control register

PCle IMU Performance counter register O

PCle IMU Performance counter register 1

PCle MMU Performance control register

PCle MMU Performance counter register O

PCle MMU Performance counter register 1

OO N/ B~ W|IN| PO

PCle TLU Performance control register

=
o

PCle TLU Performance counter register O

[EnN
[N

PCle TLU Performance counter register 1

N
N

PCle TLU Performance counter register 2

[N
w

PCle LPU Performance control register

[ERN
~

PCle LPU Performance counter register 0

15

PCle LPU Performance counter register 1

The values associated with each performance counter are defined in the Fire 2.0 Programmer's Reference
Manual, however performance register IDs 14 and 15 are implemented as read/write instead of read only.

27.3.2. fire_get_perf_reg

trap#
function#
argo

argl

retO

retl

This call reads the value of the Fire performance register specified by the argument perfreg of the Fire

FAST_TRAP

FI RE_CGET_PERFREG
devhandle

perfreg

status

value

leaf specified by the argument devhandle.

Upon successful completion, it returns EOK status and performance register value. Otherwise, it returns

one of the following errors:

27.3.2.1. Errors

EINVAL

ENOACCESS

Invalid performance register number

No access allowed to performance registers

27.3.3. fire_set_perf_reg

trap#

FAST_TRAP

214

Chip and platform specif-
ic performance counters

function# FI RE_SET_PERFREG
arg0 devhandle

argl perfreg

arg2 value

ret0 status

This call sets the value of the Fire performance register as specified by the argument perfreg of the Fire
leaf specified by the argument devhandle to the value specified by the argument value.

Upon successful completion, it updates the specified performance register value and returns EOK status.
Otherwise, it returns one of the following errors:

27.3.3.1. Errors

EINVAL Invalid performance register number
ENOACCESS No access allowed to performance registers

27.4. UltraSPARC T2 performance counters

The UltraSPARC-T2 processor is a fully integrated System On a Chip (SOC) design that incorporates
processing cores together with memory controllers, a PCI Express 10 root complex and high performance
Ethernet interfaces. Performance instrumentation is provided on-chip for each of SPARC, DRAM, PCI-
Express and Ethernet sub-systems.

27.4.1. Strand performance instrumentation

Each hardware strand has a pair of registers to control/capture CPU specific instrumentation:

Table 27.4. SPARC performance counters

Description Access
SPARC Performance Control Register ASR 0x10
SPARC Performance Instrumentation Counter ASR 0x11

These registers are directly accessible by the privileged code. The HT bit in SPARC PCR controls the
counting of hyperprivileged events, can be set only in hyperprivileged mode. The hypervisor provides an
API to allow read/write access to the SPARC performance control register. A guest should not assume it
can count hyperprivileged events. Attempting to set HT bit may result inthe API call failing with ENOAC-
CESS and the guest should handle this gracefully.

For further information on the register specifications the reader is directed to the UltraSPARC-T2 pro-
grammers reference manual .

27.4.2. DRAM Performance Instrumentation

Each DRAM channel in Niagara2 has a pair of performance counters, packed into asingle register, plusa
register to control what iscounted. Thereareatotal of four different DRAM channelsfor aUltraSPARC-T2
system. The hypervisor provides an API for read/write access to these registers.

27.4.3. API calls for SPARC and DRAM performance counters

Each of the SPARC and DRAM controller performance registersis assigned a uni que performance register
(PerfReg) number asfollows:

215

Chip and platform specif-
ic performance counters

Table 27.5. UltraSPARC-T2 SPARC and DRAM performance counters

PerfReg

Description

SPARC Performance Control Register

DRAM Performance Control Register 0

DRAM Performance Counter Register 0

DRAM Performance Control Register 1

DRAM Performance Counter Register 1

DRAM Performance Control Register 2

DRAM Performance Counter Register 2

DRAM Performance Control Register 3

N OB~ W[N] O

DRAM Performance Counter Register 3

The interface for reading/writing SPARC performance control register will pass the entire register value
and not just the HT bit.

27.4.4. niagara2_get_perfreg

trap#
function#
argo

retO

retl

FAST_TRAP

NI AGARA2_GET_PERFREG
perfreg

status

value

This call reads the value of the SPARC or DRAM performance register, as specified by the argument

perfreg.

Upon successful completion the call returns a status of EOK and a performance register value.

27.4.4.1. Errors

EINVAL
ENOACCESS

Invalid performance register number
No access allowed to performance registers

27.4.5. niagara2_set_perfreg

trap#
function#
argo

argl

ret0

FAST_TRAP

NI AGARA2_GET_PERFREG
perfreg

value

status

This calls sets the SPARC / DRAM performance register specified by the argument perfreg, to the value
specified by the argument value.

Upon successful completion, it updates the specified performance register value and returns a status of

EOK.

216

Chip and platform specif-
ic performance counters

27.4.5.1. Errors

EINVAL

ENOACCESS

Invalid performance register number
No access allowed to performance registers

27.4.6. API calls for PCI-Express interface unit performance counters

The following hypervisor API calls provide access to the PCI Express | nterface performance counters for
a UltraSPARC-T2 processor.

The definition and functionality of the following performance registers is given in the UltraSPARC-T2
Programmer's Reference Manual .

Table 27.6. UltraSPARC-T2 PCI-Expr ess per for mance counter s

PerfReg

Description

DMU IMU Performance Counter Select

DMU IMU Performance Counter 0

DMU IMU Performance Counter 1

DMU MMU Performance Counter Select

DMU MMU Performance Counter O

DMU MMU Performance Counter 1

PEU Performance Counter Select

PEU Performance Counter 0

PEU Performance Counter 1

O oo N| OO0 B~ W|IN| PO

PEU Performance Counter 2

=
o

PEU Bit Error Counter |

11

PEU Bit Error Counter |1

27.4.7. n2piu_get_perf_reg

trap#
function#
argo

argl

retO

retl

FAST_TRAP

N2PI U_CGET_PERFREG
devhandle

perfreg

status

value

Thiscall readsthevalue of the UItraSPARC-T2 PIU performance register specified by theargument per -
f r eg of the PCI leaf specified by the argument devhandl e.

Upon successful completion, it returns EOK st at us and performance register val ue.

27.4.7.1. Errors

EINVAL

Invalid performance register number

217

Chip and platform specif-
ic performance counters

ENOACCESS No access allowed to performance registers

27.4.8. n2piu_set_perf_reg

trap# FAST_TRAP

function# N2PI U_SET_PERFREG
arg0 devhandle

argl perfreg

arg2 value

retO status

This call setsthe value of the N2 PIU performance register as specified by the argument per f r eg of the
PCI leaf specified by the devhand| e argument to the value specified by the argument val ue.

Upon successful completion, it updates the specified performance register value and returns EOK st a-
tus.

27.4.8.1. Errors

EINVAL Invalid performance register number
ENOACCESS No access alowed to performance registers

27.5. UltraSPARC T2+ performance counters
The UltraSPARC-T2+ processor is a fully integrated System On a Chip (SOC) design that incorporates
processing cores together with memory controllers, a PCI Express |O root complex, and coherency links
for multi-node support. Performance instrumentation is provided on-chip for each of SPARC, DRAM,
PCI-Express, and Coherency Link sub-systems.

27.5.1. Strand performance instrumentation

Each hardware strand has a pair of registers to control/capture CPU specific instrumentation:

Table 27.7. SPARC performance counters

Description Access
SPARC Performance Control Register ASR 0x10
SPARC Performance Instrumentation Counter ASR 0x11

These registers are directly accessible by the privileged code. The HT bit in SPARC PCR controls the
counting of hyperprivileged events, can be set only in hyperprivileged mode.

For further information on the register specifications the reader is directed to the UltraSPARC-T2+ pro-
grammers reference manual .

27.5.2. DRAM Performance Instrumentation

Each DRAM channel in UltraSPARC-T2+ hasapair of performance counters, packed into asingleregister,
plus a register to control what is counted. There are a total of two DRAM channels on each node of an
UltraSPARC-T2+ system. The hypervisor provides an API for read/write access to these registers.

218

Chip and platform specif-
ic performance counters

27.5.3. L2 Cache Control Register

The L2 Control Register adds address interleave ceiling mask and nodeid fields. The PERF_CONFIG bits
arethe only hitsthat are exposed through these interfaces. The perf control bitsin the L2 Control Register
are 37:36 which are bits 1:0 in the virtualized L2 Control Register.

27.5.4. LPU Performance Instrumentation

There are three performance counter registers contained in the LPU core on a per port basis.

27.5.5. GPD Performance Instrumentation

Thereis one set of performance counter registers contained in the GPD core.

27.5.6. ASU Performance Instrumentation

Thereis one set of performance counter registers contained in the ASU core.

27.5.7. API calls for SPARC and DRAM performance counters

These sundv APIs provide an interface to read and write the DRAM performance registers as they are not
accessible by the privileged software.

The privileged software can use this interface to write the HT bit in the SPARC performance control
register as well. The access to write to the HT bit can be denied, in which case the sundv API returns
ENOACCESS. The code using these interfaces must handle such afailure gracefully.

The SPARC performance registers are used to get CLC performance counters by setting the
PERF_CONFIG bits in L2 CONTROL_REG. In default mode al L2 misses are counted. The
PERF_CONFIG bitsin L2 control register can be programmed to count misses serviced from local mem-
ory, misses serviced from remote memory or misses serviced by cache-to-cache transfers. As most of the
L2 CONTROL_REG isnot accessible by the privilege code, avirtualized generic register is used to pro-
gram PERF_CONFIG bitsinal L2_ CONTROL_REG.

The SPARC PCR, thevirtualized L2_ CONTROL_REG, the DRAM, and Zambezi performance registers
are assigned unique performance register numbers (PerfReg#) which uniquely identifies each performance
register.

The API version 1.0 includes only the Victoria Falls SPARC and DRAM performance counters.
The APl version 1.1 is an extension of version 1.0 and includes Zambezi performance counters as well.

The table below describes the SPARC PCR, the virtualized L2 CONTROL_REG, and the DRAM per-
formance registers.

Table 27.8. UltraSPARC-T 2+ SPARC, L2, and DRAM performance counters

PerfReg Node Group Description
0 local SPARC Performance Control Register
1 local all L2 Bank Control Register for local node
2 0 0 DRAM Performance Control Register O
3 0 0 DRAM Performance Counter Register 0
4 0 1 DRAM Performance Control Register 0

219

Chip and platform specif-
ic performance counters

PerfReg Node Group Description
5 0 1 DRAM Performance Counter Register 0
6 1 0 DRAM Performance Control Register 0
7 1 0 DRAM Performance Counter Register 0
8 1 1 DRAM Performance Control Register 0
9 1 1 DRAM Performance Counter Register 0
10 2 0 DRAM Performance Control Register 0
11 2 0 DRAM Performance Counter Register 0
12 2 1 DRAM Performance Control Register 0
13 1 1 DRAM Performance Counter Register 0
14 3 0 DRAM Performance Control Register 0
15 3 0 DRAM Performance Counter Register 0
16 3 1 DRAM Performance Control Register 0
17 3 1 DRAM Performance Counter Register O
18 0 LPUO Zambezi 0 LPU A Performance Control Register
19 0 LPUO Zambezi 0 LPU A Performance Counter Register O
20 0 LPUO Zambezi 0 LPU A Performance Counter Register 1
21 0 LPU1 Zambezi 0 LPU B Performance Control Register
22 0 LPU1 Zambezi 0 LPU B Performance Counter Register O
23 0 LPU1 Zambezi 0 LPU B Performance Counter Register 1
24 0 LPU2 Zambezi 0 LPU C Performance Control Register
25 0 LPU2 Zambezi 0 LPU C Performance Counter Register O
26 0 LPU2 Zambezi 0 LPU C Performance Counter Register 1
27 0 LPU3 Zambezi 0 LPU D Performance Control Register
28 0 LPU3 Zambezi 0 LPU D Performance Counter Register O
29 0 LPU3 Zambezi 0 LPU D Performance Counter Register 1
30 0 GPD Zambezi 0 GPD Performance Control Register
31 0 GPD Zambezi 0 GPD Performance Counter Register O
32 0 GPD Zambezi 0 GPD Performance Counter Register 1
33 0 ASU Zambezi 0 ASU Performance Control Register
34 0 ASU Zambezi 0 ASU Performance Counter Register O
35 0 ASU Zambezi 0 ASU Performance Counter Register 1
36-53 1 Same as 18-35 but for Node 1
54-71 2 Same as 18-35 but for Node 2
72-89 3 Same as 18-35 but for Node 3

The interface for accessing the SPARC Performance Control Register operates on the entire register and
always on the current hardware strand.

For Zambezi performance counters there is a case where multiple accesses cannot be satisfied given the
hardware restrictions in Zambezi and where the hypervisor cannot block waiting to access Zambezi for

220

Chip and platform specif-
ic performance counters

which API callsreturns EWOULDBLOCK error code. A error code EINV AL isreturned when theregister
number is out of range, i.e PerfReg# is not in 0-89. A error code ENOTSUPPORTED is returned when
the PerfReg# is not supported, for e.g., Zambezi registers are not supported on a 2-way system. When a
guest does not have access to aregister the API call returns ENOACCESS error code.

27.5.8. vfalls_get_perfreg

trap# FAST_TRAP

function# VFALLS GET_PERFREG
arg0 perfreg

ret0 status

retl value

This call reads the value of the SPARC, virtualized L2_ CONTROL_REG, DRAM, or Zambezi perfor-
mance register as specified by the argument per f r eg.

Upon successful completion the call returnsast at us of EOK and a performance register val ue.

27.5.8.1. Errors

EINVAL Invalid performance register number
ENOTSUPPORTED Register number not supported
ENOACCESS No access allowed to performance registers
EWOULDBLOCK Cannot complete operation without blocking

27.5.9. vfalls_set_perfreg

trap#t FAST_TRAP

function# VFALLS GET_PERFREG
arg0 perfreg

argl value

retO status

This calls sets the SPARC, virtualized L2 CONTROL_REG, DRAM, or Zambezi performance register
specified by the argument per f r eg, to the value specified by the argument val ue.

Upon successful completion, it updates the specified performance register val ue and returnsast at us
of EOK.

27.5.9.1. Errors

EINVAL Invalid performance register number
ENOTSUPPORTED Register number not supported
ENOACCESS No access allowed to performance registers
EWOULDBLOCK Cannot complete operation without blocking

221

Chip and platform specif-
ic performance counters

27.5.10. UltraSPARC T2+ PCle performance instrumentation

UltraSPARC-T2+ PCl e performance instrumentation remains unchanged from UltraSPARC T2, see Sec-
tion 27.4.6, “API calsfor PCl-Express interface unit performance counters”’.

27.6. UltraSPARC KT performance counters
The UltraSPARC-KT processor is a fully integrated System On a Chip (SOC) design that incorporates
processing cores together with memory controllers, a PCI Express |O root complex, and coherency links
for multi-node support. Performance instrumentation is provided on-chip for each of SPARC, DRAM,
PCI-Express, and Coherency Link sub-systems.

27.6.1. Strand performance instrumentation

Each hardware strand has a pair of registers to control/capture CPU specific instrumentation:

Table 27.9. SPARC performance counters

Description Access
SPARC Performance Control Register ASR 0x10
SPARC Performance Instrumentation Counter ASR 0x11

These registers are directly accessible by the privileged code. The HT hit in SPARC PCR controls the
counting of hyperprivileged events, can be set only in hyperprivileged mode. A new sample mode (bit 32
of PCR) is added to the Performance Control Register.

For further information on the register specifications the reader is directed to the UltraSPARC-KT pro-
grammers reference manual .

27.6.2. DRAM Performance Instrumentation

Each memory controller hasfour performance counters, packed into two registers, plusaregister to control
what is counted. The counters count all events for that memory controller, which receives read and write
traffic from eight L2 cache banks.

27.6.3. L2 Cache Control Register

The L2 Control Register adds addressinterleave ceiling mask and nodeid fields. The PERF_CONFIG bits
arethe only bitsthat are exposed through these interfaces. The perf control bitsin the L2 Control Register
are 37:36 which are bits 1:0 in the virtualized L2 Control Register.

27.6.4. API calls for SPARC and DRAM performance counters

These sundv APIs provide an interface to read and write the DRAM performance registers as they are not
accessible by the privileged software.

The privileged software can use this interface to write the HT bit in the SPARC performance control
register as well. The access to write to the HT bit can be denied, in which case the sundv API returns
ENOACCESS. The code using these interfaces must handle such a failure gracefully.

The SPARC performance registers are used to get CLC performance counters by setting the
PERF _CONFIG bits in L2 CONTROL_REG. In default mode al L2 misses are counted. The
PERF_CONFIG bitsin L2 control register can be programmed to count misses serviced from local mem-
ory, misses serviced from remote memory or misses serviced by cache-to-cache transfers. As most of the

222

Chip and platform specif-
ic performance counters

L2 CONTROL_REG is not accessible by the privilege code, avirtualized generic register is used to pro-
gram PERF_CONFIG hitsinal L2_CONTROL_REG.

The SPARC PCR, the virtualized L2_CONTROL_REG, and the DRAM performance registers are as-
signed unique performance register numbers (PerfReg#) which uniquely identifies each performance reg-
ister.

The table below describes the SPARC PCR, the virtualized L2 CONTROL_REG, and the DRAM per-
formance registers.

Table 27.10. UltraSPARC-T3 SPARC, L 2, and DRAM performance counters

PerfReg Node Description

0 local SPARC Per-
formance
Control Reg-
ister

1 locd All L2 Bank
Control Reg-
isters
2+(i*6) [MCU 0 Per-
formance
Control Reg-
ister

3+(i*6) i MCU 0 Per-
formance
Counter Reg-
ister 0/1

4+(i*6) i DRAM Per-
formance
Counter Reg-
ister 2/3

5+(i*6) i MCU 1 Per-
formance
Control Reg-
ister

6+(i*6) i MCU 1 Per-
formance
Counter Reg-
ister 0
7+(i*6) i MCU 1 Per-
formance
Counter Reg-
ister 1

The interface for accessing the SPARC Performance Control Register operates on the entire register and
always on the current hardware strand.

27.6.5. kt_get_perfreg

trapt FAST_TRAP

223

Chip and platform specif-
ic performance counters

function# KT_CGET_PERFREG
argo perfreg

retO status

retl value

This call reads the value of the SPARC, virtualized L2 CONTROL_REG, or, or Zambezi performance
register as specified by the argument per f r eg.

Upon successful completion the call returnsast at us of EOK and a performance register val ue.

27.6.5.1. Errors

EINVAL Invalid performance register number
ENOTSUPPORTED Register number not supported
ENOACCESS No access alowed to performance registers
EWOULDBLOCK Cannot complete operation without blocking

27.6.6. kt_set_perfreg

trap# FAST_TRAP
function# KT_CGET_PERFREG
arg0 perfreg

argl value

retO status

This calls sets the SPARC, virtualized L2 CONTROL_REG, or DRAM performance register specified
by the argument per f r eg, to the value specified by the argument val ue.

Upon successful completion, it updates the specified performance register val ue and returnsast at us

of EOK.

27.6.6.1. Errors
EINVAL Invalid performance register number
ENOTSUPPORTED Register number not supported
ENOACCESS No access alowed to performance registers
EWOULDBLOCK Cannot complete operation without blocking

27.6.7. API calls for UltraSPARC-T3 PCI-Express performance counters

The following hypervisor API calls provide access to the PCl Express performance counters for a Ultra
SPARC-T3 processor.

The definition and functionality of the following performance registers is given in the UltraSPARC-T3
Programmer's Reference Manual .

Table 27.11. UltraSPARC-T 3 PCI-Expr ess per formance counters

PerfReg Description
0 PEX Performance Counter Select

224

Chip and platform specif-
ic performance counters

PerfReg Description
1 PEX Performance Counter 0
2 PEX Performance Counter 1
3 ATU Performance Counter Select
4 ATU Performance Counter O
5 ATU Performance Counter 1
6 IMU Performance Counter Select
7 IMU Performance Counter O
8 IMU Performance Counter 1
9 NPU Performance Counter Select
10 NPU Performance Counter O
11 NPU Performance Counter 1
12 PEUO Performance Counter Select
13 PEUO Performance Counter O
14 PEUO Performance Counter 1
15 PEU1 Performance Counter Select
16 PEU1 Performance Counter O
17 PEU1 Performance Counter 1

27.6.8. kt_ios_get_perf_reg

trap# FAST_TRAP

function# KT_| OS_CGET_PERFREG
arg0 devhandle

argl perfreg

retO status

retl value

Thiscall readsthevalue of the UItraSPARC-T3 | OS performance register specified by the argument per -
f r eg of the PCI leaf specified by the argument devhandl e.

Upon successful completion, it returns EOK st at us and performance register val ue.
27.6.8.1. Errors

EINVAL Invalid performance register number
ENOACCESS No access allowed to performance registers

27.6.9. kt_ios_set_perfreg

trap# FAST_TRAP

function# KT_| OS_SET_PERFREG
arg0 devhandle

argl perfreg

225

Chip and platform specif-
ic performance counters

arg2 value
ret0 status

This call sets the value of the UltraSPARC-T3 10S performance register as specified by the argument
per f r eg of the PCl leaf specified by thedevhandl e argument to the value specified by the argument

val ue.

Upon successful completion, it updates the specified performance register value and returns EOK st a-
tus.

27.6.9.1. Errors

EINVAL Invalid performance register number
ENOACCESS No access allowed to performance registers

226

Chapter 28. Logical Domain Channel
(LDC) infrastructure

28.1. Overview

Logical domain channels (LDCs) are designed as point-to-point communication channel s between logical
domains or between alogical domain and an external entity such as a service processor or the Hypervisor
itself.

WithinaLDom aLDC isinstantiated as a single endpoint (unless the LDC has been created to loop back
to the same LDom). The identity of the owner of the other endpoint is opaque to the LDom - this enables
LDCsto be re-connected to other endpoints at will.

Conventional attestation protocols may be layered on top of the basic LDC mechanism if the identity of
the owner of the other end of aLDC isrequired. Such attestation is beyond the scope of this document.

Logica Domain Channels provide two ways of transferring data between endpoints; A simple micro-data-
gram based transfer mechanism where data is sent in 64-byte packets. The second approach allows clients
to export regions of their memory address space to share with clients at the other end of specified LDC
connections. The importing clients can then access the remote memory region by either mapping it into its
address space, use an Hypervisor API call to copy datato/from exported memory, or program an IOMMU
to directly read/write the memory.

28.1.1. Packet based communication

28.1.1.1. Between Domains

Domain-to-Domain LDCs provide clients in each domain a simple message communication mechanism.
A domain's LDC transport will register Tx and Rx message queues with the Hypervisor prior for each
LDC endpoint on behalf of its virtual device client.

The message queues are very similar to the sundv cpu_mondo and dev_mondo queues where each entry
in the queue holds 64 bytes of data. The transport also uses Hypervisor interfaces to register interrupts for
each channel and for targeting these interrupts at specific virtual CPUs.

28.1.1.2. Between Domain and Hypervisor

Domain-to-Hypervisor LDCs provide away for LDC clientsin a domain to communicate with clientsin
the Hypervisor. Instead of using privileged Hypervisor APIs, LDCs provide a general purpose messaging
mechanism that allows clients to send both commands and data as part of messages, and also directly
read/write Hypervisor memory. On the domain side, the interfaces are similar to the ones in the case to
inter-domain LDCs. Thedomain client will register amessage queue, to transmit and receive packets from
the Hypervisor.

Hypervisor clients at the other end of the channel will use an private internal Hypervisor API to register a
callback for each endpoint. When adomain sends data, the Hypervisor will invoke the callback registered
at the Hypervisor endpoint, to process the LDC packet, in the context of the sending CPU. The Hypervisor
will not alocate any internal queues to receive packets from the sending domain. If the internal client,
chooses to buffer the incoming datagrams, it may choose to do so by providing its own buffering mech-
anism.

227

Logica Domain Chan-
nel (LDC) infrastructure

28.1.1.3. Between SP and Domain/Hypervisor

Communication with the SP over LDCs provide clients in both the guest and hypervisor to send/receive
datausing LDC APIs. Like domain to hypervisor LDC connections, the interfaces are similar to the ones
in the case to inter-domain LDCs. The domain client will register a message queue, to transmit and re-
ceive packets from the SP. Hypervisor clients at the other end of the channel will use an private internal
Hypervisor API to register a callback for each endpoint. When a domain advances the Tx tail data, the
Hypervisor will initiate a send by copying packets out of the Tx queue into the queue associated with that
channel in the SRAM.

28.1.2. Shared memory communication

Memory can be shared between domains or between the Hypervisor and a domain using the LDC shared
memory framework. The Hypervisor LDC framework provides interfaces to domains that allow them
to register tables that contain the list of pages being exported along with its usage criteria and access
permissions. The Hypervisor, will then arbitrate access to the exported pages from the importing domains
using the tables registered by the exporting domain. The rest of this document will refer to these tables
as memory map tables or just map tables.

28.1.2.1. Between domains

At thetime of domain initialization, each domain nexus will register with the Hypervisor one or more map
tablesfor each LDC connection. It will also specify the page size for which the table will be utilized. Since
each processor MMU has capability to support multiple page sizes, an OS instance and its applications
might use different size pagesfor its memory regions. In the current design, each table will contain entries
for pages of one size only. Also since each table is bound to a unique LDC connection, only the domain
and client at the other endpoint has implicit access to the pages being exported via this table.

When aclient (driver) wants to export memory it will use the nexus API calls to specify the VA range it
wantsto export. It will need to specify whether the memory being exported isfor remote mapping, remote
copying or IOMMU access only. The nexus will add entries to the channel's map table and return back to
the client arange of cookiesthat correspond to the VA range. The client driver can then share the cookies
with its peer at the other end of the LDC connection.

The driver in the importing domain will then use the cookies it obtained from the exporter to either copy
the data to/from of the exported memory, or request the nexus to map the memory associated with the
cookies into its address space. In the case of the latter, the nexus will return back to the client driver aRA
range(s) that corresponds to the exported memory.

28.1.2.2. Between domain and the Hypervisor

Domain to Hypervisor LDCs can be used to directly read, write, or map Hypervisor memory. Similar to
aguest, the Hypervisor can choose to export access to pages in its physical address space to a guest over
a LDC connection. It does this by creating a map table that holds the pages it is exporting. It can then
provide the guest with a cookie that uniquely identifies the entry in the table. The guest client driver will
then use the same interface it uses for domain-to-domain LDCs, to either map or read/write the page in
the Hypervisor address space.

28.1.2.3. Between Domain/Hypervisor and the service processor

The LDC infrastructure does not allow exporting memory segments to clients of LDC in the service pro-
CEssor.

228

Logica Domain Chan-
nel (LDC) infrastructure

28.2. Hypervisor infrastructure

28.2.1. Packet delivery

The Hypervisor provides a simple point-to-point messaging mechanism to send and receive packets over
aLDC connection. LDC connections as mentioned earlier allows domains to send data to other domains,
or the Hypervisor. The Hypervisor guarantees ordered delivery by creating two locks for packet transfer
over LDC.

LDC connections are created by the LDom manager by adding the appropriate nodesin the MD. A guest
identifies the LDCs associated with virtual devices by looking in its machine description nodes for the
device. Each guest/client registers LDC Tx and Rx queues for each endpoint. A guest initiates a transfer
by copying datainto its transmit queue and invoking a Hypervisor API to setting the tail for the Tx queue.

If aremote receive queue exists, the Hypervisor sends a interrupt to the remote endpoint signaling it that
there is data available for read. The receiving endpoint calls into the hypervisor to read the head and tail
for the Rx queue. The hypervisor copies data from the sender's Tx queue to the receiver's Rx queue, and
then returns the updated head and tail to the receiver.

28.2.2. Shared memory

This section describes the mechanism by which memory from one logical domain may be exported for
access by another logical domain. Thisfacility enables shared memory to be utilized for such functionality
asvirtual device services.

Using the interfaces described herein, one logical domain may export a number of its own memory pages
across alogical domain channel for access and use by the logical domain at the other end of the channel.
Themechanismisintended to be directly analogousto the way adomain would export pages of its memory
for access by 1/O devices on the other side of an 1/O bridge (/0 MMU).

28.2.2.1. Map table

The principle means by which adomain may export itslocal memory across a domain channel is through
the use of an export map table that the guest defines within it's own local memory - much likeaTSB is
used to define local virtual memory mappings. The recipient domain at the other end of thelogical channel
may make use of the exported memory either by using a hypervisor API call to copy datainto or out of
its local memory, or by using a hypervisor API call to explicitly map the remote exported memory into
itsreal address space for access.

The real address space of each domain's virtual machine is independent of all the others. Therefore to
coordinate references to exported memory between domains, cookies are used to refer to entries within
the exporter's map table.

Consider adomain (“X") that wishes to export a page of memory to another domain (“Y”). For this to
be possible a domain channel must connect X to Y. Let us assume that such a channel has been created
by the domain manager.

In order to export any memory across this domain channel, domain X must allocate an export map table
from itslocal memory, and assign that map table to itslocal channel endpoint.

The assigned map table may be used to export multiple pages, which remain exported until explicitly
removed from the map table, or the tableitself is un-assigned from the channel endpoint.

The map table must be a power of number of entriesin size, and must be aligned in memory on a real
address boundary equal to its size in bytes. Hypervisor API calls are provided to assign a map table to a

229

Logica Domain Chan-
nel (LDC) infrastructure

channel endpoint, unassign the table, and to get the table info. A map table may not be assigned to more
than one channel endpoint at atime.

28.2.2.2. Map table cookies

For the recipient domain“Y” to be able to refer to exported memory, it must use a 'cooki€' that describes
the memory that domain “ X" isexporting. This cookie may be considered aform of addressfor the remote
memory, much like a DMA-cookie is used for DMA operations by an 10 device.

The export cookie is created by the exporting domain “Y” and it contains two essential pieces of informa:
tion— the size of the exported page mapping, and the index in the exporter's map table of that mapping. A
cookie may also contain offset information so asto identify data located within the memory page defined

by a mapping.

A cookie only has meaning within the context of the domain channel its associated map tableis bound to.
Thusif amap tableisassigned to achannel endpoint in domain“ X", then domain“Y” must alsoidentify its
local endpoint when using the cookie. In thisway the hypervisor is not responsible for creating or tracking
or transferring cookies between domains.

A cookie is created by the exporting domain, and can be communicated by any means to the importing
domain— for example by message over the same domain channel. When a cookie is used (for example
with al dc_copy operation), the associated local channel endpoint enables the hypervisor to determine
the remote channel endpoint and the therefore the remote (exporting) domain and the export table itself.
The cookie may then be used to locate the entry in the export map table that defines the memory being
exported.

Cookies created by an exporting domain have the following format:

6 6 5

3 09 sz sz-1 0

S R Fom e e a e o m e e e e e a e e oo +
| pgsz | tbl _i dx | pg_of f |
S R Fom e e a e o m e e e e e a e e oo +

The upper four bits of the cookie identify the page size of the exported page, and use the same page size
encodings as the basic sundv TTE format.

The remainder of a cookie consists of an offset within the specified exported page and an index to the
entry within the exporting domain's map table that identifies the actual exported page. The offset field
ranges from bit zero, to the number of offset bits relevent for the cookie's page size. The index field starts
at the first bit for the page frame number and continues to bit 59. For example, for an 8K page; the page
size field (bits 60 to 63) is zero, the page offset isin bits O through 12, and the table index is specified
in bits 13 through 59.

This compressed cookie format enables a page size, index value and page offset to be transferred in one
single 64-bit value that may in effect be treated as an address itself. Basic arithmetic may be applied to
the offset field, which if it overflows will automatically adjust the table index field. In this way a large
number of sequential map table entries of the same page size can be described by a single cookie value.

28.2.2.3. Map table entry

For the export map table, each entry consists of atwo 64-bit words illustrated below:

230

Logica Domain Chan-
nel (LDC) infrastructure

6 5 5 5 1 1 1 1

3 7 6 5 3 2 1 0 9 8 7 6543 0
F - o e e e e oo - - e T e Y Y Y +
| rsvd|i nuse]| raddr | swl| sw2| cpw cpr|iowior|x|wr| pgszc |
F - o e e e e oo - - e T e Y Y Y +
| revocati on cookie |
o o oo e oo o +

The map entry (word 0) bit fields are defined as follows:

Bits 63-57 - reserved - Must be written as zero

Bit 56 - In use - This bit is set by the hypervisor if a map-table entry is still in use by the importing
domain. Itisalso cleared by the hypervisor if the entry is no longer mapped by the importing domain.

Bits 55-13 - Real address (RA) - For page sizes larger than 8K B, the low order address bits below the
page size must be set to zero

Bit 12 - SW1 - Thisbit isavailable for use by software.
Bit 11 - SW2 - Thisbit isavailable for use by software.

Bit 10 - Copy writeable (CPW) - If set to 1 the hypervisor | dc_copy API may be used by theimporting
domain to write to this exported page.

Bit 9 - Copy readable (CPR) - If set to 1 the hypervisor | dc_copy APl may be used by the importing
domain to read from this exported page.

Bit 8 - 1/0 Writable (IOW) - If set to 1 this exported page may be mapped by an IOMMU for writing
by an I/O DMA operation.

Bit 7 - 1/0 Readable (IOR) - If set to 1 this exported page may be mapped by an IOMMU for reading
by an 1/0 DMA operation.

Bit 6 - e(X)ecute - If set to 1 instructions may be fetched and executed from this page by the importing
domain

Bit5- (W)ritable- If set to 1 this page may be mapped and written to as shared memory by theimporting
domain

Bit 4 - (R)eadable- If set to 1 this page may be mapped and read from as shared memory by theimporting
domain

Bits 3-0 - Page size code (pgszc) - page size code 0 = 8KB, 1=64KB, 2=512KB, 3=4MB, 4=32MB,
5=256MB, 6=2GB, 7=16GB Sizes 8 through 15 are reserved.

The permissions hits (bits 4 through 10) indicate the access permissions granted by the exporting domain
to the importer of the page described by the specific map table entry. If no access permissions are granted,
(bits 4 through 10 are all zero), the map table entry is considered invalid.

Note: It is recommended that invalid map table entries have the entire 64-bit word set to zero.

Map table entries must not contain overlapping or identical real address ranges— do so yields undefined
results for both exporter and importer— without guarantee that the exporter will be able to revoke access
permissions to the exported page.

231

Logica Domain Chan-
nel (LDC) infrastructure

28.2.2.4. Copying in and out of a peer's exported memory

Once a LDC peer has provided access to memory pages via it's map table, a guest operating system can
request the hypervisor to copy datainto and out of those pages by simply presenting cookies provided by
the peer with thel dc_copy hypervisor API call.

Eachtimethe call ismadethe hypervisor validatesthe presented cookietogether with the access permission
provided in the exporter's map table to determine whether the copy should indeed be allowed. Thisisthe
simplest mechanism by which data may be transferred in bulk between guest operating systems.

28.2.2.5. Mapping page use and restrictions

For a guest to use memory exported by one of it's LDC peers, it must ask the hypervisor to provide access
to the exported page. Thisisachieved using the| dc_mapi n hypervisor API call.

The map-in call returns a real address of where the imported shared memory page was mapped with-
in the importing guests virtual machine real address space. Shared memory is un-imported using the
| dc_unmap API call by passing the samereal address that was returned from thel dc_mapi n API call.

As part of the importer's real address space, the imported shared memory page may be used for virtual
memory mappings and 1O MMU mappings with the same mechanisms as it's own memory pages. How-
ever, imported shared-memory pages are not generally accessible like norma memory pages, and the hy-
pervisor enforces a number of restrictions upon their use:

The guest exporting ashared memory page may only allow certain types of accessto that page (for example
for reading only). For example, attempts to map a page without read or write permission for load or store
instructions will fail (or in the case of TSB use generate a data or instruction access exception trap for
aninvalid real address).

In addition to the restrictions required by the exporting guest, the hypervisor itself requires that importing
pagesarenot aliased either by virtual memory mappings, or |O MMU mappings. Virtual memory mappings
are alowed only for context O but are available to all virtual CPUs.

Imported shared memory must be unmapped and re-mapped in before a new virtual or IOMMU address
may be assigned— even if theold virtual address has been de-mapped with the appropriate demap API call.

28.2.2.6. Mapping revocation

When a guest wishes to discontinue the export of a page to its LDC peer, it can do so by simply denying
further access by disabling the access permissions in the map entry word in the corresponding map table
entry. (It is recommended that an entry be disabled/invalidated) by writing the value O to the whole map
entry word (word 0).

Denying future accesses does not automatically revoke existing page mappings to which the LDC peer
may have access.

Well-behaved peers sharing exported memory are recommended to use a communication protocol to de-
termine when exported memory pages are available or no longer in use by a peer. It is anticipated, there-
fore, that only in extraordinary circumstances will aguest that exports memory need to forcibly deny (“re-
voke") access to a previously exported memory page.

To avoid the cost of an export revocation for well behaved peers, the hypervisor provides an indication
that an exported page is actually still in use by a peer in the form of a revocation cookie in the second
word of the map-table entry for the exported page. This revocation cookie word must beinitialized to zero
when a page is exported, and will be over-written by the hypervisor with a revocation cookie while the
exported page is actually in use by the peer guest.

232

Logica Domain Chan-
nel (LDC) infrastructure

When apageis no longer to be exported, the export mapping permissions should be removed after which
the revocation cookie word can be examined to see if the page is actually still in use by the peer guest.
A revocation cookie value of zero indicates the page is not in use— at which point the map table entry
may be re-used for exporting other pages.

A non-zero value for the revocation cookie indicates that the previously exported page is still in use by the
peer guest. It then becomes a matter of policy for the exporter as to whether it wishes to forcibly revoke
the access permissions for the importer, or simply wait for the importer to clean-up itself.

Toforcibly revoke access permission for the peer guest, the exporting guest simply usesthel dc_r evoke
API call with the LDC cookie for the exported page, and the revocation cookie provided in the export
map table.

Removing individual permissions for exported pages must be done by unmapping or revoking access to
the exported page first, then re-exporting it with the new permissions required.

Forcibly revoking access to an exported page, can have catastrophic consequences for the importer—
including failed memory accessesor failed device DMA transactions. Therefore, the exporter should avoid
revocation as far as possible.

Exit of the exporting guest will cause the hypervisor to automatically forcibly revoke exported page map-
pings.

An importer of shared memory pages that is intended to be robust should be designed to shield itself
against exported mappings being forcibly revoked at any time either by the exporter or automatically by the
hypervisor if the exporter exits. Importers wishing to avoid these issues may always use thel dc_copy
capability to move data.

28.3. LDC virtual link layer

Logica domain channels provide a virtual link layer abstraction that are designed as point-to-point com-
munication channels between logical domains or between alogical domain and an external entity such as
a service processor or the Hypervisor itself. Logical domain channels provide an encapsulation protocol
onto which higher level transport can be built such as TCP/IP and PPP.

Figure 28.1. LDC Virtual Link Layer

Guest 1 Guest 2
VIO VIO Misc VIO VIO Misc
Client Client In- Kernel Svec Svec In- Kernel
1 2 Clients 1 2 Clients

S

S

LDC Virtual Link Layer

LDC Virtual Link Layer

LDC Framework

233

Logica Domain Chan-
nel (LDC) infrastructure

28.3.1. Communication overview

28.3.1.1. Data Transfer Mechanisms

Data transferred between domains can be encapsulated into LDC packets or transferred directly from
one domain's memory to another using the Hypervisor shared memory communication support. The link
layer protocol defined here provides clients the ability to choose either mechanism for data transfer. The
link layer will fragment and reassemble messages as part of the transfer. It will insert additional header
information as part of each packet to indicate the start and end of a fragmented data transfer. The LDC
link layer uses network byte ordering to transfer all data. The actual details of the transfer protocol itself
will beinvisible to the clients.

Packet-based Transfer
Data can betransferred out of avirtual machine by encapsulating it into LDC packets or transferring it
directly from one domain's memory to another using the Hypervisor shared memory communication
support. Thelink layer protocol will provide client drivers the ability to choose either mechanism for
data transfer.

In the case of the packet based mechanism, the link layer protocol will fragment and reassemble
messages as part of the transfer. It will insert additional header information as part of each packet to
indicate the start and end of afragmented data transfer. The actual details of the transfer itself will be
invisible to the client driver. It is recommended that this approach be used only for short messages.

Shared Memory Access
The shared memory access mechanism allows a client driver to make sections of its memory visible
to other domains. This support is build on top of the underlying Hypervisor infrastructure for setting
up memory map tables to share memory segments.

Client driverswill usetheinterfaceto obtain acookie associated with the memory they want to expose.
The client can then send the cookie to a client driver in a remote domain using the packet based
transfer. The receiving client can then request its LDC framework to consume the cookie and map
the remote domain's memory into its address space. Once the mapping is completed, clients can read,
write these shared memory regions and also setup DMA operations to directly transfer datainto or
out of domain buffers.

A slight modification to the direct memory map is the copy option, where the datais copied in to or
out of the buffers that have been exposed by a virtual device client or server via a Hypervisor API.
In this approach, when avirtual device wants to send data, either the device client or server will first
copy the data from the exporter's memory to alocal memory buffer.

Both methods of datatransfer is provided because all virtual machine client may not alow shared memory
communication either due to technology limitations or security concerns.

28.3.1.2. Protocol Modes

Clients of the LDC mechanism can either be clients that implement sophisticated transport layer like ca-
pabilities, i.e. virtual Ethernet with a TCP/IP stack, or a simple client with no special transport capability
like the FMA daemon or avirtual console device. These clients have different reliability requirements on
the underlying virtual link layer protocol. The virtual link layer protocol will meet the requirements of
either type of client by implementing three different types of data transfer protocol.

Raw mode
Theraw virtual link layer protocol protocol does not add any overhead by appending any headers and
sendsonly 64-byte packetsat atime. It hasno support for session management, message fragmentation

234

Logica Domain Chan-
nel (LDC) infrastructure

and re-assembly, or retransmissions. It provides a very thin layer over the Hypervisor interface and
mostly passes through read and write requests to the Hypervisor.

Unreliable mode

Theunreliable link layer protocol will implement a communication mechanism that will include sup-
port of connection establishment via a ssimple handshake protocol. It will also implement support
for negotiating a session and detecting session termination. It will only implement support to detect
either lost or out-of-order packets, and not reassemble out of order packets and only stitch together
packets received in order. The unreliable mode also supports fragmentation and reassembly of LDC
datagrams. Clients of this link layer mechanism will need to implement their own error detection
mechanism and do the required retransmission.

Reliable mode
The reliable link layer protocol implements all the support encompassed within the unreliable link
layer protocol. In addition, it implements support for streaming buffers, detecting out-of-order packets
and packet loss and acknowledges received packets. The primary distinction of reliable mode is to
provide an error detection capability via packet ACKs and NACKs.

28.3.2. Packet formats

The Hypervisor LDC framework provides the capability to deliver 64-byte packets between peer channel
endpoints. It does not impose any predefined format for each word in the 64-byte packet. Depending on
whether the clientswant to use araw, reliable or unreliablelink mode, the link will utilize different formats
for each LDC packet. In the case of thereliable link each packet will consist of a 16-byte header, and 48-
bytes of data payload. The unreliable link will have a smaller 8-byte header, and contains 56-bytes of data
payload. The raw link will utilize the complete 64-bytes for the data payload. The high-level formats of
the raw, unreliable and reliable packet are shown below.

Raw Datagram Packet:

6 55 4 4 43 33
3 6 5 8 7 09 21 0
[F S —— [+- - - - oo o - +
word O: | type | stype | ctrl | env | seqi d |
[F S —— [+- - - - oo o - +
word 1-7: | dat a payl oad |
oo e a oo o +
Reliable Datagram Packet:
6 55 4 4 43 33

235

Logica Domain Chan-
nel (LDC) infrastructure

3 6 5 8 7 09 21 0

[F S —— [+- - - - oo o - +

word O: | type | stype | ctrl | env | seqgi d |

[F S —— [+- - - - oo o - +

word 1: | (reserved) | ackid |

oo e a oo o +

word 2-7: | dat a payl oad |
oo e a oo o +

Description:

» Packet Type (Word 0, Bits 0-7): Each packet sent from one LDC endpoint to another can consist of
either control, data or error information or acombination there-of. The appropriate 'type' field bit(s) are
set to indicate packet contents.

LDC_CTRL 0x01
LDC_DATA 0x02
LDC_ERR 0x10

 Packet Sub-Type (Word 0, Bits8-15): The stypefield containsvaluesINFO, ACK or NACK and defines
the type of data, control or error message. The combination of the type and stype fiel ds define the nature
of the message.

LDC_| NFO 0x01
LDC_ACK 0x02
LDC_NACK 0x04

» Control Info (Word 0, Bits 16-23): The ctrl field contains either basic control information and/or error
information. The control info values currently supported are listed below:

LDC_VERS 0x01 Link version

LDC RTS 0x02 Request to send

LDC RTR 0x03 Ready to receive
LDC_RDX 0x04 Ready for data exchange

» Packet Envelope (Word 0, Bits 24-31): The env field, depending on the packet type, contains either
control or datarelated information. If the packet containsacontrol info of typeRTSor RTR, theenvel ope
contains protocol mode and will have one of the following values:

LDC_MODE_RAW 0x00 Raw mode

LDC_MODE_UNRELI ABLE 0x01 Request to send
0x02 Reserved

LDC_MODE_RELI ABLE 0x03 Reliable mode

When using RAW mode, since thereisno handshake as part of the protocol, the RAW mode val ue spec-
ified aboveisnever exchanged as part of the packet envelope. It isonly specified here for completeness.

In the case of packets containing data, the envelope contains the number of bytes in the current packet.
It also contains information pertaining to fragmented transfers. The format of the envelope for a data
packet is shown below:

236

Logica Domain Chan-
nel (LDC) infrastructure

When a message is fragmented, the first fragment has the st ar t bit in the envelope field, set to 1.
The last fragment has the st op hit set to 1. Intermediate fragments between a start and stop packet
have neither bit set. In the case of asingle packet transfer (less than the max payload), both st art and
st op bitsinthe envelope are setto 1.

» Sequence ID (Word 0, Bits 32-63): The seqID field is populated with an unique sequential number for
every packet sent from one endpoint to another. Thisisused by the receiver to detect and enforce packet
ordering, and acknowledging received packets.

The AckID field below is only used for the reliable link implementation

Implementation Note: In order to generate aunique session ID, it isrecommended that the link uses 32-
bits from the CPU tick register asthe session ID.

» Acknowledgment ID (Word 1, Bits 31-63): An endpoint can acknowledge packets it has received by
sending an ACK back to its peer. The 'ackid' field contains the sequence ID of the last packet received
in correct order by an endpoint. The peer may send separates messages to ACK received packets or
embed acknowledgments in data packets.

28.3.3. Communication protocol

The link layer implements a thin connection establishment, tear down and data transfer protocol on top of
the Hypervisor infrastructure. When clients opens achannel for communication, the link allocates memory
for transmit and receive queues and registers these with the Hypervisor. Since neither endpoints have any
knowledge about a endpoint's capabilities and whether it is ready to receive data , a simple handshaking
protocol isneeded to prior to starting the datatransfer. Thisalso ensuresthat clients can start and terminate
their sessions independent of each other, and reestablish a connection when necessary.

Implementation Note: In the case of a reliable connection, the link should buffer outgoing messages for
retransmission purposes. It will mark packets in the transmit queue as completed when it receives ACKSs.
In the event of a packet loss or timeout, this allows the link to retransmit packets.

28.3.3.1. Session establishment

* After setting up the Tx and Rx queues, either endpoint will initiate a version negotiation by sending a
LDC_VERS message, with the version number it supportsin the second word of the message. Thelink will
use a simple count down algorithm so that both sides use to agree on amutual version. If the peer endpoint
agrees with the same version or the same major but a lower minor version, it will respond back with an
ACK (same msg with the ACK bit set). If it does not support the version, it will respond with an error
message NACK and also set the version field to the next lower version version it supports. If it does not
support a lower version, it will set the version fields to zero. The sender can then re-send another VERS
request with the received lower version or a new even lower version. This will continue on until either
the endpoint initiating the VERSION handshake exhausts all the version it supports or the peer accepts a
version or responds with an NACK message with version set to zero.

237

Logica Domain Chan-
nel (LDC) infrastructure

6 33 22 11

3 21 43 6 5 8 7 0
o e e o - - +- - - - [[[+
| | - | VERS| INFO| CTRL |
o e e o - - +- - - - [[[+
| | maj or | m nor |
o e e o - - o m e o - - o m e e e oo - +

« Following the version negotiation, either endpoints will negotiate a 3-way handshake. As part of this
handshake, the endpoints will exchange initial sequence IDs for the session.

6 33 22 11

3 21 43 6 5 8 7 0
o e e o - - +- - - - [[[+
| seql D | - | RTS/ | INFO| CTRL |
| | | RTR | | |
o e e o - - +- - - - [[[+

6 33 22 11

3 21 43 6 5 8 7 0
o e e o - - +- - - - [[[+
| peer_init_seqilD+ 1 | - | RDX | INFO| CTRL |
o e e o - - +- - - - [[[+

* The sending link endpoint akaendpoint_A will initiate an handshake with the other sidei.e. endpoint_B
by sending an LDC_RTS message that contains the initial seqlD (if reliable), and the mode it would like
to use for communication.

« If endpoint_B has setup areceive queue, it will either:

« respond back with a LDC_RTR message, that contains its initial seqlD and the matching link mode
message.

« endpoint_A will then respond back with a LDC_RDX message. This will mark the channel status as UP
and data transfer can now commence.

« If endpoint_B has not setup areceive queue, the hypervisor send (hv_t x_set _qt ai |) operation will
fail.

238

Logica Domain Chan-
nel (LDC) infrastructure

Endpoi nt A Endpoint B
| |

|

| CTRL/ | NFQl VERS(ver _3. X) |

U > 4+
|

| CTRL/ NACK/ VERS(ver _2. x)
version R R T +
negotiation | CTRL/ | NFQ VERS(ver _1. x) |
o > +
| CTRL/ ACK/ VERS(ver _1. x) |
S +

. CTRL/ | NFQ' RTS .
| (seqi d_A, node) |

CTRL/ I NFQ' RTR |

|
handshake | (seqi d_B, node) |
S +
| |
. CTRL/ | NFQ' RDX .
| (seqi d_A+1, node) |
o > +
| |
data xmt data xmt
|

Following a successful handshake, both sides can start transmitting data.

28.3.3.2. Session termination

A session between two endpoints can be torn down either due to a packet error, repeated packet 10ss,
too many retransmissions or at the request of aclient. A session is normally terminated by either un-con-
figuring or reconfiguring the receive queue. On receiving a CHANNEL_DOWN or CHANNEL _RESET
notification from the Hypervisor the receiver will reset itsinternal state from which aversion negotiation
and handshake will need to occur prior to fresh data transmission.

28.3.3.3. Session status notification

A session is established when either endpointsinitiate a handshake or isterminated following an Rx queue
un-configuration or reconfiguration. Following either events, the link can notify its client about a change
in session state via the callback registered by the client.

28.3.3.4. Data transfer
28.3.3.4.1. Packet format

When sending data to its peer, depending on the size, a link will either send the data in one packet or
fragment the data into multiple packets. The type field in the msg pkt will be set to DATA for all packet
based transfers. The stype field will be of value INFO and the envelope field will contain the number of
bytes being sent in each packet. The start and stop bits are used to indicate the start and end of afragmented
transfer. Thefirst packet in the transfer will have the start bit set to 1. Subsequent packets have neither the

239

Logica Domain Chan-
nel (LDC) infrastructure

start nor stop hit set. The last packet sent as part of afragmented transfer will have have the stop bit set to
1. If the datais transmitted in a single packet, both the start and stop bit will be set to 1.

28.3.3.4.2. Streaming support

The Reliable mode also implements support for streaming data transfers. It does this by breaking each
message into MTU size blocks, specified by the client at the time of channel initialization. During send
(I dc_wri t e), each message isfirst broken up into MTU size blocks before being transmitted using the
packet transfer approach discussed above. On the receiving end, the link layer passes data back to client
in MTU size blocks without any reassembly. Using streaming eliminates the need to alocate very large
Tx and Rx queuesin the link layer as very large messages can be transferred in MTU size chunks.

28.3.3.4.3. Message ACKs
Message ACKs are used in the case of reliable link mode to indicate data transfer progress.

A client can only queue afixed number of packets, after which it will have to wait for an ACK from the
receiver before it can send more packets. The receiver will periodically respond back with a DATA/ACK
control message, and the ‘ackid' field will contain the sequence ID of the last packet it received in correct
order. Since the packet control field bits for an ACK message do not overlap with those of aregular data
packet, a endpoint can send an ACK message embedded in a data packet.

28.3.3.4.4. Transmit queues and retransmissions
In the case of ardiable link, the link will retransmit the packets in the event of a data loss.
For each message sent by a client, the link will maintain it in alist of message segments.

Each segment corresponds to one more fragmentsi.e. packetsin the transmit queue. It will store the seqlD
corresponding to first fragment with the segment. It will initiate a send by storing the fragmented packets
in the transmit queue. At the same time it will start atimer for the message. If a ACK for the packets are
not received before the timer expires, the sender will retransmit the message with the same set of start of
end seqIDs. If an duplicate ACK isreceived, it will discard it.

The sender will also maintain ahead and tail pointer to keep track of the packetsthat have been transmitted
and the onesthat have been ACKed. In the event of atimeout, the sender will retransmit packetsby copying
over the packets into queue locations starting at tail location. All packets in the queue will purged when
asession istorn down and/or established.

There are multiple retransmit scenarios and these are handled in the following manner:
» Packet loss

Thisisthe simplest of al cases. In the event of packet loss, the receiver will discard all future packets
until it receives a packet in correct sequence. The sender will initiate retransmission on timeout.

e Premature timeout / Delayed ACKs

There are cases when the receiver is backed up and does not respond to the sender in atimely fashion.
Thiswill cause the sender to timeout prematurely and retransmit the segment's packets to the receiver.
It might either during the retransmission or subsequently receive ACKs for the first transfer. When it
receivesthe ACK, it can mark the message segment as successfully sent. It will thenignoreany duplicate
ACKSsreceived as aresult of the retransmission. Similarly, the receiver will discard packets associated
with theretransmission (same seql D range), if it had previously received the message successfully. Even
if the receiver discards incoming messages as duplicates, it will need to ACK the messages as earlier
ACKs could have been lost.

240

Logica Domain Chan-
nel (LDC) infrastructure

e Lost ACKs

Inthe event, the message was sent successfully, but the ACK waslost, the sender will eventually timeout
and retransmit the segment packets. Since receiver aready received the message, it will discard the
message but till send an ACK. If thereis an error during retransmission, the receiver will discard the
packets as before.

28.3.3.4.5. Link errors

Either during the initial handshake or during the course of data transmission, either endpoints can detect
an error and take the corresponding action. The errors currently detected and handled within the link are
listed below:

» Packet error

During data transmission, packets can either get dropped or gets sent out of order. When the receiver
detects a packet that is out of order, it will purge all pending packetsin its transmit queue, until it finds
a packet with the correct sequence. The unreliable link does not support retransmissions, and packets
are dropped on error. Transmit sequence errors are detected viainvalid start/stop bitsin pkts.

In the case of reliable link mode, packet loss is detected using seqID. It will send an ACK for the last
packet that was received in correct order. This allows the sender to determine what seqID to start the
retransmission from. Since there might be packetsin flight (pkts between the ACKd pkt and the current
TX tail ptr), the receiver will have to continue dropping all future packets until it receives a packet with
the seqID that corresponds to the lost packet. The sender will eventually timeout and recopy lost or
unacknowledged packets starting from the current tail location and initiate the retransmission of packets
starting with the lost packet.

28.3.3.4.6. Link interrupt handler

Linksthat are capable of handling interrupts can register an interrupt handler for each LDC channel with
atarget CPU to which the interrupt should be delivered. The link should alocate the CPU to channels
in a round-robin manner. When a channel has pending datain its LDC queue, the Hypervisor will send
adev_mondo interrupt to the link. The link will either process the packet in the queue (if it is a control
packet), or invoke the client's callback (if it is a data packet) to let it know that there is pending data.

241

Chapter 29. Virtual 10 device protocols

29.1. Virtual 10 communication protocol

Virtual devices, clients and/or services, at the most basic level rely on the underlying Hypervisor LDC
framework (Chapter 22, Logical Domain Channel services) and LDC transport layer (Chapter 28, Logical
Domain Channel (LDC) infrastructure) to transfer data.

Since both these layers only provide a basic communication mechanism, Virtual 10 (V10) devices employ
a basic handshake procedure to agree on transmission properties for the channel, before meaningful data
can be exchanged between the two channel endpoints. As part of the handshake they negotiate a common
version, device attributes, data transfer type, and if necessary shared memory descriptor ring information.
Following a successful handshake, the devices can send and receive data. All V1O devices use the LDC
unreliable transport mode for all communication.

The figure below shows two logical domains with V1O device clients and services communicating with
each other using the V10 protocol and layered on top of the underlying LDC framework. Domain A has
exclusive accesstolocal physical devicesthrough native device drivers and exports accessto these devices
over the LDC connection to domain B.

29.1.1. VIO data transfer

V10 devices will transfer data either using packet mode by storing the datain LDC datagrams or sharing
the data using the shared memory capability of the Hypervisor. A V10 device that uses packet mode, will
use either a single LDC datagram packet or use the fragmentation-reassembly capabilities of the LDC
transport layer to packetize and transfer larger messages. The Hypervisor shared memory support allows
guests to share memory regions in their address space with another guest at the other end of a channel
(FWARC/2006/184 [http://arc.opensolaris.org/casel og/ FWARC/2006/184/]). This capability alows VIO
client drivers to share segments of memory with a VIO client or service so that data can be transferred
efficiently and much faster, instead of transferring data over the channel by packetizing each transfer.

242

http://arc.opensolaris.org/caselog/FWARC/2006/184/
http://arc.opensolaris.org/caselog/FWARC/2006/184/

Virtua 10 device protocols

Figure 29.1. Virtual I/O Layers

/
Guest 1 Guest 2
Virtual Virtual
Disk Network Virtual Virtual
Server Switch Network Disk
VIO Protocol VIO Protocol
Native Native
Disk LDC Transport Net LDC Transport

Driyer Driyer

Network
Device

Block
Device

Like conventional 10 devices, thevirtual 10 devicesthat use the Hypervisor shared memory infrastructure
for datatransfer, will setup and use descriptor rings. The descriptor ring isacontiguous circular ring buffer
that 10 devices use to queue requests, receive responses and transfer associated data. VIO devices that
use shared memory will either share their descriptor rings or send the descriptors as in-band messages.
The subsequent sections describe the content of control and data packets, the transfer protocol and the
structure of the descriptor rings used by VIO devices. It also specifies the device specific content of the
LDC packets and descriptors for virtual network and disk devices.

243

Virtual 10 device protocols

29.1.2. VIO device message tag

All packets exchanged by V10O devices over a channel will use a common message tag as the header for
the message. The message tag uniquely identifies the session, the type and subtype of the message. The
subtype envelope contains message specific meta-data. All packets sent/received by VIO devices will
specify all messagetag fieldsand no field is optional. The format of the message tag along with values for

thet ype, subt ype and subt ype_env fields are shown below:

6 55 4 4

3 6 5 8 7

- e - - Fommm - Fomme e - -
| TYPE | STYPE |

- e - - Fommm - Fomme e - -
Message Types.

VI O_TYPE_CTRL
VI O_TYPE_DATA
VI O TYPE_ERR

Sub-Message Types.

VI O_SUBTYPE_I NFO 1
VI O_SUBTYPE_ACK 2
VI O_SUBTYPE_NACK 4
Sub-Type Envelope:
VI O_VER_I NFO 0x0001
VI O_ATTR_I NFO 0x0002
VI O TYPE CTRL VI O DRI NG REG 0x0003
- - VI O_DRI NG_UNREG 0x0004
VI O_RDX 0x0005
reserved 0x0006-0x003f
VI O PKT_DATA 0x0040
VI O TYPE DATA VI O_DESC _DATA 0x0041
- - VI O_DRI NG_DATA REG 0x0042
reserved 0x0043-0x007f
VI O TYPE_ERR reserved 0x0080-0x00ff
Device Class-specific sub-type envelopes
VNET reserved 0x0100-0x01ff
VDSK reserved 0x0200-0x02ff
reserved reserved 0x0300-0xffff

244

Virtual 10 device protocols

29.1.3. VIO device peer-to-peer handshake

For V10 devices, both the server and/or client hasto successfully compl ete ahandshake before datatransfer
can commence. The handshake can be initiated by either parties. In the description below each message
sent or received is specified using the format <type> / <subtype> / <subtype _env>.

29.1.3.1. Version negotiation

A handshake is initiated by one peer sending a CTRL/ | NFQ' VER_| NFO to the other endpoint. This
message consists of adev_cl ass field identifying the type of the sending device, and anaj or /mi nor
pair which specify the protocol version (the protocol version will determine the type and amount of data
that will be expected to be exchanged in later phases of the handshake). It also setsthe session ID (si d)
to arandom value by setting it to the lower 32-hits of the CPU tick. The client will send anew session ID
with each version negotiation request. The session ID corresponding to the accepted version gets used as
part of each message sent as part of the session.

If the device class is recognized and the version major/minor numbers are acceptable then the receiving
endpoint responds back with a CTRL/ ACK/ VER_| NFO message leaving all the parameters unchanged.
It also stores the sender's SID for use in future message exchanges.

If the major version is not supported, then the peer sends back a CTRL/ NACK/ VER | NFOmessage con-
taining the next lower major version it supports. If it does not support any lower major numbers, it will
NACK with the version major and minor values set to zero. The initiating endpoint can then if it wishes
send another CRTL/ | NFO' VER _| NFO message either with the major number it received from its peer,
if it is acceptable, or with its next lower choice of version. If the major version is supported but not at the
specified minor version level, the receiver will ACK back with alower supported minor version number.

Similarly, if the'dev_class isunrecognized, thereceiver will respond back with CTRL/ NACK/ VER | NFO
with the parameters unchanged and the handshake is deemed to have failed. The format of the version
exchange packet is shown below:

The currently supported devices types are listed below:

VDEV_NETWORK
VDEV_NETWORK_SW TCH
VDEV_DI SK

VDEV_DI SK_SERVER

A W N P

NOTE: Irrespective of what state the receiving endpoint believes the channel to bein, receipt of aCTRL/
I NFQ' VER_| NFOmessage at any timewill cause the endpoint to reset any internal state it may be main-
taining for that channel and restart the handshake.

245

Virtual 10 device protocols

29.1.3.2. Attribute exchange

Following theinitial version negotiation phase, V10O device clients/services will exchange device specific
attribute information, depending on the device class and the agreed upon API version. Each attribute in-
formation packet is of the type CTRL/ | NFQ' ATTR_I NFO and contains parameters like transfer mode,
maximum transfer size, and other device specific attributes. An ACK response is an acknowledgment by
the peer that it will usethese attributesin future transfer. A NACK responseisan indication of mismatched
attributes. It is up to the particular device class whether it restarts the handshake or exchanges other at-
tributes. The device specific section for virtual disk and network devices contains more information about
the exchanged attributes.

6 55 4 4 33 2
3 6 5 8 7 21 4 0
Hom e - - Fom e - S o +
word 1: | TYPE | I/A/N | VER_| NFO | SID |
Hom e - - Fom e - S o +
word 2-7 (device specific attributes)
o m m e o — oo +

29.1.3.3. Descriptor ring registration

Most virtual devices will use the shared memory capabilities of the Hypervisor LDC framework to send
and receivedata. Like conventional 1O devices, thevirtual 1O deviceswill usedescriptor ringsto keep track
of al transactions being performed by the device. Prior to using a descriptor ring, and following version
negotiation, and other device specific attribute exchange, VIO clients will register shared descriptor ring
information with its channel peer.

6 55 4 4 33 2
3 6 5 8 7 21 4 0
Fommm - - S o m e e e oo o o m e e e e e e +
word 1: | TYPE | I/A/N | VER_|I NFO | SID |
Fommm - - S o m e e e oo o o m e e e e e e +
word 2: | DRI NG_| DENT |
o m e e e e e e o o m e e e e e e +
word 3: | NUM_DESCRI PTORS | DESCRI PTOR_SI ZE |
oo o - o m e e e oo o o m e e e e e e +
word 4: | OPTI ONS | reserved | NCOOKI ES |
oo o - o m e e e oo o o m e e e e e e +
word 5-n (LDC_TRANSPORT_COOKI E * NCOOKI ES)
o m o m e m e e e e e e +

A VIO client will register adescriptor ring by sending a CTRL/ | NFO' DRI NG_REG message to its peer.
The message will contain information about the number of descriptors in the ring, the descriptor size,
the LDC transport cookie(s) associated with the descriptor ring memory and the number of cookies. The
opt i ons field allows certain VIO clients to specify descriptor ring properties that describe its intended
use. Theopt i ons bits are exclusive and the V1O client must specify only one of the supported values.
The supported valuesin version 1.0 of the VIO protocol are:

VI O TX DRI NG 1 Transmit descriptor ring
VI O_RX_DRI NG 2 Receive descriptor ring

246

Virtual 10 device protocols

Inversion 1.6 of the VIO protocol, an additional value is supported:

VI O_RX DRI NG DATA 4 Receive descriptor ring with data area

On receiving the registration message, the receiver will ACK the message, and in the ACK provide the
sender an unique dri ng_i dent. Thedri ng_i dent will be used by the sender to either unregister
the ring or refer to the descriptor ring during data transfer. A NACK to this message from the receiving
end isregarded as afatal error and the entire session is deemed to have failed and a new session hasto be
established by re-initiating a handshake. Thedri ng_i dent field isnot used in the registration message
and only used during the ACK.

A LDC transport cookie (LDC_TRANSPORT_COOKI E) is 16-bytes in size and consists of
cooki e_addr and cooki e_si ze fields. The cooki e_addr field corresponds to the Hypervi-
sor LDC shared memory cookie for each page (see FWARC/2006/184 [http://arc.opensolaris.org/casel -
0g/FWARC/2006/184/]) and thecooki e_si ze correspondsto the actual number of bytesthat is shared
within the page pointed to by the cookie. If the descriptor ring memory segment spans multiple pages, an
unique transport cookieis used to refer to each page within the segment. The format of the LDC transport
cookie is shown below:

6

3 0
e mccemeeemmmmmeeem e ee e e e e e e e e e e e e e e e e EE e m e—.—-----
| HV shared nenory cooki e (cookie_addr)
e mccemeeemmmmmeeem e ee e e e e e e e e e e e e e e e e EE e m e—.—-----
| cooki e_si ze
e mccemeeemmmmmeeem e ee e e e e e e e e e e e e e e e e EE e m e—.—-----

When two or more successive pages in the descriptor ring memory segment are stored in consecutive
entries in the LDC map table, a single transport cookie can be used refer to all these page entries. The
cooki e_addr inthiscasewill still point to first pagein the set, but thecooki e_si ze will correspond
to the size spanning all consecutive entries.

A V10 device might typically share multiple descriptor rings with its peer and can choose to register all
descriptor rings with its peer at the time of the initial handshake or at any point after data transfer has
commenced. If adevice intends to do all its data transfer using descriptor rings, it will have to register at
least one descriptor ring before data transfer can commence.

With VI O_RX_DRI NG_DATA option, the descriptor ring registration message is extended with additional
fields that provide information about the data area that is being exported, as shown below.

6 33
3 21 0
o m e e e e e ee i aa o o m e e e e e e ea e +
word n+1: | DATA _NCOXKI ES | DATA _AREA SI ZE |
o m e e e e e ee i aa o o m e e e e e e ea e +
word n+2-m (LDC_TRANSPORT_COCKI E * DATA NCOXXI ES
o m o e o e e +

DATA NCOOKI ES The number of LDC transport cookies associated with the data buffer area being
exported.

247

http://arc.opensolaris.org/caselog/FWARC/2006/184/
http://arc.opensolaris.org/caselog/FWARC/2006/184/
http://arc.opensolaris.org/caselog/FWARC/2006/184/

Virtual 10 device protocols

DATA AREA SI ZE Thesize of the data buffer areathat is being exported.

In VI O_RX_DRI NG_DATA mode, a VIO device registers a data buffer area with its peer in addition to
the descriptor ring. The data buffer area is allocated by the VIO device, as a single large buffer of size
DATA AREA S| ZE. The data buffer areais managed by the V1O device asindividua buffersthat are of
acertain size determined by the device class specific protocol. For example, in the case of virtual network
device class, the buffers may be of size at least equal to the MTU negotiated during attribute phase of
handshake. The V1O device exports this buffer area using the hypervisor shared memory infrastructure.
It obtains LDC transport cookie(s) to this data buffer area and not the individual buffers. It then passes
the cookie(s) to the peer in the DRI NG_REG message. The peer imports this data buffer area using the
cookie(s) that it received in the message, using the hypervisor shared memory infrastructure. The peer uses
this data buffer areafor its data transfers based on the descriptor format specified by its device class.

A VIO client can unregister adescriptor ring by sending a CTRL/ | NFQ' DRI NG_UNREG message to its
peer. It will specify thedr i ng_i dent it received from the peer at the time of registration. The peer will
ACK asuccessful unregister request and NACK the request if the dri ng_i dent specified isinvalid.
If subsequent data transfers refer to an unregistered descriptor ring, the DRI NG_DATA requests will be

NACKd.
6 55 4 4 33
3 6 5 8 7 21 0
Fom e e e Fomm oo o Fom e e e e aa - +
word 1: | TYPE_CTRL | I/A/ N | DRI NG UNREG | SID
Fom e e e Fomm oo o Fom e e e e aa - +
word 2: | DRI NG _| DENT
T +

29.1.3.4. Handshake completion

After successful completion of all negotiations and required information exchange, an endpoint will send
aRDX message to its peer to indicate that it can now receive data from it.

An endpoint initiates this by sending a CTRL/ | NFO' RDX message to the receiving end. The receiver
acknowledges the message by sending CTRL/ ACK/ RDX. Because LDC connections are duplex, each
endpoint has to send a RDX message to its peer before data transfer can commence in both directions.
When a RDX is sent by an endpoint, the endpoint is explicitly enabling a simplex communication path,
whereby it announces that it can now receive data from its peer. It is VIO device specific whether they
require the establishment of aduplex connection before data transfer can commence. There is no payload
associated with a RDX message and they are not NACKed.

word 1: | TYPE_CTRL | |NFQ'ACK | RDX | SID |

Once the channel has been established (indicated by the receipt of a RDX message) in either simplex or
duplex mode further informational messages may be sent by the initiating endpoint or requested by the
receiving endpoint as time goes by. The content and effect these messages have on the session is device
specific. These messages are also regarded as in-band notifications.

248

Virtual 10 device protocols

29.1.4. VIO data transfer modes
V10 devices can send datato their peers over achannel using different transfer modes.

During the handshake, each device will specify to its peer the transfer mode (xf er _node) it intends
to use as part of the attribute info message. The device specific attribute message format specifies the
location of the xf er _node field in the message. The supported transfer modes in versions 1.0 and 1.1
of the V1O protocol are:

VI O_PKT_MODE 1 Packet-based transfer
VI O_DESC_MODE 2 In-band descriptors
VI O_DRI NG_MODE 3 Descriptor rings

In version 1.2, the VIO protocol will alow concurrent use of the different transfer modes, specifically
packet based transfer and descriptor ring modes. In order to do this, thexf er _node field in the attribute
info message will be changed to a bit mask with the following values:

VI O_PKT_MODE 1 Packet-based transfer
VI O_DESC_MODE 2 In-band descriptors
VI O_DRI NG_MODE 4 Descriptor rings

In version 1.2, the virtual network and switch clients will use the packet transfer mode in addition to the
descriptor ring mode (xf er _node=5) to send high priority Ethernet frames as data packets for faster
out-of-band processing.

29.1.4.1. Packet based transfer

6 55 4 4 33
3 6 5 8 7 21 0
S F S —— . o e e e e e e e oo - +
word 1: | TYPE_DATA | |/A N | PKT_DATA | SID |
S F S —— . o e e e e e e e oo - +
word 2: | SEQ _NO |
oo o e m e m e e e e o - - +
word 3-7: DATA_PAYLQOAD
oo o e m e m e e e e o - - +

Asdiscussed in the earlier section, V10O packets aways consist of a generic message tag header and a se-
guenceid (whichisincremented with each packet sent). Additionally, if aV10 deviceintendsto use packet
mode for sending data, it can use up to 40 bytes of a LDC datagram without using LDC transport's pack-
et fragmentation capability. Larger transfers will require the use of the fragmentationreassembly support
provided by the underlying LDC transport. The format of a LDC packet containing data is shown above.

29.1.4.2. Descriptor rings

Asmentioned inthe earlier section, adescriptor ring isacontiguouscircular ring buffer VIO devicesuseto
gueue requests, receive responses and transfer associated data. Each descriptor inthering holdsrequest and
response parameters specific to the particular device along with opague cookiesthat point to the page(s) of
memory that are being shared for reading and/or writing. The descriptor ring will utilize Hypervisor shared
memory support, so that clients at both ends of the channel can modify the contents of the descriptor(s).

249

Virtual 10 device protocols

Each VIO client will specify that it intends to use descriptor rings, as part of the attribute info exchange.
It will also specify whether or not it intends to share the descriptors using shared memory or send each
descriptor as an in-band message. If it shares the descriptor ring using shared memory, it will register at
least one descriptor ring with its peer at the other end.

29.1.4.2.1. Descriptor format in VIO_RX_DRING_DATA mode

If the dring mode option chosen between VIO devicesis VI O_RX_DRI NG_DATA, the format of the de-
scriptor is device class specific. Currently, it is defined for only the virtual network class; Section 29.3.2,
“vNet descriptors’ contains more information on this.

29.1.4.2.2. Descriptor format in VIO_TX_DRING/VIO_RX_DRING mode

Each entry in adescriptor ring consists of acommon descriptor ring entry header and the descriptor payload
as shown in the figure below. The descriptor payload consists of fields that are device class specific and
are discussed in more detail in Section 29.2, “Virtual disk protocol” and Section 29.3, “Virtual network
protocol”.

6 5 5 5
3 6 5 4 0
E T o m e me e +
| DSTATE | A | reserved |
E T o m e me e +
(descri ptor payl oad)
e m o ema oo +

The descriptor dstate specifies the state of the the descriptor. The valid state values are:

VI O_DESC_FREE 0x01
VI O_DESC_READY 0x02
VI O_DESC_ACCEPTED 0x03
VI O_DESC_NONE 0x04

Initially when a descriptor ring is allocated, all entries in the ring are marked with value of
VI O_DESC_FREE. When a client queues one or more requests, it will change the flags value for the
corresponding descriptor(s) to VI O_DESC_READY. It will then send a message to its peer requesting
it to process the descriptors. The client that is processing the descriptor will first change the state to
VI O_DESC_ACCEPTED, acknowledging receipt of the request and prior to processing the request.

On completing the request, it will update the descriptor with its response and change the value of the flag
to VI O_DESC_DONE. The client that initiated the request, will take the appropriate action after seeing
the request as been marked as VI O_DESC_DONE and then change it to VI O_DESC_FREE. If the state
of a descriptor transitions to an unexpected state, the behavior is undefined. A VIO device under these
circumstances, might either reset the session and restart the handshake, or send an error messageto its peer.

29.1.4.2.3. Descriptor Ring Data Message Format (common to all dring modes)

When the requesting client updates one or more descriptors and marks them as ready for processing, it
will send aDATA/ | NFO'DRI NG_DATA message to its peer at the other end of the channel. The message
will contain the dri ng_i dent the requester received at the time of registering the descriptor ring. It
also specifiesthe start and end index corresponding to the descriptors that have been updated. If end index
value specifiedis-1, thereceiver will processall descriptors starting with the start index and continue until

250

Virtual 10 device protocols

it does not find a descriptor marked VI O_DESC _READY. The receiver at this point will send an implicit
ACK to the sender to let it know that it is done processing all requests. Subsequently, if the sender marks
additional entriesas VI O_DESC_READY, it will reinitiate processing by sending another DRI NG_DATA
request.

If the start and end index, either overlap with requests sent earlier or correspond to descriptors not in
VI O_DESC READY dtate, the request will be NACKed by the receiver.

6 55 4 4 33

3 6 5 8 7 21 0

T Fomm oo T Fom e e e e e eee e
word 1: | TYPE_DATA | |/A/N| PKT_DATA | SID

T Fomm oo T Fom e e e e e eee e
word 2: | SEQ NO

e m e e m e e e e m e e e mm e mm e - =
word 3: | DRI NG _| DENT

o m e e e e e e e e ieaa oo Fom e e e e e eee e
word 4: | START_I DX | END_| DX

T o ea oo Fom e e e e e eee e
word 5: | PROC_STATE | reserved

T o m m ememm— oo

The requester can also request an explicit acknowledgment from the client processing the request (to
track progress) by setting the (A)cknowledge field in the descriptor. The client, after processing the de-
scriptor (changes state as VI O_DESC DONE), will send a DATA/ ACK/ DRI NG_DATA message with the
dri ng_i dent for thisdescriptor ring and end_i dx equal to this descriptor.

When the requester sends requests with an end_i dx = -1, the pr oc_st at e field in the ACK/ NACK
message, is used by the receiver to indicate its current processing state. The valid pr oc_st at e field
values are:

VI O_DP_ACTI VE_MODE 1 Active processing req
VI O_DP_STOPPED 2 Stopped processing req

If the receiver continues to process requests or is waiting for more descriptors to be marked
VI O_DESC_READY, it will ACK with proc_st at e setto VI O _DP_ACTI VE. Instead, if the receiver
stops after processing the last ACK/ NACK, and is waiting for an explicit DATA/ | NFO' DRI NG_DATA
message, it will set the pr oc_st at e setto VI O_DP_STOPPED.

Thepr oc_st at e valueisthen used by the requester to determine when the receiver's state, and accord-
ingly sends an explicit DRI NG_DATA message when more requests are queued. It is not always necessary
that clients need to register a shared descriptor ring to make use of the HV shared memory infrastructure.
A simpler client can still use the shared memory capabilities and instead of sharing the descriptor ring,
it will send the descriptor itself as in-band data. The DESC_HANDLE in the pkt is an opague handle that
corresponds to the descriptor in the sender's ring.

The content of the in-band descriptor packet is shown below:

word 1: | TYPE_DATA | I/A/N| DESC DATA | SID |

251

Virtual 10 device protocols

o m e o - - F S —— T —— S
word 2: | SEQ NO

de mm . mmmm e m— e — - - - =
word 3: | DESC_HANDLE

de mm . mmmm e m— e — - - - =

(descri ptor payl oad)

In case of both aDRI NG_DATA and DESC _DATA message, if the receiver gets a data packet out of order
(asindicated by anon-consecutive sequence number) then it will NACK the packet and will not processany
further data packets from this client. If there are no errors the receiver will ACK the receipt of descriptor
ring or descriptor data packetsif thereis an explicit request by the sender to ACK a data packet by setting
the (A)cknowledge bit in the descriptor.

I mplementation Note

Upon receipt of a NACK, the sending client can either try to recover or stop sending data and
return to initial state and restart the channel negotiation again.

For virtual network and virtual switch devices, in version 1.6 of the VIO protocal, if the dring mode nego-
tiated is RX_DRI NG_DATA, some of the fieldsin the DRI NG_DATA message are interpreted differently:

* Theseq_no field serves as only an unique ID for the packet. The sender may not guarantee that the
DRI NG_DATA messages (I NFQ' ACK/ NACK) will be sent with theseq_no in order.

» Thereceiver may specify astartindex of - 1 inits ACK message, to indicate that the sender shouldignore
the start index of range of descriptors being ack'd and only the end index (last processed descriptor
index) isvalid.

» The ACK bit in the descriptor is reserved (See Section 29.3.2, “vNet descriptors’) and is ignored if
specified by the sender. Thus a peer may not send ACK/ NACK messages with apr oc_st at e value
of VI O_DP_ACTI VE.

29.1.5. Virtual 10 Dynamic Device Service (DDS)

Virtual 10 devicesfollowing theinitial handshake, send and receive data using the packet and/or descriptor
based modes as described in the earlier sections. This forms the under pinnings of the virtual 10 data
transfer infrastructure in aLDoms environment. While compelling for avariety of application workloads,
virtualized /O still does not provide high performance 1/0 capabilities that certain I/O oriented workloads
require. The Hybrid I/O model provides the opportunity to share device resources across multiple client
domains with better granularity while overcoming the performance bottlenecks of virtualized 1/0.

A new control message type will be added in VIO protocol versions 1.3 and higher to support the Hybrid
IO model. The new Dynamic Device Service (DDS) control message, with a subtype envelope value of
VI O_DDS | NFO, will provide virtual 10 devices and services the ability to exchange and share physical
device resource information with their peers.

VI O_DDS_| NFO 6 DDS information

Each DDS control message will allow adevice to share or reclaim aresource, or change the properties of
aresource. A peer onreceivingaCTRL/ | NFQ' DDS_| NFOmessage, will take necessary action and then
either ACK or NACK the message depending on whether the requested operation was successful or not.

Each VI O_DDS | NFO message, in addition to the VIO msg header, includes a DDS message header
consisting of a DDS class, subclass, and r equest _i d fields. Though the format of the DDS message

252

Virtual 10 device protocols

header itself is generic to the V1O protocol, the DDS message class and sub-class values are specified by
the virtual network or disk devices. The DDS request ID in the header will used to correlate the INFO
requests with ACK and NACK responses. The DDS msg format is shown below:

6 55 4 4 33

3 6 5 8 7 21

B TR RS RS e
word 1: | TYPE_DATA | /AN | DDS_INFO | SID

B TR RS RS e
word 2: | CLASS | SUBCLASS | reserved | DDS REQUEST_I D

B TR RS RS e

word 3-7: (dds nessage payl oad)

Device specific class and subclass values, including contents of the DDS message is discussed in Sec-
tion 29.3.4, “Network Device Resource Sharing via DDS’. The class value ranges reserved for various
V10 device classesis specified below:

DDS_GENERI C 0x00- Ox0f Generic DDSclass
DDS_VNET 0x10- 0x1f Generic DDSclass
DDS_VDSK 0x20- 0x2f Generic DDSclass
reserved 0x30- Oxff Reserved

29.2. Virtual disk protocol

In the protocol outlined above, the attribute exchange and descriptor payload contents are undefined and
left to be specified by the VIO devices. This section describes the contents of these packets for use by
both the virtual disk client and server to exchange data. The vDisk client, following an attribute exchange,
will send to the server block disk read and write requests, in addition to disk control requests. The server
will export each block device over an unique channel, and accept requests from the client, once a session
has been established.

29.2.1. Attribute information

During the initial handshake, as part of the CTRL/ | NFQ' ATTR _| NFO message, the virtual disk server
and client exchange information about the transfer protocol and the physical device itself. The format of
the attribute contents is shown below:

ThevDisk client will providethe server with thetransfer mode (xf er _node) and the requested maximum
transfer size (max_ xf er _sz) it intendsto use for sending disk requests to the server.

Thevdi sk_bl ock_si ze is specified in bytes. Thevdi sk_si ze and nax_xf er sz are specified
in multiples of thevdi sk_bl ock size.

For version 1.0 of the vDisk protocol the client'srequest must set vdi sk_bl ock_si ze tothe minimum
block size the client wishes to handle, and specify the nax_xf er _si ze. If the server cannot support
therequested vdi sk_bl ock_si ze or max_xf er _sz requested by the client, but can support alower
size, it will specify itsvdi sk_bl ock_si ze and/or alower max_xf er sz inits ACK. If the client
has no minimum block size requirement it may usethevalue of 0 asitsrequested vdi sk_bl ock_si ze,
in this case the max_xf er _si ze in the client's attribute request to the server is interpreted as being
specified in bytes. Either client or server may simply reset the LDC connection if they fail to agree on
communication attributes.

253

Virtual 10 device protocols

For version 1.1 of the vDisk protocol, the vDisk server can set vdi sk_si ze to -1 if it can not obtain
the size at the time of the handshake. This can happen when the underlying disk has been reserved by
another system. Under these circumstances, the vDisk client can retrieve the size at a later time, after the
completion of the handshake, using the VD _OP_GET_CAPACI TY operation.

If either client or server cannot support the specified transfer mode, the connection will be reset and the
handshake may be restarted. The server inits ACK message will also provide the vdisk type (vd_t ype),
vdi sk_bl ock_si ze andvdi sk_si ze to the client. The supported types are:

VD DI SK TYPE SLICE 1 Slicein ablock device
VD DI SK_ TYPE DI SK 2 Entire block device
6 55 4 4 4 3 33
3 6 5 8 7 09 21
o m e o - o m e o - o e e e e e oo o m e e e e oo
word 1: | TYPECTRL | I/AIN | ATTR_| NFO | SID
o m e o - o m e o - o m e o - Fommm o - o m e e e e oo
word 2: | XFER MODE | VD.TYPE | VD MEDIA | rsvd | VD _BLOCK_SI ZE
o m e o - o m e o - o m e o - Fommm o - o m e e e e oo
word 3: | OPERATI ONS
e e e e e e e e e M e MM e eMmmmmmmmemememmemememmmmememmememmmmmemmmmmmmmmm——----—-——aa
word 4: | VDI SK_SI ZE
e e e e e e e e e M e MM e eMmmmmmmmemememmemememmmmememmememmmmmemmmmmmmmmm——----—-——aa
word 5: | MAX_XFER SZ
e e e e e e e e e M e MM e eMmmmmmmmemememmemememmmmememmememmmmmemmmmmmmmmm——----—-——aa

All other disk types arereserved and for version 1.0 of the vdisk protocol should be considered asan error.

Only in protocol versions 1.1 and higher of the vdisk protocol, the server in its ACK message will pro-
vide the client the vdi sk_si ze (specified as a multiple of the block size), and the vdisk media type
(vdi sk_nt ype). The supported vdisk media types are:

VD _MEDI A_TYPE_FI XED1 Fixed device
VD MEDIA TYPE CD 2 CD device
VD MEDI A TYPE DVD 3 DVD device

All other disk media types are reserved and for version 1.1 of the vdisk protocol should be considered
asan error.

Both these fields are reserved and not available in version 1.0 of the vdisk protocol. Clients
should use the disk geometry information (see Section 29.2.3.9, “VDisk Get Disk Geometry
(VD_OP_GET_DI SKGEOM)") to compute the vdisk size.

The operations field is a bit-mask specifying all the disk operations supported by the server, where each

bit position, if set, corresponds to the operation command supported by the server. The list of supported
operations encodingsis described in Section 29.2.3, “Disk operations’.

29.2.2. vDisk descriptors

Virtual disk clients will send their disk requests by queueing them in descriptors as part of a shared de-
scriptor ring.

254

Virtual 10 device protocols

Asreguests are initiated only by the client, and the buffers pointed to by each descriptor are used for both
writing and reading disk blocks, the vDisk client will register the descriptor ring as both a Tx and Rx ring.
In the case of descriptor rings that are not shared, the virtual disk client will send the requests as in-band
descriptor messages.

The descriptor payload is formatted as follows:

6 55 4 4 33

3 6 5 8 7 21
o e m . mmmm e mm e —— - ==
| REQ | D
S B S RS U
| OPERATION | SLICE | reserved | STATUS
S B S RS U
| OFFSET
o e m . mmmm e mm e —— - ==
| Sl ZE
o U
| NCOOKI ES | reserved
o U
: LDC_COCKI E * NCOOKI ES
o e m . mmmm e mm e —— - ==

The payload contains the operation being performed.

Theof f set field specifiesthe relative disk block address when doing a block read or write operation to
the disk. This corresponds to the block offset from the start of the disk, or the disk slice as appropriate. It
is specified in terms of the vdi sk_bl ock_si ze received from the server. The size field specifies the
number of blocks being read or written when doing aVVD_OP_BREAD or VD_OP_BWRI TE operation. In
the case where the vdi sk_bl ock_si ze in the client's attribute request is zero the size is interpreted
as being specified in bytes.

29.2.3. Disk operations

For each client request sent to the server, the server will process the descriptor contents and submit the
request to the device. Each virtual disk request isidentified by an uniquer eq_i d. Theoper at i on field
specifies the operation being done on the device. The server will then return the status of the operation in
the same descriptor but with the st at us field containing the outcome of the operation. The supported
valuesin version 1.0 of the vdisk protocol are:

VD_OP_BREAD 0x01 Block read

VD_OP_BWRI TE 0x02 Block write
VD_OP_FLUSH 0x03 Flush disk contents

VD _OP_GET_WCE 0x04 Get write cache status

VD _OP_SET_WCE 0x05 Enable/disable write cache
VD_OP_GET_VTOC 0x06 Get VTOC

VD _OP_SET_VTCC 0x07 Set VTOC
VD_OP_GET_DI SKGEOM 0x08 Get disk geometry
VD_OP_SET_DI SKGEOM 0x09 Set disk geometry

255

Virtual 10 device protocols

VD _OP_GET_DEVI D 0x0b Get device ID
VD _OP_GET_EFI 0x0c Get EFI

VD OP_SET_EFI 0x0d Set EFI

reserved 0x0a, 0x0e- Oxf f Reservedfor 1.0

In addition, the following values are supported in version 1.1 of the vDisk protocol:

VD_OP_SCsI CVD 0x0a SCSI control command
VD_OP_RESET 0x0e Reset disk

VD _OP_GET_ACCESS 0xOf Get disk access
VD_OP_SET_ACCESS 0x10 Set disk access

VD _OP_GET_CAPACI TY 0x11 Get disk capacity
reserved 0x12- Oxf f Reserved for 1.1

Asmentioned before, the vDisk server at thetime of theinitia attribute exchange will specify the bit mask
of operations it supports. If the server does not support a required operation, it is up to the specific client
implementation to decide whether it returnsan error or internally implementsthe operation. All operations
can be optionally implemented by a particular vDisk server implementation.

If an operation is supported by the server, the outcome of the operation will be always available in the
descriptor ring entry st at us field.

The ncooki es and | dc_cooki e fields refer to the segment of memory from/to which data is being
read/written. See Section 29.1.3.3, “Descriptor ring registration” for more information about the LDC
transport cookie.

29.2.3.1. Disks and slices

A vdisk server may export either an entire disk device, or asimple slice (or partition) of adisk to aclient
as configured by the administrator. In the event that an entire disk is exported to aclient, it isclient policy
asto how it determines the partitioning information or re-partitions that whole virtual disk.

To enable aserver to potentially mount or examine adisk created by a client, the server may elect to offer
theVD_OP_GET/SET_VTOC operationsto its client. If the client electsto use these operationsto retrieve
partition information, the client when it reads or writes to the disk must specify the slice being accessed
— inthiscase the of f set field for those transactions is specified relative to the start of the referenced
slice (not the start of the disk).

A client is not required to use the VTOC operations, and the server is not required to support them. In
either of these events, if the client wishesto use the disk exported by the server it must read (and write, if
re-partitioning) its own partition table at some client specific location on the disk.

Attempts to mix reads and writes with get and set VTOC operations to read/manipulate disk partition
information have undefined results, and clients are required (though this may only be optionally enforced
by the server) to use a consistent approach to discovering or modifying disk partition information.

Thesdlicefidldiscurrently only usedfor VD_OP_BREADand VD_OP_BWRI TE. For all other operationsit
isignored, and should be set to zero. If the disk served isof typeVD_DI SK_TYPE_SLI CEthedlicefield
istreated asreserved; i.e. must be set to zero, and ignored by the consumer. ForaVD_DI SK_TYPE_DI SK
thedlicefield referstothedisk slice or partition on which aspecific operation isbeing done— thefield only
has meaning for disk serversthat export aGET_VTOC service so that clientsknow which slice corresponds
to which partition.

256

Virtual 10 device protocols

If the vDisk client does not usethe VTOC service, it must specify avalue of Oxff for the slicefield for read
and write transactions so that the server knows that the offset specified is the absolute offset relative to the
start of adisk. Mixing read and write transactions to specific slicestogether with absol ute disk transactions
has undefined results, and clients must not do this. A client must close the disk channel and re-negotiate
the vDisk service if it wishes to switch between using dlice based access (explicitly passing the value of
the dlice being accessed) and absolute access (where dlice is 0xff) when the server offers a disk type of
VD_DI SK_TYPE_DI SK.

29.2.3.2. VDisk Block Read command (VD_OP_BREAD)

This command performs a basic read of ablock from the device service. The decriptor ring entry for this
command contains the offset and number of blocks to read together with the LDC cookies for the data
buffers.

Once completed the status field in the descriptor is updated with the completion status of the operation.

29.2.3.3. VDisk Block Write command (VD_OP_BWRI TE)

This command performs a basic write of a block from the device service. The decriptor ring entry for
this command contains the offset and number of blocks to write together with the LDC cookies for the
data buffers.

Once completed the st at us field in the descriptor is updated with the completion status of the operation.

29.2.3.4. VDisk Flush command (VD_OP_FLUSH)

This command performs abarrier and synchronisation operation with the disk service.
There are no additional parameters in the decriptor entry for this command.

Before compl eting this command, the disk servicewill ensurethat all previously executed write operations
are flushed to their respective disk devices, and all previously executed reads are completed and their data
returned to the client.

29.2.3.5. VDisk Get Write Cache enablement status
(VD_OP_CGET_WCE)

This command is used by a virtual disk client to query whether write-caching has been enabled on the
disk being exported by the vDisk server. The payload is a single 32 bit unsigned integer. A value of 0
means write caching is not enabled, avalue of 1 means write-caching is enabled (a flush operation should
be used as a barrier to ensure writes are forced to non-volatile storage). All other values are reserved and
have undefined meaning.

29.2.3.6. VDisk Enable/Disable Write Cache (VD _OP_SET WCE)

This command is used avirtual disk client to enable or disable the write cache on the disk being exported
by the vDisk server. The payload is a single 32-bit integer. A value of zero disables writecaching on the
server side. A value of one enables write caching on the server side. All other values are reserved and are
treated as errors by the vDisk server.

29.2.3.7. VDisk Get Volume Table of Contents (VD_OP_GET_VTQOC)

This command is used to return information about the table of contents for the disk volume a client is
attached to. The successful result of this command includes the following data structure being returned to
the client in the buffer described by the LDC cookie(s) in the descriptor ring.

257

Virtual 10 device protocols

The returned data structure has the following header format:

6 4 4 33
3 8 7 21 0
S T +
word O: | Vol umre nane |
. . S +
word 1: | NUMPARTITIONS | SECTOR SIZE | ASCI| Label ... |
. . S +
word 2-16: : ... ASCII| Label
T rrreeee S +
word 17: | ... ASCII| Label | reserved
T rrreeee S +

The volume name is an 8 character ASCII name for the volume.

The ASCII label is a 128 character ASCII label assigned to this disk volume. This is distinct from the
actua volume name.

Thefield sect or _si ze isthe size in bytes of each sector of the disk volume.

Thefieldnum parti ti ons isthenumber of partitionsonthisdisk volume. The header described above
isimmediately followed by the structure below repeated once for each of the number of partitions specified

by the header:

6 4 4 33

3 8 7 21

e o m e o - - o e e e e e e e oo
word X+0: | I D tag of part | PERM FLAGS | reserved

e o m e o - - o e e e e e e e oo
word X+1: | start bl ock nunber of partition

de mm . mmmm e m— e — - - - =
word X+2: | nunber of bl ocks in partition

de mm . mmmm e m— e — - - - =

Reserved fields should be ignored.

29.2.3.8. VDisk Set Volume Table of Contents (VD _OP_SET VTQC)

This command is used by a virtual disk client to set the table of contents for the disk volume the client
is attached to.

The supplied data structure has the same format as for the get VTOC command (VD_OP_GET_VTQC).
Reserved fields must be set to zero.

29.2.3.9. VDisk Get Disk Geometry (VD _OP_GET_DI SKGEOM

This command is used to return the geometry information about the disk volume a client is attached to.
The successful result of this command includes the following data structure being returned to theclient in
the buffer described by the LDC cookie(s) in the descriptor ring.

258

Virtual 10 device protocols

The returned data structure has the following format:

Offset | Size |Name Description
0 2 ncyl Number of data cylinders
2 2 |acyl Number of aternate cylinders
4 2 becyl Cylinder offset for fixed head area
6 2 nhead Number of heads
8 2 nsect Number of sectors
10 2 intrlv Interleave factor
12 2 apc Alternate sectors per cylinder (SCSI only)
14 2 rpm Revolutions per minute
16 2 pcyl Number of physical cylinders
18 2 write_reinstruct Number of sectorsto skip for writes
20 2 read_reinstruct Number of sectorsto skip for reads

29.2.3.10. VDisk Set Disk Geometry (VD_OP_SET DI SKGEOV)

This command is used by a virtual disk client to set the geometry information for the disk volume the
client is attached to. The supplied data structure has the same format as the get disk geometry command

(VD_OP_GET_DI SKGEOM).

29.2.3.11. VDisk SCSI Command (VD_OP_SCSI CVD)

This command is used to deliver a SCSI packet to the vDisk server. It is implementation specific as to
whether the server passes the received packet directly to a SCSI drive or whether it chooses to simulate
the SCSI protocol itself. A server must not advertise thiscommand if it does not support either capability.

The LDC cookie in the descriptor ring should point to the following data structure which describes the
command arguments. The same buffer is also used to return the result of the command to the vDisk client.

6 55 4 4 4 3 33 22 11
3 6 5 8 7 09 21 43 6 5 0
F S —— F S —— F S —— F S —— +- - - - S [TS —— +
word O0: | CSTAT | SSTAT | TATTR| TPRIO| CRN | reserved | TIMEQUT |
F S —— F S —— F S —— F S —— +- - - - S [TS —— +
word 1: | OPTI ONS |
oo o e oo o +
word 2: | CDB LENGTH |
oo o e oo o +
word 3: | SENSE LENGTH |
oo o e oo o +
word 4: | DATA-I N SI ZE |
oo o e oo o +
word 5 | DATA- QUT SI ZE |
oo o e oo o +
word 6 | CDB DATA |
word I: | |
oo o e oo o +

259

Virtual 10 device protocols

word |+ | SENSE DATA |
word J | |
oo o e oo o +
word J+: | DATA-I N |
word K| |
oo o e oo o +
word K+1: | DATA- QUT |
word L | |
oo o e oo o +

Thecst at field reports to the vDisk client the SCSI command completion status. SCSI command com-
pletion status are described in the SCSI Architecture Model documents[scsi3].

The sst at field reports to the vDisk client the SCSI command completion status of the SCSI sense
request. SCSI command compl etion status are described in the SCSI Architecture M odel documents]scsi3].

Thesst at fieldisdefined only if aSCS| sense buffer was provided and if the SCSI command completion
status indicates that sense data should be available.

Thet at t r field definesthe task attribute of the SCSI command to execute. The possible attributes are:

0x00 no task attribute defined
0x01 SIMPLE

0x02 ORDERED

0x03 HEAD OF QUEUE
0x04 ACA

Task attributes are defined in the SCSI Architecture Model documents[scsi3]. ThevDisk server may ignore
the task attribute.

Thet pri o field isa4-bit value defining the task priority assigned to the SCSI command to execute. The
task priority is defined in the SCSI Architecture Model documents[scsi3]. The vDisk server may ignore
the task priority.

Thecr n field is acommand reference number (CRN). SCSI command reference numbers are defined in
the SCSI Architecture Model documents[scsi3]. The vDisk server may ignore the CRN.

Ther eser ved field isreserved and should not be used.

Theti meout field isthe time in seconds that the vDisk server should alow for the completion of the
command. If it is set to O then no timeout is required.

Theopt i ons field is abitmask specifying options for the SCSI command to execute. The possible bit-
mask values are:

0x01 (CRN) This bitmask indicates that a command reference number (CRN) is specified in
therequest.

0x02 (NORETRY) Thisbitmask indicates that the vDisk server should not attempt any retry or other
recovery mechanisms if the SCSI command terminates abnormally in any way.

260

Virtual 10 device protocols

The Command Descriptor Block (CDB) | engt h field is set by the vDisk client and indicates the number
of bytes available in the CDB field.

Thesense | engt h fieldisinitially set by the vDisk client and indicates the number of bytes available
in the sense field for storing sense data for SCSI commands returning with a SCSI command completion
status indicating that sense data should be available. After the execution of the SCSI command, the vDisk
server setsthe sense | engt h field to the number of bytes effectively returned in the sense field, or
0if no sense data were returned.

Thedat a-i n si ze fieldisinitialy set by the vDisk client and indicates the number of bytes available
for datatransfersto the dat a- i n field. After the execution of the SCSI command, the vDisk server sets
thedat a-i n si ze field to the number of bytes effectively transfered to the dat a- i n field, or O if
no data were transfered.

Thedat a- out si ze fieldisinitially set by thevDisk client and indicates the number of bytesavailable
for datatransfers from the dat a- out field. After the execution of the SCSI command, the vDisk server
setsthedat a- out si ze field to the number of bytes effectively transfered from the dat a- out field,
or 0 if no data were transfered.

The CDB dat a field contains the SCSI Command Descriptor Block (CDB) which defines the SCSI
operation to be performed by the vDisk server. The structure of the CDB is part of the SCSI Standard
Architecture[scsi3]. The size of the CDB dat a field should be equal to the number of bytes indicated by
thevDisk client in the CDB | engt h field rounded up to amultiple of 8 bytes.

Thesense dat a field contains sense data for SCSI commands returning with a SCSI command com-
pletion status indicating that sense data should be available. The structure of sense data is described in
the SCSI Primary Commands documents[scsi3]. The size of the sense dat a field should be equal to
the number of bytesindicated by the vDisk clientinthesense | engt h field rounded up to amultiple
of 8 bytes.

Thedat a- i n field contains command specific information returned by the vDisk server at the time of
command completion. The validity of the returned data depends on the SCSI command compl etion status.
The size of the dat a- i n field should equal to the number of bytes indicated by the vDisk client in the
dat a-i n si ze field rounded up to a multiple of 8 bytes.

Thedat a- out field containscommand specific informationto be sent to thevDisk server. Thesize of the
dat a- out field should be equal to the number of bytesindicated by the vDisk client in the dat a- out
si ze field rounded up to amultiple of 8 bytes.

29.2.3.12. VDisk Get Device ID (VD_OP_GET_DEVI D)

Device IDg[diskids] are persistent unique identifiers for devicesin Solaris, and provide a means for iden-
tifying adevice, independent of device's current name or instance number. This command isused to return
the device ID of adisk volume backing avirtual disk. A successful completion of thiscommand will result
in the following data structure being returned to the client in the buffer described by the LDC cookie(s)
in the descriptor ring.

6 4 4 33
3 8 7 21
T Fo oo e e e e e e e e e e e e e e e oo -
word O: | reserved | type | | ength
T o m e e e oo - o m e e e e e e e e e oo -
word 1: | devid
de mm . mmmm e m— e — - - - =

261

Virtual 10 device protocols

The field devi d contains the ID of the disk volume. The field | engt h in the request should be
set to the size of the buffer allocated by the vdisk client for storing the device ID. The vdisk serv-
er will then set it to the size of the returned devid in its response. The returned device ID value will
be truncated if the provided space is not large enough to store complete ID. The field t ype spec-
ifies the type of device ID. Please refer to PSARC cases 1995/352 [http://arc.opensolaris.org/casel-
0g/PSARC/1995/352/], 2001/559 [http://arc.opensolaris.org/casel og/PSARC/2001/559/], and 2004/504
[http://arc.opensolaris.org/casel og/PSARC/2004/504/], for a description of device IDs along and alist of
the device I D type values.

29.2.3.13. VDisk Get EFI Data (VD_OP_GET_EFI)

This command is used to get EFI datafor the disk volume a client is attached to. A successful completion
of thiscommand will result in the following data structure with the EFI datain the datafield being returned
to the client in the buffer described by the LDC cookie(s) in the descriptor ring. The returned data structure
has the following format:

word O: | LBA

Fm e m . mmmm e m— . —— - ==
word 1 | l ength

Fm e m . mmmm e m— . —— - ==
word 2-N: | EFl data

Fm e m . mmmm e m— . —— - ==

The field LBA is the logical block address of the disk volume to get EFI data. Data returned in the EFI
datafield is determined by the value specified in the LBA field:

» If LBAisequa to 1, then the vdisk server should return the GUID Partition Table Header (GPT).

* If LBAisequa tothePartiti onEntryLBAfield from the GUID Partition Table Header, then the
vdisk server should return the GUID Partition Entry array (aka GPE).

If the EFI data buffer is not large enough to return the request data then the vdisk server should return
an error. The field | engt h is the maximum number of bytes that can be stored in the data field of the
provided structure.

The format of the GUID Partition Table Header and GUID Partition Entry are beyond the scope of this
document and are defined in the Extensible Firmware I nterface Specification[fi].

29.2.3.14. VDisk Set EFI Data (VD_OP_SET_EFI)

This command is used by avirtual disk client to set EFl datafor the disk volume the client is attached to.
The supplied data structure has the same format as for the get EFl command (VD_OP_GET_EFI).

The value of the LBA field determines the content of the EFI data field and the action taken by the vdisk
server.

» |f LBA =1, then the vdisk server should use the contents of the EFI datafield to set the GUID Partition
Table Header (aka GPT).

262

http://arc.opensolaris.org/caselog/PSARC/1995/352/
http://arc.opensolaris.org/caselog/PSARC/1995/352/
http://arc.opensolaris.org/caselog/PSARC/1995/352/
http://arc.opensolaris.org/caselog/PSARC/2001/559/
http://arc.opensolaris.org/caselog/PSARC/2001/559/
http://arc.opensolaris.org/caselog/PSARC/2004/504/
http://arc.opensolaris.org/caselog/PSARC/2004/504/

Virtual 10 device protocols

 If LBA isequa to the PartitionEntryLBA field from the GUID Partition Table Header, then the vdisk
server should the contents of the EFI datafield to set the GUID Partition Entry array (aka GPE).

The format of the GUID Partition Table Header and GUID Partition Entry are beyond the scope of this
document and are defined in the Extensible Firmware I nterface Specification[fi].

29.2.3.15. VDisk Reset (VD_OP_RESET)

This command is used by the vDisk client to request the vDisk server to reset the disk or device being
exported by it. It isimplementation independent as to whether the server physically resets the underlying
device or it chooses to only simulate a device reset.

Following a reset, any exclusive access rights or options that might have been set us
ing the VD _OP_SET_ACCESS operation should be cleared in a way similar to receiving a
VD _OP_SET_ACCESS operation with the CLEAR option.

In the event of a connection loss between the vDisk client and server, the vDisk server should behave asif
it hasreceived aVD_OP_RESET operation. It should clear any exclusive accessrights or options set using
theVD_OP_SET_ACCESS operation. A vDisk server implementing the disk reset isrequired to complete
the operation prior to reestablishing the connection with the vDisk client.

29.2.3.16. VDisk Get Access (VD _OP_GET_ACCESS)

This command is used by the vDisk client to query whether it has access to the disk being exported by
the vDisk server. The response has a payload of a single 64-bit unsigned integer, and may contain the
following values:

0x00 (DENIED) The access to the disk is not allowed.

Ox01 (ALLOWED) Theaccessto the disk is allowed.

29.2.3.17. VDisk Set Access (VD_OP_SET_ACCESS)

This command is used by the vDisk client to request exclusive access to the disk being exported by the
vDisk server. The payload isasingle 64-bit unsigned integer. It can either contain avalue of 0, or abitmask
of the following non-zero values:

0x00 (CLEAR) The vDisk server should clear any exclusive access rights, and restore non-ex-
clusive, non-preserved access rights. In particular, the vDisk server should re-
linquish any exclusive access rights that have been acquired with the EXCLU-
SIVE flag, and disable any mechanism to preserve exclusive access rights en-
abled with the PRESERVE flag.

0x01 (EXCLUSIVE) The vDisk server should acquire exclusive access rights to the disk. When the
vDisk server has exclusive access rights to the disk then any access to the disk
from another host should fail. If another host already has acquired exclusive
access rights to the disk then the vDisk server should fail to acquire exclusive
access rights.

0x02 (PREEMPT) The vDisk server can forcefully acquire exclusive access rights to the disk. If
another host has already acquired exclusive access rights to the disk, then the
vDisk server can preempt the other host and acquire exclusive access rights.

0x04 (PRESERVE) ThevDisk server should try to preserve exclusive access rightsto the disk. The
vDisk server should try to restore exclusive access rights if exclusive access
rights are broken via random events (for example disk resets). When restoring

263

Virtual 10 device protocols

the exclusive access rights, the vDisk server should not preempt any other host
having exclusive access rights to the disk.

The PREEMPT and PRESERVE flags are only valid when the EXCLUSIVE flag is set.

In the event of a connection |oss between the vDisk client and server, the vDisk server should perform the
equivalent operation to avDisk Reset Command (VD_OP_RESET) received from the client, and exclusive
access rights and options should be cleared.

If the vDisk client still requires exclusive access rights following a connection reset, then it should send a
new VD_OP_SET_ACCESS operation to the vDisk server and request exclusive access.

29.2.3.18. VDisk Get Capacity (VD _OP_GET_CAPACI TY)

Thiscommand is used to get information about the capacity of the disk volume export by the vDisk server.
A successful completion of this command will result in the following data structure being returned to the
client in the buffer described by the LDC cookie(s) in the descriptor ring:

6 33
3 21 0
e eeemmmmmamm - e eeeeeeemmmmmmmmem———————- +
word O: | VDI SK_BLOCK_SI ZE | reser ved |
e eeemmmmmamm - e eeeeeeemmmmmmmmem———————- +
word 1: | VDI SK_SI ZE |
e eeeeeeemmmmmmmmmmmememmmmmmmmmmeeemeeememeeeee——————————-- +

The vdi sk_bl ock_si ze field contains the length in byte of the logical block of the vDisk. The
vdi sk_bl ock_si ze should be the same value asthevdi sk_bl ock_si ze returned during the ini-
tial handshake as part of the attribute exchange.

The vdi sk_si ze field contains the size of the vDisk in blocks specified as a multiple of
vdi sk_bl ock_si ze.

If the vDisk server is unable to obtain the vDisk size, it should set thevdi sk_si ze to- 1. Under these
circumtances, the vDisk client can retry the operation later to check if the sizeis available.

29.3. Virtual network protocol

This section describes the packet formats and protocol used for the virtual networking infrastructure be-
tween logical domains.

29.3.1. Attribute information
During the initial handshake, as part of the CTRL/ | NFQ' ATTR_| NFOmessage, the virtual network de-

vice will exchange information with the virtual switch and other vNetwork devices about the transfer pro-
tocol, its address and MTU. The format of the attribute payload is shown below:

word 1: | TYPECTRL | /AN | ATTRINFO | SID

264

Virtual 10 device protocols

word 2: | XFER_MODE | ADDR TYPE | ACK FREQ | PLNK_UPDT | OPTIONS | rsvd |
T —— T —— o m e e e oo - T —— [TS —— [+
word 3: | ADDR |
o o o o o e m e oo +
word 4: | Mru |
o o o o o e m e oo +

Thesending client, beit avirtual network deviceand/or virtual switchwill provideits peer with thetransfer
mode, acknowledgment frequency, address, address type and MTU it intends to use for sending network
packets. The peer ACKs the attribute message if it agreesto all the parameters.

Currently the only supported addresstypeis:
VNET_ADDR_ETHERMAC 1 Ethernet MAC Address

Theaddr field contains the mac address of the client sending the attribute information.

If VIO version 1.3 or lower is negotiated, it isrequired that the MTU exchanged by either ends during the
attribute exchange matches exactly. If version 1.4 or higher is negotiated, and the MTU received in the
ATTR/ | NFOdoesn't match thereceiver'sMTU, it ACKswith thelower of thetwo MTUs. All subsequent
communication between both ends are required to use the mutually agreed upon MTU.

If VIO version 1.4 or lower is negotiated, bits 32-63 in word-2 are reserved; i.e., they must be set to 0
and will be ignored by the peer. If VIO version 1.5 is negotiated, the PLNK_UPDT field (bits 32-39) is
used to indicate any physical link information updates that a vNet device is interested in. Bits 40-63 are
reserved. A vNet device could negotiate with the vSwitch device to obtain updates about certain physical
link properties. Only “physical link status’ updates are supported for now and only the lower 2 bits of this
8-hit field are defined and the remaining bits within this field are reserved.

A vNet devicethat desiresto get physical link status updates setsthisfield to the appropriate value (see bit
definitions below) inits ATTR/ | NFOmessage to the vSwitch. Depending on its capabilities, the vSwitch
device either ack’s or nack's by updating these bits in its response message. Note that a vSwitch device
must not nack the attribute message itself simply because it cannot support link status notifications; the
physical link update bitsonly indicate the desire by the vNet device and it isnot guaranteed that the vSwitch
device will be able to provide that information. Thus, if the rest of the information in the ATTR/ | NFO
message is acceptable to the vSwitch except PLNK_UPDT hits, then only the PLNK_UPDT field must be
nack'd by setting the appropriate bits; and the attribute message itself should be acknowledged by sending
aATTR/ ACK message. Also, note that these bits are relevant only when the peersinvolved in the attribute
exchange are a vNet device and a vSwitch. The bits are reserved and must be ignored during handshake
between two vNet peers.

Bit definitions of the PLNK_UPDT field:

PHYSLI NK_UPDATE_NONE 0 No plink props desired

PHYSLI NK_UPDATE_STATE 1 Need plink state updates
PHYSLI NK_UPDATE_STATE_ACK 2 Can update plink state
3

PHYSLI NK_UPDATE_STATE_NACK Cannot update plink state

For further information on the protocol to communicate physical link updates, refer to Section 29.3.5,
“Network Device Physical Link Information Updates’

Starting with version 1.6 of the VIO protocol, the virtual network and virtual switch devices support de-
scriptor rings in VI O_RX_DRI NG_DATA mode, in addition to the modes that are supported in earlier

265

Virtual 10 device protocols

versions of the protocol. If version 1.6 is negotiated, the OPTI ONS field (bits 40-47) isused to indicate the
specific descriptor ring mode(s) the VIO device wants to operate in. The supported values for the options
in version 1.6 of the VIO protocol are:

VI O _TX DRI NG 1 Transmit descriptor ring

VI O_RX_DRI NG 2 Receive descriptor ring

VI O_RX_DRI NG_DATA 4 Receive descriptor ring with data
area

A VIO device and its peer negotiate the specific dring mode in which they will communicate with each
other, as part of their attribute negotiation. Though the version negotiated is 1.6, a device and/or its
peer can choose not to operate in RX_DRI NG_DATA mode. Also, a device can choose to operate in
RX_DRI NG_DATA mode with only some of its peers. A device must indicate the specific dring mode(s)
that it can negotiate with its peer, by setting the corresponding bits in the options field. The peer reads
this field. If at least one of the modes is acceptable, it responds by sending an ACK message. In its ACK
message, it leaves only the bit corresponding to the mode it chooses and clears the remaining bits, even if
more than one mode is acceptable. If the peer does not support any of the modes requested in the message,
it responds by sending a NACK message.

29.3.1.1. Multicast information

Virtual network devices can set/unset the multicast groupsthey areinterested into avirtual network switch
at any point after asuccesful handshake and during normal datatransfer. Each packet sent by avnet device
isof type CTRL/ | NFQ' MCAST_| NFO.

VNET_MCAST | NFO 0x101 Multicast information

If theset fieldisequal to'1', then the corresponding mcast addresses are being set by the vnet device, or
elsethe switch assumesthat the specified address(es) are being removed. The peer will ACK theinfo packet
if it successfully registered or removed the specified multicast mac addresses. If the multicast address was
already set earlier or if the network device tries to unset an address that was not set earlier, the virtual
switch will NACK the request. The MCAST_ADDR field can contain a max of VNET_NUM_MCAST (7)
multicast addresses, where each addressis ETHERADDRL (6) bytesin length. The count field specifiesthe
actual number of multicast addresses in the packet.

6 55 4 4 33 11
3 65 8 7 21 65
R R ——— R R ——— R oo
word 1: | TYPECTRL | I/A/N | MCAST INFO | SI D
R R ——— R R ——— R oo
word 2: | SET | COUNT | MCAST_ADDR[0]
R R ——— R R ——— Fom oo
word 3-6: MCAST_ADDR[1- 7]
o m oo oo
word 7: | MCAST_ADDR[7] | Reserved
o m oo oo

29.3.2. vNet descriptors

The virtual network and virtual switch devices that use hypervisor shared memory will send and receive
Ethernet frames by specifying the various fields in each descriptor. In VI O_TX DRI NG mode, the de-

266

Virtual 10 device protocols

scriptor format consists of a header that is common to VIO clients of all classes (See Section 29.1.4.2.3,
“Descriptor Ring Data Message Format (common to all dring modes)”) and a class specific part that is
defined by the specific device class. The format of the class specific descriptor is shown below.

In this format, the peers send and receive Ethernet frames by specifying the length of data and the LDC
memory cookies corresponding to the pages containing the frame in each descriptor. See Section 29.1.3.3,
“Descriptor ring registration” for more information about the LDC transport cookie.

The nbyt es field specifies the number of bytes being transmitted. The ncooki es and | dc_cooki e
fields refer to the segment of memory from/to which data is being read/written.

InVIO_RX_DRING_DATA mode, the descriptor consists of only the device class specific part, with no
common header part, as shown below.

6 33
3 21 0
Fomm e o - o e e e o o m e e e e e +
| DSTATE | reserved | NBYTES |
Fomm e o - o e e e o o m e e e e e +
| DATA BUF_OFFSET |
o m e +
DSTATE This field specifies the state of the descriptor. The valid state values and usage
are same as those described in the case of common descriptor header in Sec-
tion 29.1.4.2.3, “Descriptor Ring Data Message Format (common to al dring
modes)”.
NBYTES The size of the ethernet frame in the data buffer. This field is set by the VIO

device that is transmitting the frame.

DATA BUF OFFSET The VIO device which is exporting the descriptor ring and its associated data
buffers sets this field in each descriptor. The field is set to the offset of the data
buffer within thedatabuffer area, that isassigned to thisdescriptor. Theimporting
device must copy the frame to be transmitted to the buffer corresponding at this
offset.

Initially during descriptor ring registration, every descriptor must be initialized by the exporting VIO
device. The DATA BUF_COFFSET should be set to the offset of the specific buffer in the data buffer
areathat is assigned to the descriptor. The descriptor state must be set to VI O DESC FREE. When the
peer VIO device (importing end point) needs to transmit a frame, it determines the buffer based on the
buffer offset specified in the descriptor and will copy the frame to be transmitted to this address. It will
mark the NBYTES field to reflect the size of the frame being transmitted. It will mark the DSTATE field
as VI O _DESC_READY. It will then send a DRI NG_DATA message if necessary as described in Sec-

267

Virtual 10 device protocols

tion 29.1.4.2.3, “ Descriptor Ring Data M essage Format (common to all dring modes)”. Thereceiving V1O
device will process the corresponding descriptor and its associated buffer. After processing the descriptor,
the receiver may specify a new data buffer offset value (note this is not necessary and implementation
specific) or keep the existing offset, before marking the DSTATE as VI O_DESC_DONE. It then continues
to process the next descriptor and will finally send a DRI NG_DATA ack message with aproc_state
value of VI O_DP_STOPPED, to the transmitting peer. The transmitter must always read the data buffer
offset field in the decriptor every time it needs to transmit a frame, after verifying that the DSTATE is
VI O_DESC_DONE. Thetransmitting V10O device must not assume that that data buffer offset remainsthe
same.

29.3.3. Virtual LAN (VLAN) support

The V10 protocol for virtual network and switch deviceswill be extended in version 1.3 to include support
for virtual LANs (VLANS) as specified by the IEEE 802.1Q4 specification. A VLAN aware network or
switch device will be capable of sending, receiving or switching Ethernet frames that contain a VLAN
tagged header. If a network/switch device negotiates version 1.3 or higher with its peer, the MTU size
it specifies in the attribute info message (Section 29.3.1, “Attribute information”) should correspond to
the size of atagged Ethernet frame. Similarly, if a peer negotiates version 1.2 or lower, sending/receiving
tagged frames can result in undefined behavior including the frames being dropped.

29.3.4. Network Device Resource Sharing via DDS

The VIO DDS control message provides the capability to share device resources between VIO device
peers. The DDS framework will be primarily used by a vSwitch device to share the underlying physical
network device's resources with avNet device.

All DDS messages for vNet and vSwitch deviceswill contain a classfield that uniquely identifiesthe type
of device from which the resources are being shared. In version 1.3 of the V10O protocol, the vNet device
will define a new DDS message class DDS_VNET _NI U for sharing the resources of a UltraSPARC-T2
NIU device.

DDS_VNET_NI U 0x10 NIU vNet class

Each DDS message of class VNET NI U sent by a vSwitch or a vNet will contain a subclass field that
specifies the requested operation. The DDS subclass values for aVNET_NI U class are:

DDS_VNET_ADD SHARE 1 Add adevice share

DDS_VNET_DEL_SHARE 2 Remove a device share
DDS VNET_REL_SHARE 3 Release adevice share
DDS_VNET_MOD_SHARE 4 Modify adevice share

The DDS_VNET_(ADDY DEL/ REL) _ SHARE messages subclasses are used when adding or deleting a
resource to adomain or releasing aresource from adomain.

The ADD_SHARE message is used by the vSwitch device to add a virtual region resource uniquely iden-
tified by its cookie to avNet device identified by its macaddr.

The DEL_ SHARE message is similarly used by the vSwitch to remove avirtual region resource that was
previously added using the ADD _SHARE operation.

The REL_ SHARE message is used by the vNet device to inform the vSwitch device that it is no longer
using a previously added shared resource. The vSwitch on receiving a REL_ SHARE message can reclaim
and reassign the resource to another vNet. A vNet device should not attempt to use a resource that it had

268

Virtual 10 device protocols

previously released via the REL_ SHARE operation. The message format for the add, delete and release
operationsisidentical and is shown below:

6 55 4 4 33
3 6 5 8 7 21 0
e S e e +
word 1: | TYPE_CTRL | I NFO | DDS_| NFO | SID |
e S e e +
word 2: | VNET_ NNU | ADR SHARE | reserved | DDS REQUEST | D |
e S e e +
word 3: | reserved | MACADDR |
e e +
word 4: | COXI E |
e +
The resource modification operation allows a vSwitch device to modify the contents of a shared virtual
region. In addition to the macaddr and cooki e fields, the message also contains a updated map of TX
and RX resources assigned to the virtual region resource. The format of the modify message is shown
below:
6 55 4 4 33
3 6 5 8 7 21 0
R Fom e e - R o e m e e e e e e e e e m o +
word 1: | TYPE_CTRL | | NFO | DDS_| NFO | SID |
R Fom e e - R o e m e e e e e e e e e m o +
word 2: | VNET_NIU | MOD SHARE | reserved | DDS REQUEST_I D |
R Fom e e - R o e m e e e e e e e e e m o +
word 3: | reserved | MACADDR |
o e e e e e e o e m e e e e e e e e e e e e e e e e e e e m o +
word 4: | COXI E |
o e m e e m e +
word 5: | TX_RES_NAP |
o e m e e m e +
word 6: | RX_RES MAP |
o e m e e m e +
In addition to the different CTRL/ | NFQ' DDS_| NFO request messages, the vNet and vSwitch devices
will aso ACK and NACK all received DDS requests. The ACK and NACK responses will contain a
st at us field that specify the outcome of the requested operation.
The format of the ACK/ NACK response message is below:
6 55 4 4 33
3 6 5 8 7 21
R SR R o e m e e e e e e e e e m o
word 1: | TYPE_CTRL | AN | DDS_| NFO | SID
R SR R o e m e e e e e e e e e m o
word 2: | VNET_NNU | ADR MSHARE | reserved | DDS REQUEST | D
R SR R o e m e e e e e e e e e m o
word 3: | STATUS

269

Virtual 10 device protocols

The currently defined ACK and NACK status values are:

DDS_VNET_SUCCESS 0 Operation was successful
DDS_VNET_FAI L 1 Operation failed

29.3.5. Network Device Physical Link Information Updates

The VIO protocol for virtual network and virtual switch devices was extended in version 1.5 to include
support for physical link property updates. A vNet devicewill be ableto negotiatefor physical link updates,
as part of its attribute exchange phase of handshake with the vSwitch. Currently, physical link state isthe
only property that can be negotiated for updates. See Section 29.3.1, “Attribute information” for details
on the attribute message.

Once a VNet device successfully negotiates physical link state updates, the vSwitch must send an initial
update about the physical link status right after the handshake is complete. Further, whenever the physical
link status changes, the vSwitch must keep updating it to the vNet device, until either the connection is
terminated by the vNet device or the Channel goes down or gets reset.

The packet sent by the vSwitch device to a vNet device is of type CTRL/IN

FQ VNET_PHYSLI NK_I NFO. The bits within the physl i nk_i nf o field indicate the physical link
property and its current value that is being updated to the vNet device. Currently, the lower 2 bits are de-
fined to indicate the physical link state and the remaining bits are reserved. The vNet device on receiving
this should send a message of type CTRL/ ACK/ VNET_PHYSLI NK_I NFOback to thevSwitch. ThevNet
device can choose to either ignore or nack the message, if it has not negotiated with the vSwitch for phys-
ical link updates or if the message is received while handshake with the vSwitch deviceis still in progress.

VNET_PHYSLI NK_I NFO 0x103 Physical Link Information

The format of the physical link information message is as shown below:

6 55 4 4 33
3 6 5 8 7 21 0
T —— o m e o - - o m e o - - o e e e e e oo o - +
word 1: | TYPE_CTRL | /AN | PLINK_I NFO | SID |
T —— o m e o - - o m e o - - o e e e e e oo o - +
word 2: | reserved | physlink_info |
oo m e e e e e e e e e e o - - o e e e e e oo o - +
word 3: | reserved |
o o oo e oo o +
word 4: | reserved |
o o oo e oo o +
Bit definitions of the physl i nk_i nf o field:
VNET_PHYSLI NK_STATE_DOWN 1 Physical Link State: Down
VNET_PHYSLI NK_STATE_UP 2 Physical Link State: Up

VNET_PHYSLI NK_STATE_UNKNOWN 3 Physical Link State: Unknown

270

Chapter 30. Domain services

30.1. Overview

In a Logical Domain environment the ability to discover whether a guest operating system has various
capabilities, and be able to remotely direct it to perform various operations is important. Similarly it is
equally important for a guest operating system to be able to discover and communicate with its various
support services.

Specifically, each guest domain can offer a number of capabilities to its service entity, and similarly the
service entity can offer a set of capabilities for use by the guest domain.

Capabilities may include things such as the ability to perform dynamic reconfiguration, or be directed to
perform agraceful shutdown or reboot by a service entity.

As adomain transitions through various operational phases, (for example while booting) its capabilities
may change. The capabilities of asimple guest OS like OpenBoot are not the same as those of afull blown
operating system such as Linux or Solaris. Similarly services that are offered to a domain by its service
entity/entities may come and go if, for example, a service processor re-boot occurs.

Consequently it is arequirement that the mechanism for capability discovery and communication must be
able to cope with the dynamic nature of both a guest domain and its service entities.

This section describes the protocol by which a guest OS may register its capabilities with its service en-
tity/entities, and vice-versa. The registration process includes independent version negotiation between
client and service for each capability.

Onceacapability has been registered, the domain services protocol then providesadatatransport for client
and service to communicate directly with each other independently of other capability serviceswhich may
be using the same channel.

30.1.1. Communication Stack

The domain services (DS) mechanism is layered on top of domain channels to facilitate communication
between a guest domain and its service entities. The reliable mode protocol of the Logical Domain Chan-
nel (LDC) framework is leveraged to ensure in-order guaranteed packet delivery as well as detection of
faults on the communication channel— including loss of connection due to, say, the communication peer
crashing or re-booting.

On top of the LDC reliable protocol the DS protocol handles the registration of provider capabilities with
their consumer(s), and subsequently the routing of data messages for those registered capabilities.

The content of transported messages is specific to the higher-level protocol between the particular DS
service and its client. The DS communication stack isillustrated below.

271

Domain services

Figure 30.1. Domain Service communication stack Layers

Capability Capability
Provider Consumer

Domain Services Layer

LDC Reliable Datagram Layer

By analogy, just as LDC provides alow level transport, like IP, the domain services protocol provides a
name service and connection transport protocol, like TCP, to facilitate communication between acapability
provider and its consumer.

Messages for a set of registered capabilities are multiplexed over ashared LDC channel.

This basic communication flow isillustrated bel ow.

Figure 30.2. Domain Services Communication Path Example

Service Entity Guest Domain
dr-cpu
vBSC/ LDM ds md- update
LDC ferererererereenfe LDC domain- shutdown
Hypervisor

272

Domain services

30.2. Domain Services Protocol

30.2.1. Definitions

Unless otherwise stated, each of the fields and sizes specified herein are given in bytes (octets). Byte or-
dering for multi-byte fields is network byte order (big-endian). All variable-length character array defini-
tions are assumed to be NUL-terminated sequences of ASCII values, with a maximum length (including
the terminating NUL) less than or equal to the constant MAX_STR_LEN, defined as:

MAX_STR_LEN 1024

30.2.2. DS Message Header

All DS messages consist of afixed sized header followed by a variable length data payload. The header
format is as follows:

Offset Size Field name Description
0 4 nmsg_type Message type
4 4 payl oad_I en Payload length

The data payload content is defined according to thensg_t ype field.

30.2.3. DS protocol fixed message types

The DS protocol aways supports three message types and payloads, as described below, independent of
the current version of the protocol. The type-specific payload is described below each type.

The message types described in this section are intended for version negotiation of the basic DS protocaol.
All other message types are undefined until the DS protocol version has been negotiated.

The underlying LDC reliable protocol layer will ensure error-free packet delivery, so corrupted packets
will already have been dropped. However, receipt of unknown packet types may still occur as a result of
bugsor dueto malicious guest OS behavior. Upon the receipt of an unknown or undefined (for the currently
negotiated DS protocol version) packet type, the recipient should discard the datagram, and closethe LDC
channel. This action resets the domain services channel connection. Re-opening the channel again should
ensure complete end-to-end protocol negotiation and re-registration of capabilities.

30.2.4. Initiate DS connection

nsg_t ype:
DS | NIl T_REQ 0x0
Payload:
Offset Size Field name Description
0 2 maj or _vers Requested major number
2 2 nm nor _vers Reguested minor number

30.2.5. Initiation acknowledgment

msg_type:

273

Domain services

DS I NI T_ACK 0x1
Payload:
Offset Size Field name Description
0 2 m nor _vers Highest supported minor version

30.2.6. Initiation negative acknowledgment
m;g_t ype:
DS_I NI T_NACK 0x2

Payload:

Offset Size Field name Description

0 2 maj or _vers Alternate supported major version

30.2.7. DS protocol version negotiation

The DS protocol negotiation involves a countdown algorithm in an attempt to agree on a common major
number. Mg or numbers correspond to incompatible changes; both sides must agree on a major version
number for the version negotiation to proceed. As part of agreeing on a major number agreement, each
side learns of the other's highest supported corresponding minor number. Minor numbers correspond to
backwards-compatible changes; the two sidesimplicitly agree to use the lower of the two minor numbers
exchanged, and the negotiation is successfully completed.

Specifically, the negotiation is initiated by the guest sending the DS_I NI T_REQ message to the service
entity listening on the other end of the domain channel. This message includes major and minor version
numbers supported by the guest.

If the service entity can't support the mgjor version number sent from the guest, it responds with the
DS | NI T_NACK message, specifying the closest major version number it can support. The guest can
then initiate a new negotiation if it wants (i.e. if it can support the alternate major number returned by
the service entity). However, if the service entity's DS_| NI T_NACK message includes a major humber
of zero, the service entity should assume that the guest does not support any version of the DS protocol
in common with it.

If the major number sent in the DS_| NI T_REQ message is one the service entity supports, it returns
a DS_| NI T_ACK message specifying the highest minor number of the protocol version it supports.
Since minor number changes correspond to compatible protocol changes, once the guest receives the
DS | NI T_ACK message, both sides can communicate using the version of the protocol corresponding to
the major number agreed to, and the lower of the two minor numbers exchanged The version negotiation
is now successfully completed.

30.3. DS protocol version 1.0

30.3.1. Service Handles

A service handle (svc_handl e) is an opaque 64-bit descriptor that uniquely identifies an instance of
a service. It is analogous to a TCP port number, and is specified as part of the DS_REG REQ message
(described in Section 30.3.4.1, “ Register Service”), sent to begin the negotiation/registration processfor a
capability. It is used during this phase to identify the specific negotiation in progress (there could be more

274

Domain services

than one). Once a capability has been registered, it is used to identify the entity to be notified on receipt
of amessage. Similarly, when a capability sends a message to aclient, the handle identifies the sender. It
also identifies the target service during the unregistration process.

30.3.2. Service Identifier

The DS_REG_REQ message also specifies a service identifier (svc_i d), a NUL-terminated character
string naming the service. Theformat and restrictionsonthesvc _i d stringareidentical tothe PROP_STR
type's data field as defined in Chapter 8, Machine description.

30.3.3. Result Codes
Some of the response message types defined herein include a result field in their payload to indicate a

reason for failure. The complete list of such failure codes is presented here. The definition of each is
included in the section describing the response message type to which it belongs.

DS_REG VER_NACK ox1
DS_REG DUP 0x2
DS_| NV_HDL 0x3
DS_TYPE_UNKNOWN 0x4

30.3.4. DS Message types defined for v.1.0 of the DS protocol
30.3.4.1. Register Service

neg_type:
DS_REG REQ 0x3
Payload:
Offset Size Field name Description
0 8 svc_handl e Service handle
8 2 maj or _vers Requested major version
10 2 m nor_vers Requested minor version
12 variable svc_id Service name
length

30.3.4.2. Register Acknowledgment

neg_type:
DS _REG ACK 0x4
Payload:
Offset Size Field name Description
0 8 svc_handl e Service handle sent
inDS_REG_REQ
8 2 nm nor _vers Highest supported minor version

275

Domain services

30.3.4.3. Register Failed

nsg_t ype:
DS_REG_NACK 0x5
Payload:
Offset Size Field name Description
0 8 svc_handl e Service handle sent
inDS_REG_REQ
8 8 result Reason for the failure
16 2 maj or _vers Alternate supported major version

A DS_REG_NACK message can return the following result codes:

DS REG VER NACKCannot support requested major version
DS _REG DUP Duplicate registration attempted

30.3.4.4. Unregister Service

msg_type:

DS_UNREG

Payload:

0x6

Offset Size Field name

Description

0 8 svc_handl e

Service handle to unregister

30.3.4.5. Unregister OK

msg_type:

DS_UNREG_ACK

Payload:

Ox7

Offset Size Field name

Description

0 8 svc_handl e

Service handle sent in DS_UNREG

30.3.4.6. Unregister Failed

msg_t ype:
DS_UNREG NACK 0x8
Payload:
Offset Size Field name Description
0 8 svc_handl e | Service handle sentin DS_UNREG

276

Domain services

30.3.4.7. Data Message

neg_t ype:
DS_DATA 0x9
Payload:
Offset Size Field name Description
0 8 svc_handl e Service handle that is the des-
tination of the data message
Note

The DS_DATA header is defined so that when combined with the basic DS header the final pay-
load delivered to the serviceisaligned on a64-bit boundary with regard to the entire DS datagram
delivered by LDC.

This alignment is to enable an implementation to potentially utilize an optimized copy when/if
creating a message buffer for the final destination service.

30.3.4.8. Data Error

nsg_type:
DS_NACK Oxa
Payload:
Offset Size Field name Description
0 8 svc_handl e Service handle sent in DS_DATA
8 8 result Reason for failure

A DS_NACK message can return the following result codes:

DS | NvV_HDL Service handle not valid
DS_TYPE_UNKNOAUNknown nsg_t ype received

30.3.5. DS Capability Version Negotiation & Registration

Version negotiation for DS capabilities utilizes exactly the same countdown algorithm as used in the DS
Protocol version negotiation, with the same semantics for major & minor numbers, and corresponding

message types for implementation. The details of that portion of the protocol are not repeated here.

The registration process is the way in which DS capabilities advertise their availability. A registration is
initiated by the service sending a DS_REG_REQ message containing both a service handle and a service

identifier.

In response to a successful registration, the other side sends back aDS_REG ACK message that includes
the same service handle provided in the original message. Until this response is received, the DS service

interface for this client is not available.

277

Domain services

A DS _REG NACK message is returned if the protocol magjor version numbers do not match (re-
sult: DS_REG VER NACK) or if a service with the same service ID is aready registered (result:
DS_REG DUP).

This negotiation/registration handshake must occur whenever the underlying LDC comes up. If thereis
an event that causes the LDC to go down, all services are automatically unregistered. When the channel
comes back up, al services must therefore re-register themselves.

30.3.6. Service Requests

Once the registration handshake has occurred, a DS client can send data messages to any of the registered
servers by sending aDS_DATA message.

The data message payload includes the svc_handl e of the service that is the intended recipient of the
message. Following that is any service-specific payload. The payl oad_I en field of the header is the
length of the entire payload.

The final recipient of the message payload does not receive the DS header or the svc_handl e. It only
receives the remainder of the payload and an indication of the length of that portion of the payload.

If thereisan error in the message that resultsin the inability of DS to forward the message to the intended
recipient,aDS_NACK reply messageis sent back with an error indication of either DS _| NV_HDL (invalid
svc_handl e) or DS_TYPE_UNKNOWN (unknown nsg_t ype received) in the result field. Note that
the original payload is not returned.

If the message is forwarded all the way to the service successfully, the higher level protocol implemented
by that service determines what if any reply message is sent.

30.3.7. Unregistration

Inthe event that a capability becomes unavailable, such asif the kernel modulethat providesit is unloaded,
aDS_UNREGmessage is sent.

The svc_handl e field of the DS header is filled with the service handle that uniquely identifies the
registered service. There is no payload to this message.

Once the first message is received, the service handle is invalidated and connections to that service are
closed.

If the DS LDC channel goes down, all registered services are forced to the unregistered state by one or
both sides that are till running. Before a service can be used again, both the DS infrastructure handshake
and the service registration handshake must be re-negotiated.

Service handles should not be reused after a serviceis unregistered. This prevents successful use of astale
handle. Service handles may be re-used after the basic LDC connection is taken down and then up, and
the overall DS framework isreset as aresult.

30.4. DS Capabilities

A DS capability is defined as any service provided by one subsystem on behalf of another. Capabilities
are based on functionality rather than software module boundaries. Thus, a module can register multiple
capabilitiesif it provides multiple featuresthat arelogically grouped together. Associated with a capability
are aservice identifier and a service handle.

The following sections describe the core DS capabilities supported in a Logical Domain environment.

278

Domain services

30.5. MD Update Notification version 1.0

The MD update capability allows a service entity to notify a guest when the entity has modified the guest's
Machine Description. It isthe responsibility of the MD update capability to parse the new MD, determine
what has changed, and initiate the steps required to adjust the guest configuration accordingly. The exact
steps taken upon receiving an MD update notification may vary depending on the type of guest running
in the domain.

30.5.1. Service ID

The following service ID should should be added to the Domain Services registry for the MD Update
capability.

ServicelD Description
"md- updat e" Notification of MD updates

30.5.2. MD Update Request
Payload:

Offset Size Field name Description
0 8 reg_num Request number

Ther eq_numfield is used to match up request and response messages; the same number is used in the
request and its associated response; the value itself is opaque to the clients of the protocol.

30.5.3. MD Update Response

Payload:
Offset Size Field name Description
0 8 reg_num Request number
8 4 result Result of operation

An MD update response message can return the following result codes:

MD_UPDATE_SUCCESS 0x0
MD_UPDATE_FAI LURE 0x1
MD_UPDATE_| NVALI D_MSG 0x2

30.6. Domain Shutdown version 1.0

The Domain Shutdown capability allows a service entity to send aDS _DATA message reguesting a guest
to gracefully shutdown. The response indicates whether the request was successful (i.e. initiation of shut-
down has occurred). If the request is denied, the response can include an informational message, encoded
asaNUL-terminated ASCII string, describing the reason for denying the request (e.g. something like“DR
in progress’).

30.6.1. Service ID

Thefollowing servicel D should should be added to the Domain Servicesregistry for the Domain Shutdown
capability.

279

Domain services

ServicelD Description
"domai n- shut down” Request a graceful shutdown

30.6.2. Domain Shutdown Request

Payload:
Offset Size Field name Description
0 8 reg_num Request number
8 4 nms_del ay milliseconds to delay

ns_del ay specifiesatime delay in milliseconds before initiation of the shutdown operation.

30.6.3. Domain Shutdown Response

Payload:
Offset Size Field name Description
0 8 reqg_num Request number
8 4 result Result of operation
12 variable reason ASCII String (NUL-terminated)

r eason isaNUL-terminated ASCII string.

A domain shutdown response message can return the following result codes:

DOMVAI N_SHUTDOWN_SUCCESS 0x0
DOMVAI N_SHUTDOWN_FAI LURE ox1
DOMVAI N_SHUTDOWN_| NVALI D_MSG 0x2

30.7. Domain Panic version 1.0

The Domain Panic capability allows a service entity to send a DS_DATA message reguesting a guest to
panic and cause a crash dump to be created. The response indicates whether the request was successful
(i.e. initiation of panic processing has occurred). If the request is denied, the response can include an
informational message, encoded as a NUL-terminated ASCI| string, describing the reason for denying the
request (e.g. something like “DR in progress’).

30.7.1. Service ID

The following service ID should should be added to the Domain Services registry for the Domain Panic
capability.

ServicelD Description
"donai n- pani c" Request a panic

30.7.2. Domain Panic Request
Payload:

280

Domain services

Offset Size Field name Description

0 8 reg_num Request number
30.7.3. Domain Panic Response
Payload:

Offset Size Field name Description
0 8 reg_num Request number
8 4 result Result of operation
12 variable reason ASCII String (NUL-terminated)

r eason isaNUL-terminated ASCII string.

A domain panic response message can return the following result codes;

DOVAI N_PANI C_SUCCESS 0x0
DOVAI N_PANI C_FAI LURE Ox1
DOVAI N_PANI C_I NVALI D_MsG 0x2

30.8. CPU DR Version 1.0

Theability to add or removevirtual CPUsfrom alogical domainisdriven from the LDom manager through
this domain service.

30.8.1. Service ID

The following service ID should should be added to the Domain Services registry for the CPU DR capa
bility.

ServicelD
"dr-cpu”

Description

Dynamic reconfiguration for virtual CPUs

Each DR service message consists of afixed message header and packet payload as described below. The
overall payload length is determined by subtracting the size of the CPU DR message header (4 bytes) from
the entire domain services packet size.

30.8.2. CPU DR Message Header

All CPU DR messages begin with the same header. The payload that follows the header is specific to a

particular message type.
Payload:
Offset Size Field name Description
0 8 reg_num Request number
8 nmsg_type Message type
12 4 num records Number of records for message

The overall CPU DR protocol consists of a command sent to the client guest that then responds with a
reply indicating the overall success of the request. An error response indicates that the operation was not

281

Domain services

attempted due to an invalid request. A DR_CPU_OK response indicates that the requested operation was
attempted and the response record for each cpu indicates the effect of the attempt for that particular cpu.
The message types identifies either arequest or aresponse to a request.

30.8.3. Message types

The following constants are defined for CPU DR domain service command identifier values.

Request message types:
Type Value ASCII Definition
Value
DR_CPU_CONFI GURE 0x43 'C Configure new CPU(s)
DR_CPU_UNCONFI GURE 0x55 ‘U Unconfigure CPU(s)
DR _CPU FORCE _UNCONFI G | 0x46 "F Forcibly unconfigure CPU(s)
DR _CPU_STATUS 0x53 'S Request the status of CPU(s)
Response message types.
Type Value ASCII Definition
Value
DR CPU K 0Ox6f ‘o Request completed successfully
DR _CPU _ERROR 0x65 ‘e Request failed (not attempted)

30.8.3.1. CPU DR Request records payload

The CPU DR requests all use the same message payload format, which isalist of records of virtual CPU
IDs within a guest. The number of records of I1Ds is specified by the num_records field in the packet
header. Each ID is given asasingle 4 byte value.

The payload layout is as follows:

Offset Size Field name Description
0 4 i do First virtual CPU ID
4 4 i dl Second virtual CPU 1D
8 4 i d2 Third virtua CPU 1D
4 i dN Nth virtual CPU ID

Note: |Ds should be provided in ascending numerical order, and should not be duplicated. An implemen-
tation may not assume that IDs are arranged in a specific order, and may not assume that 1Ds are not
duplicated.

30.8.3.2. Request number

The request number in the message header is a monotonically increasing number that uniquely identifies
each request message.

Responses to requests are expected to use the same request number so that they can be paired with their
original request.

282

Domain services

New requests may beissued without waiting for aresponseto apreceding request. The underlying transport
protocol isresponsible to ensure reliable, in-order and un-duplicated message packets.

Requests are to be processed in the order received.

30.8.3.3. DR_CPU_CONFI GURE request

This command requests that a guest providing this service attempt to configure and bring online a set of
CPUs that have been dynamically reconfigured into the guest's logical domain.

The response to this request indicates success of failure for each individually specified CPU.

Before aconfigure request, aCPU must be part of thelogical domain in the hypervisor and must be present
in the guest's Machine Description. If either of these conditionsis not satisfied, the configure response will
indicate that the particular CPU isin the DR_CPU_STAT_NOT_PRESENT state. No other assumptions
may be made about the state of the CPU before a configure request. In particular, attempts to configure
a CPU aready in the configured state must succeed.

If the guest provides a service for registering a Machine Description update, that update notification must
be provided to the guest prior to the configure request being given.

After asuccessful configure request, a CPU isin the configured state, which meansthat it is available for
general use by the guest. The CPU enters the guest from the hypervisor by means of the cpu_st art
hypervisor APl (FWARC 2005/116 [http://arc.opensolaris.org/casel og/FWARC/2005/116]). Further steps
required to reach the configured state is guest operating system specific. See [lddr] for details on the
Solaris-specific implementation of the configure request.

30.8.3.4. CPU_UNCONFI GURE request

This command requests that a guest take offline and unconfigure the specified set of CPUs. The response
to this request indicates success or failure for each individually specified CPU.

Before an unconfigure request, a CPU must be part of the logical domain in the hypervisor and must be
present in the guest's Machine Description. If either of these conditions are not satisfied, the unconfigure
response will indicate that the particular CPU isinthe DR_CPU_STAT _NOT_PRESENT state. No other
assumptions may be made about the state of the CPU before an unconfigure request. In particular, attempts
to unconfigure a CPU already in the unconfigured state must succeed.

After a successful unconfigure request, the CPU is in the unconfigured state, which means that it is no
longer available for general use by the guest operating system. The CPU is still part of the logical domain
in the hypervisor and is still present in the guest's Machine Description. The CPU enters the hypervisor
from the guest by means of the cpu_st op hypervisor APl (Section 13.2.2, “cpu_stop”). Further steps
required to reach the unconfigured state is guest operating system specific. See [lddr] for details on the
Solaris specific implementation of the unconfigure request.

If the guest provides a service for registering a Machine Description update, that update notification will
be provided only after steps have been taken to remove the CPU from the logical domain in the hypervisor
and from the guest's Machine Description.

30.8.3.5. CPU_FORCE_UNCONFI Grequest

Thisrequest is equivalent to CPU_UNCONFI GURE in that it requests that a guest take offline and uncon-
figure the specified set of CPUs. In addition however, the guest may choose to implement an override to
conditions that may have caused failure for any step of a CPU_UNCONFI GURE operation.

283

http://arc.opensolaris.org/caselog/FWARC/2005/116
http://arc.opensolaris.org/caselog/FWARC/2005/116

Domain services

Note: For example, whereas Solaris may elect to fail a CPU_UNCONFI GURE for a CPU to which
certain processes are bound, it may elect to override and unbind those processes in response to the
CPU_FORCE_UNCONFI Grequest in order to complete the unconfigure or offline operation. Such policy
decisions are guest operating system specific.

The response to this request indicates success or failure for each individually specified CPU.

If the guest provides a service for registering a Machine Description update, that update notification will
be provided only after steps have been taken to remove the CPU from the logical domain in the hypervisor
and from the guest's Machine Description.

30.8.3.6. CPU_STATUS request

This command requests the configuration status of specific CPU(s). The response to this request is guest
policy specific and is provided upon this request for informational purposes.

30.8.4. CPU_DR_(Kresponse payload

The CPU_DR_(X response uses the following format. The response header is followed by an array of
num r ecor ds status reports, one for each CPU included in the command request.

Each status report provides information on the result of the requested operation.

The data payload length can be computed from the overall packet length minus the header length and
minus the total size of the num_records status report records.

Following the array of status reports is a variable length data section that may be used to hold additional
string information specific to a particular CPU. Each status report contains an offset into that data section
identifying an additional human-readable NUL -terminated ASCI| string when relevant. The offset is spec-
ified as the byte offset into the string data section relative to the first byte of the overall CPU DR packet
header. The domain services header indicates the overall CPU DR packet length.

The CPU status reports have the following format:

Offset Size Field name Description
0 4 cpu_id Virtual CPU ID
4 4 result Result of the operation
8 4 st at us Status of the CPU
12 4 string_off String offset relative to the start
of the CPU DR response packet

30.8.4.1. CPU DR _OK Result codes

Ther esul t fieldinthe per CPU_DR_OKresponse record details the result of the requested operation on
the specified CPU within each status record of the CPU_DR_OK response.

The result codes are defined as follows:

Name Value Definition

DR CPU RES K 0x0 Operation succeeded
DR_CPU_RES FAI LURE Ox1 Operation failed
DR_CPU_RES BLOCKED 0x2 Operation was blocked

284

Domain services

Name Value Definition
DR _CPU_RES CPU_NOT_RESPONDI NG 0x3 CPU was not responding
DR _CPU_RES NOT_I N_MD 0x4 CPU not defined in the MD

For DR _CPU_UNCONFI GURE the result code DR _CPU RES BLOCKED is equivalent to
DR_CPU_RES_FAI LURE except that the guest is indicating that the operation may succeed with a sub-

sequent DR_CPU_FORCE_UNCONFI G operation.

30.8.4.2. CPU_DR (XK status codes

The status field in the per CPU_DR_OK response record details the resulting status of the specified CPU
after the requested operation.

The status codes are defined as follows:

Value Definition

Name

DR _CPU_STAT_NOT_PRESENT 0x0 CPU ID does not exist even inthe MD

DR_CPU_STAT_UNCONFI GURED Ox1 CPU ID existsinMD, but CPU isnot con-
figured for use by the guest

DR_CPU_STAT_CONFI GURED 0x2 CPU is configured for use by the guest

30.8.4.3. CPU DR OK response string

Each response record may optionally include a human readable string so that the guest may return a NUL -
terminated ASCI| string relevant to each CPU with regard to the requested operation.

If no stringis provided the st ri ng_of f field in the response record for a cpu has the value of zero.

30.8.5. CPU DR Error response
The message type DR_CPU_ERROR s returned as a response to a malformed request message.

The DR_CPU_ERROR response has the following format:

Offset Size Field name Description
0 variable err_nsg NUL -terminated string

The maximum length of theer r _ns g field including the terminal NUL shall be 1024 characters. The error
message will indicate the nature of thefailure, such as badly formatted request, intra-guest communication

failure, etc.
Note
the new err_msg field of the response message payload applies only to response messages, and
then only whenthemsg_t ype element of the header isDR_CPU_ERROR.

30.9. Memory DR service version 1.0
The ability to add or remove memory from alogical domain is driven from the LDom manager through
this domain service.

A unit of memory is referred to as a memory block (mblk) and is described by an address,size pair in
byte units.

285

Domain services

30.9.1. Service ID

The following service ID should should be added to the Domain Services registry for the memory DR

capability.

Service D

Description

“dr - ment'

Dynamic reconfiguration for memory

Each DR service message consists of afixed message header and optional packet payload described below.
The overall payload length is determined by subtracting the size of the memory DR message header from

the entire domain services packet size.

30.9.2. Memory DR message header

All memory DR messages begin with the same header. The message argument in the header and the

payload that follows the header depend on the message type.

Offset Size Field name Description
0 4 nmeg_type Message type
4 nmsg_arg M essage argument
8 8 reqg_num Request number

The overal memory DR protocol consists of acommand sent to the client guest that then responds with

areply indicating the overall success of the request.

An error responseindicatesthat the operation was not attempted dueto an invalid request. An OK response
indicates that the requested operation was attempted. An operation may affect multiple memory blocks
(mblk). The result of an attempted operation details the status of each mblk affected by the operation in

a separate response record.

The message types identify either arequest or aresponse to arequest.

30.9.3. Message types

The following constants are defined for memory DR domain service command identifier values:

Request message types:
Type Value ASCII Definition
Value
DR_MEM CONFI GURE 0x4d43 | 'MC |Configure (add) memory
DR_MEM_UNCONFI GURE 0x4d55 | 'WMJ Unconfigure (remove) memory
DR_MEM UNCONF_STATUS 0x4d53 | ' M5 Get memory unconfigure status
DR_MEM _UNCONF_CANCEL Ox4d4e | 'MN |Cancel memory unconfigure
DR_NMEM QUERY 0x4d51 | 'MJ |[Query memory info
Response message types.
Type Value ASCII Definition
Value
DR _MEM K Ox6f ‘o' Request compl eted successfully

286

Domain services

Type Value | ASCII Definition
Value
DR_MEM ERROR 0x65 ‘e Request failed (not attempted)

30.9.3.1. Message argument

The nsg_ar g field contents depend on the message payload format and this is described in specific
request sections below.

30.9.3.2. Request number

The request number in the message header is a monotonically increasing number that uniquely identifies
each request message.

Responses to requests are expected to use the same request number so that they can be paired with their
original request.

New requests may beissued without waiting for aresponseto apreceding request. The underlying transport
protocol isresponsible to ensure reliable, in-order and unduplicated message packets.

Only one DR_MEM _CONFI GURE or DR_MEM_UNCONFI GURE request can be outstanding, see details
below.

Requests are to be processed in the order received.

30.9.3.3. DR_MEM_CONFIGURE request

Request header:
Field name Value
nsg_type DR_MEM _CONFI GURE
nsg_arg num_records
req_num req_num

Request payload record format:

Offset Size Field name Description
0 8 addr Mblk base real address
8 8 si ze Mblk sizein bytes

Note: Animplementation may not assume that mblks are arranged in a specific order, and may not assume
that mblks are not duplicated, but may assume that the mblks do not intersect.

This command requests that a guest providing this service attempts to add the memory described by a set
of mblks that have been dynamically configured into the guest's logical domain. The guest will abort the
request upon the first failure to configure a mblk. The response to this request indicates success or failure
for each individual mblk specified in the request.

Before aconfigure request, amblk must be part of the logical domain inthe hypervisor and must be present
inthe guest's Machine Description. If either of these conditionsis not satisfied, the configure response will
indicate that the particular mblk isinthe DR_MEM STAT _NOT_PRESENT state.

287

Domain services

If the guest has registered a MD update service with the LDom manager, the guest should be notified of
aMD update, prior to sending it amemory DR configure request.

After successful completion of a configure operation, amblk isin the configured state, which meansit is
available for general use by the guest.

Only one DR_MEM CONFI GURE request can be outstanding. The guest will return a a response with a
status value of DR_VEM RES BLOCKED if it receives more than one such request.

30.9.3.4. DR_MEM_UNCONFIGURE request

Request header:
Field name Value
nsg_t ype DR_MEM_UNCONFI GURE
nsg_arg num_records
req_num req_num

Request payload record format:

Offset Size Field name Description
0 8 addr Mblk base real address
8 8 si ze Mblk sizein bytes

Note: Animplementation may not assume that mblks are arranged in a specific order, and may not assume
that mblks are not duplicated, but may assume that the mblks do not intersect.

Thiscommand requeststhat aguest providing this service attempt to unconfigure the memory described by
aset of mblksin the request. The guest will abort the request upon the first failure to unconfigure a mblk.
The response to this request indicates success or failure for each individual mblk specified in the request.

After asuccessful unconfigure request, amblk isin the unconfigured state, which meansthat it isno longer
available for general use by the guest operating system. The mblk is till part of the logical domain and
isstill present in the guest's Machine Description.

If the guest provides a service for registering a Machine Description update, that update notification will
be provided only after the unconfigured memory has been removed from the guest's Machine Description.

Only one DR_VEM_UNCONFI GURE request can be outstanding. The guest will return a a response with
astatusvalue of DR_VEM RES BLOCKED if it receives more than one such regquest.

DR_MEM UNCONFI GURE is a long running operation and may generate a lot of I/O activity as

modified outgoing pages are flushed to disk. A guest may provide interfaces to track and cancel a
DR_MEM_ UNCONFI GURE operation, see details below.

30.9.3.5. DR_MEM_UNCONF_STATUS request

Request header:

Field name Value
nsg_type DR_MEM UNCONF_STATUS

288

Domain services

Field name Value
nmsg_arg 0
reg_num req_num

This command requests the status of a DR_MEM_UNCONFI GURE command in progress. If there is no
outstanding unconfigure operation, a DR_MEM RES K result is returned and num r ecor ds is set to
0 and no payload follows the response.

30.9.3.6. DR_MEM_UNCONF_CANCEL request

Request header:
Field name Value
nsg_type DR_MEM_UNCONF_ CANCEL
nmsg_arg 0
reg_num req_num

This command requests the guest to cancel an outstanding unconfigure operation. Following successful
completion of a cancel operation, al the memory for the mblock currently processed in the outstanding
unconfigure request will be reconfigured and available for general use by the guest. Any mblocks already
unconfigured will not be affected no further mblocks in the request will be processed. If there is no out-
standing unconfigure operation, aDR_MEM RES K result is returned. If an error is encountered during
cancel,aDR_MEM RES FAI LUREresultisreturned and the cancel request will not affect the outstanding
unconfigure operation.

30.9.3.7. DR_MEM_QUERY request

Request header:
Field name Value
nmsg_type DR_MEM QUERY
nmsg_arg num_records
reg_num req_num
Request payload record format:
Offset Size Field name Units Description
0 8 addr bytes |Mblk baserea address
8 8 si ze Mblk size

This command queries the current status of the guest memory layout for the memory blocks specified

in the request. The request can be used to determine the memory range within each mblk that may be
unconfigured by the guest.

30.9.4. DR_MEM_OK response

The DR_VMEM (K response uses the following format. The response header may be followed by an array
of num r ecor ds statusreports, onefor each record included in the command request. Each status report
provides information on the results of the requested operation.

289

Domain services

The data payload length can be computed from the overall packet length minus the header length and
minus the total size of thenum r ecor ds status report records.

Following the array of status reportsfor certain requestsis avariable length data section that may be used
to hold additional string information specific to aparticular mblk. Each status report contains an offset into
that data section identifying an additional human readable NUL-terminated ASCII string when relevant.
The offset is specified as the byte offset relative to the first byte of the overall MEM DR packet header.
The domain services header indicates the overall memory DR packet length.

30.9.4.1. DR_MEM_OK result codes

Theresult codein aDR_MEM K response details the affect of the attempted operation.

The result codes are defined as follows:

Name

DR_MEM RES K
DR_MEM RES FAI LURE
DR_MEM RES BLOCKED
DR_MEM RES_CANCELED
DR_MEM RES NOADRK
DR_MEM RES PERM

Value
0x0
Ox1
0x2
0x3
0x4
0x5

30.9.4.2. DR_MEM_OK status code

Definition

Operation succeeded
Operation failed

Operation was blocked
CPU was not responding
CPU not defined in the MD
Permanent memory in span

The st at us field in a DR_MEM K response record details the resulting status of the specified mblk

after the requested operation.

The status codes are defined as follows:

Name
DR_MEM STAT_NOT_PRESENT
DR_MEM STAT_UNCONFI GURED

DR_MEM STAT_CONFI GURED

Value
0x0
0Ox1

0x2

Definition
Mblk does not exist in MD

Mblk existsin MD, but mblk is not configured for
use by guest

Operation was blocked

30.9.4.3. DR_MEM_OK response string

Each response record may optionally include a human readable string so that the guest may return aNUL -
terminated ASCII string relevant to each mblk with regard to the requested operation. If no string is pro-
vided thest ri ng_of f field in the response record for amblk has the value of zero.

30.9.4.4. DR_MEM_CONFIGURE response payload

Response header:
Field name Value
nmsg_type DR_MVEM K
nsg_arg num_records

290

Domain services

Field name Value
reg_num req_num
Response payload record format:
Offset Size Field name Description
0 8 addr Mblk address
8 8 si ze Mblk sizein bytes
16 4 resul t Result of the operation
20 4 status Status of the mblk
24 4 string_off String offset relative to start
Result codes:
DR_MEM RES K
DR_MEM RES FAI LURE
DR_MEM RES BLOCKED
DR_MEM RES NOWORK

Status codes:

DR_MEM STAT_NOT_PRESENT
DR_MEM _STAT_CONFI GURED
DR_MEM _STAT_UNCONFI GURED

30.9.4.5. DR_MEM_UNCONFIGURE response payload

Response header:
Field name Value
nsg_type DR_MEM K
neg_arg num_records
reg_num req_num
Response payload record format:
Offset Size Field name Description
0 8 addr Mblk address
8 8 si ze Mblk sizein bytes
16 4 resul t Result of the operation
20 4 st at us Status of the mblk
24 4 string_off String offset relative to start
Result codes:
DR_MEM RES K
DR_MEM RES_FAl LURE

DR_
DR_

MEM _RES_BLOCKED
MEM_RES_CANCELED

291

Domain services

DR_MEM RES_NOWORK
DR_MEM RES_PERM

Status codes:

DR_MEM_STAT_CONFI GURED
DR_MEM_STAT_UNCONFI GURED

30.9.4.6. DR_MEM_UNCONF_STATUS response payload

Response header:
Field name Value
nsg_type DR_MVEM K
nsg_arg num_records
reg_num req_num

Response payload record format:

Offset Size Field name Description
0 8 t ot al Total region size
8 8 col l ected Amount of collected memory
Result codes:

DR_MEM RES_OK

30.9.4.7. DR_MEM_UNCONF_CANCEL response payload

Response header:
Field name Value
nmsg_type DR_MVEM K
nmsg_arg result
reg_num req_num
Result codes:

DR_MEM RES_OK
DR_MEM RES_FAI LURE

30.9.4.8. DR_MEM_QUERY response payload

Response header:
Field name Value
nsg_type DR_MEM K
nsg_arg num_records
reg_num req_num

292

Domain services

Response payload record format:
Offset Size Field name Description
0 8 addr Mblk address
8 8 si ze Mblk sizein bytes
16 8 perm Amount of permanent memory in
mblk
24 8 first_perm |First permanent RA in mblk
32 8 | ast _perm |Last permanent RA in blk

Theaddr and si ze fields equals the valuesin the corresponding request.

The per mfield isthe size of the permanent memory within the mblk. Memory which may not be uncon-
figured isreferred to as permanent memory.

Thefi r st _per mfield isthe lower bound of the permanent memory range within the mblk.
Thel ast _per mfield is the upper bound of the permanent memory range within the mblk.

The memory in the mblk not contained within the lower and upper bounds is removable. If the per msize
in the response is less than difference of fi r st _per mand | ast _per maddresses, it is indicative that
there is additional removable (non-permanent) memory between the lower and upper bounds.

Result codes:
DR_MEM RES K
30.9.5. DR_MEM_ERROR response

The message type DR_MVEM _ERRORs returned as a response to a malformed request message.

Response header:
Field name Value
nmsg_type DR_MEM ERROR
nsg_arg 0
req_num req_num

Response payload record format:

Offset Size Field name Description
0 variable err_nsg NUL -terminated string

Themaximum length of theer r _ns g field including the terminal NUL shall be 1024 characters. The error
message will indicate the nature of the failure, such asbadly formatted request, intra-guest communication
failure, etc.

Note

the new err_msg field of the response message payload applies only to response messages, and
then only whenthensg_t ype element of the header isDR_MEM _ERRCR.

293

Domain services

30.10. VIO DR service version 1.0

This service provides ability for the logical domain manager to request the addition or removal of virtual
devices. The serviceis called Virtual 1/0O Dynamic Reconfiguration (V1O DR).

Thismechanism, if supported by the guest operating systemin avirtual machine, allowsthelogical domain
manager to remotely reconfigure the virtual 10 resources provided by and used by a guest domain without
that guest domain needing to be rebooted to “discover” those resources.

30.10.1. Service ID

Thefollowing service ID if exported by a guest domain indicates that the guest supports V1O DR and the
domain service described in this section.

ServicelD Description

"dr-vio" Dynamic reconfiguration for virtual 1/0 devices

30.10.2. Message format

Payload:
Offset Size Field name Description
0 8 reqg_num Request number
8 8 dev_id DevicelD
16 4 neg_type Message type
20 variable name Device name

30.10.3. Message types

The message type (msg_t ype) field contains a value indicating the type of operation being requested.
The following constants are defined for VIO DR Domain Service as message type values:

Type Value ASCII Definition
Value
DR_VI O_CONFI GURE 0x494f 43 "1 oC Configure anew device
DR_VI O_UNCONFI GURE 0x494f 55 ey Unconfigure a device
DR VI O FORCE UNCONFI G 0x494f 46 "I OF Forcibly unconfigure adevice
DR_VI O_STATUS 0x494f 53 "10s Request the status of a device

30.10.3.1. DR_VI O_CONFI GURE request

This command requests that a guest providing this service attempt to configure and bring online a virtual
I/0 device that has been dynamically added or configured into the logical domain. The response to this
request indicates success or failure for this attempt.

Before a configure request, the selected device must be part of the logical domain's machine description.
No other assumptions may be made about the state of the device before a configure request. In particular,
attempts to configure a device already in the configured state must succeed. This service supports adding

294

Domain services

new virtual 10 devices under thechannel - devi ces node of the MD, but not directly under its parent,
thevi rt ual - devi ces node.

If the guest registers a service for notifying it of a Machine Description update, that update notification
must be provided to the guest prior to the configure request being given.

After asuccessful configure request, the deviceisin the configured state, which meansthat it is available
for general use by the guest. Further steps required to reach the configured state is guest operating system
specific.

30.10.3.2. DR_VI O_UNCONFI GURE request

This command requests that a guest take offline and unconfigure the specified device. The responseto this
request indicates success or failure of the request.

Before an unconfigure request, a device must be part of the logical domain's machine description. No
other assumptions may be made about the state of the device before an unconfigure request. In particular,
attempts to unconfigure a device aready in the unconfigured state must succeed.

After a successful unconfigure request, the device is in the unconfigured state, which means that it is no
longer available for general use by the guest operating system. The device is still present in the guest's
Machine Description. The steps required to reach the unconfigured stateis guest operating system specific.

If the guest provides a service for registering aMachine Description update that update notification will be
provided only after steps have been taken to remove the device from the logical domain in the hypervisor
and from the guest's Machine Description.

30.10.3.3. DR_VI O _FORCE_UNCONFI Grequest

This request is equivalent to DR VI O _UNCONFI GURE in that it requests that a guest take offline and
unconfigure the specified device. In addition however, the guest may choose to implement an override to
conditions that may have caused failure for any step of aDR_VI O_UNCONFI GURE operation.

The response to this request indicates success or failure of the request. If the guest provides a service for
registering a Machine Description update, that update notification will be provided only after steps have
been taken to remove the device from the logical domain in the hypervisor and from the guest's Machine
Description.

30.10.3.4. DR_VI O_STATUS request

This command requests the configuration status of a specific device. The responseto thisrequest indicates
the current state of the device, which can include an optional descriptive string.

30.10.3.5. Request number

The request number in the message header is a monotonically increasing number that uniquely identifies
each request message.

Responsesto requests are expected to use the same request number so they can be paired with their original
request.

New requests may beissued without waiting for aresponse to apreceding request. The underlying transport
protocol isresponsible to ensure reliable, in-order and unduplicated message packets.

Requests are to be processed in the order received.

295

Domain services

30.10.3.6. Device Name
This element of the request message identifies the type of the device which isthetarget of the request. The
Device Namenane field in the request message correspondsto the nane property of thevi r t ual - de-

Vi ce node in the Machine Description. It consists of a NUL-terminated string. The maximum length of
this string is 256 characters, including the terminating NUL.

30.10.3.7. Device ID

The Device ID dev_i d field in the request message corresponds to the cf g- handl e of thevi rt u-
al - devi ce node in the guest's Machine Description.

30.10.4. VIO DR response message

The overal VIO DR protocol consists of a command sent to the client guest which then responds with a
reply indicating the result of the request.

30.10.4.1. VIO DR response message format

The VIO DR response message has the following format:

Offset Size Field name Description
0 8 req_num Request number
8 4 resul t Result code
12 4 status Status code
16 variable reason Reason string (cause of error)

30.10.4.2. VIO DR Result codes

Theresult field in the above message indi cates the result of the requested operation on the specified device.
Theresult codes are defined as follows:

The status codes are defined as follows:

Name Value Definition

DR VI O RES (X 0x0 Operation succeeded

DR VI O RES FAI LURE 0x1 Operation failed

DR _VI O_RES_BLOCKED 0x2 Operation was blocked
DR VIO RES NOT I N MD 0x3 Device undefined in the MD

For a DR_VI O_UNCONFI GURE request the result code DR_VI O RES BLOCKED is equivaent to
DR_VI O_RES_FAI LURE except that the guest is indicating that the operation may succeed with a sub-
sequent DR_VI O_FORCE_UNCONFI G operation.

30.10.4.3. VIO DR status codes

The st at us field in the response message indicates the resulting status of the specified device after the
requested operation. For the response message to a configure or unconfigure request, ther esul t field
indicatesthe outcome of the operation. Thest at us field contains one of the status codes below to indicate
state of the device after the attempted operation.

296

Domain services

For the response message corresponding to a successful DR_VI O_STATUS request, the st at us field
will contain one of the codes below, and the resul t field will contain DR_VI O RES OK. If the
DR _VI O _STATUS operation fails, the resul t field will contain DR VI O RES FAI LURE and the
st at us field will not be meaningful.

The status codes are defined as follows:

Name Value Definition

DR VI O_STAT_NOT_PRESENT 0x0 Device does not exist inthe MD

DR _VI O_STAT_UNCONFI GURED Ox1 Device exists in the MD, but is not configured for
use by the guest

DR VI O_STAT_CONFI GURED 0x2 Deviceis configured for use by the guest

A VIO device in the DR_VI O_STAT_UNCONFI GURED state may be safely removed from the domain
configuration. Conversely, aV1O deviceintheDR VI O_STAT _CONFI GURED state must not beremoved
from the domain configuration as the guest may be accessing it.

30.10.4.4. VIO DR “reason” string

The response message may optionally include a human-readable string so that the guest may return a
NUL -terminated ASCII string containing additional information regarding the requested operation. The
maximum length of this string is 1024 characters including the terminating NUL.

If thereis no “reason” string, thisfield shall contain asingle NUL character at the start of the field. In the
case of a successful operation no response string will be returned.

30.11. Crypto DR service version 1.0
The ability to dynamically add or remove hardware crypto providers from a logica domain is driven
from the LDom manager through this domain service. Separate services will be defined for the Modular
Arithmetic Unit (MAU) and the Control Word Queue (CWQ) hardware components.

30.11.1. Service ID

The following service IDs correspond to the cryptographic unit dynamic reconfiguration capabilities of
aguest operating system.

ServicelD Description
"dr-crypto-mu" Dynamic reconfiguration for MAU devices
"dr-crypto-cwg” Dynamic reconfiguration for CWQ devices

30.11.2. Message format header

Offset Size Field name Description
0 8 reqg_num Request number
8 4 nmeg_type Message type

The same DR service messages are used for both services. Each message consists of a fixed message
header and payload as described below. Overall, the Crypto DR service messages are very similar to the
CPU DR messages.

297

Domain services

30.11.3.

All Crypto DR messages begin with the same header. The payload that follows the header is specific to
a particular message type. The Crypto DR protocol consists of a command sent to the client guest which
then responds with areply indicating the success or failure of the request.

Message Types

The following message types are defined for the Crypto DR domain service.

30.11.3.1. Request messages

Type Value ASCII Definition
Value
DR_CRYPTO_CONFI GURE 0x43 'C Configure anew crypto unit
DR_CRYPTO UNCONFI GURE | 0x55 ‘U Unconfigure a crypto unit
DR _CRYPTO_FORCE_UNCONFI G 0x46 "F Forcibly unconfigure a crypto unit
DR_CRYPTO STATUS 0x53 'S Request the status of a crypto unit

30.11.3.2. Response messages

30.11.4.

30.11.5.

30.11.6.

Type Value ASCII Definition
Value
DR _CRYPTO K Ox6f ‘o Request completed successfully
DR_CRYPTO_ERROR 0x65 ‘e Request failed

Request Payload

The Crypto DR requests all use the same payload format, which is alist of records of virtual CPU 1Ds
within a guest. Because there is no crypto unit ID defined in the guest, a virtual CPU ID which maps
to the desired crypto unit is passed as the identifier. There should be one virtual CPU 1D specified per
targeted crypto unit.

The payload is as follows:

Offset Size Field name Description
0 4 i do First virtual CPU ID
4 4 idl Second virtual CPU ID
8 4 i d2 Third virtual CPU ID
4 i dN Nth virtual CPU ID

Request Number

The request number is a monotonically increasing value that uniquely identifies each request. Responses
to requests are expected to use the same request number so they can be paired with the original request.
Requests are to be processed in the order received.

DR_CRYPTO_CONFI Grequest

This command requests that a guest attempt to configure and bring online the crypto units associated
with the set of virtual CPU ID supplied in the request message. In order to be successful, the crypto unit

298

Domain services

30.11.7.

30.11.8.

30.11.9.

and associated virtual CPUs must already exist in the guest's Machine Description (MD). If both of these
conditions are not satisfied, an error is returned.

DR_CRYPTO_UNCONFI Grequest

This command requests that the guest attempt to offline and unconfigure the targeted crypto units. An
associated virtual CPU ID issupplied in the request message to identify the crypto unit. In order to be suc-
cessful, the crypto unit and associated virtual CPUs must already exist in the guest's Machine Description
(MD). If both of these conditions are not satisfied, an error is returned.

DR_CRYPTO_FORCE_UNCONFI Grequest

This command requeststhat the guest forcibly attempt to offline and unconfigure the targeted crypto units.
However, thereis no still guarantee that the guest will be able to successfully complete the request.

DR_CRYPTO_STATUS

The command requests the configuration status for specific crypto units.

30.11.10. DR_CRYPTO _(Kresponse payload

The DR_CRYPTO_OX response uses the following format. The response header is followed by an array
of status reports, one for each crypto unit targeted in the command request. Each status report provides
information on the result of the requested operation. Because there is no crypto unit ID, the virtual CPU
ID is carried in the status report. The crypto unit status reports have the following format:

Offset Size Field name Description
0 4 cpuid Virtual CPU ID
4 4 result Result of the operation
8 4 status Status of the crypto unit

30.11.11. DR_CRYPTO (K result codes

Ther esul t field in the per crypto unit response record conveys the result of the requested operation for
that crypto unit. The result codes are defined as follows:

Name Value Definition

DR _CRYPTO RES K 0x0 Operation succeeded
DR_CRYPTO RES FAI LURE 0x1 Operation failed
DR_CRYPTO_RES BAD CPU 0x2 CPU not inthe MD

DR _CRYPTO RES BAD CRYPTO 0x3 Crypto unit not in the MD

30.11.12. DR CRYPTO OK status codes

The st at us field in the per crypto unit response record conveys the configuration status for the targeted
crypto unit. The status codes are defined as follows:

Name Value Definition
DR _CRYPTO _STAT _NOT_PRESENT 0xO0 Crypto unit does not exist in the MD

DR_CRYPTO _STAT_UNCONFI GURED 0x1 Crypto unit exists in the MD, but is not configured
for use by the guest

DR _CRYPTO STAT CONFI GURED 0x2 Crypto unit is configured for use by the guest

299

Domain services

30.11.13. DR Crypto Error Response

The message type DR_CRYPTO_ERRORs returned as the response to a malformed request message. No
additional payload is provided.

30.11.14. Operational Overview
30.11.14.1. Offlining a Crypto Unit

When the LDom manager decides to offline a crypto unit (or multiple crypto units), it will build
DR_CRYPTO_UNCONFI Gdomain service messages, including alist of virtual CPU IDs, each associated
with the specific crypto unit being taken offline. This message must be sent and acknowledged in advance
of any change to the machine description.

The domain service peersin the guest must guarantee that all jobs have completed for that crypto unit and
that no additional work will be scheduled before responding successfully.

30.11.14.2. Onlining a Crypto Unit

When the LDom manager decides to online a crypto unit, if it is a new crypto unit, the guest must first
gets an MD update which includes information about the new crypto unit.

Once that has occurred, the LDom manager will build DR_CRYPTO_CONFI Gdomain service messages,
including alist of virtual CPU IDs, each associated with the specific crypto unit being brought online.

The domain service peersin the guest will re-read the MD and configure in the new crypto unit based on
thevirtual CPU IDsincluded inthe DR_CRYPTO_CONFI Gmessage payload. Once the configuration has
completed, the response will be returned to the LDom manager.

30.12. Variable Configuration version 1.0

The Variable Configuration capability provides the ability for a guest to update the LDom variable store
that is managed by the LDom manager or SP.

30.12.1. Service IDs

There are two service |Ds defined to support LDom variable updates, one that describes aprimary service
and one that describes a backup service. In the event that the primary service is not available, the guest
can fall back to using the backup service. The backup service uses the identical protocol as the primary
service but is subordinate in priority to the primary service.

Implementation Note: The LDom manager provides the primary service. In the case where the LDom
manager has not been started, or is not currently running, variable updates can be communicated to the
SP using the backup service. OpenBoot in the control domain will use the backup service sincethe LDom
manager will not be running. OpenBoot in al other domains will use the primary service as long as the
LDom manager is available.

Thefollowing service | Ds should should be added to the Domain Servicesregistry for the LDom variables

capability.
ServicelD Description
"var-config" Primary LDoms variable management
"var - confi g- backup” Secondary L Doms variable management

300

Domain services

30.12.2. Message Header

Offset Size Field name Description
0 4 cnd Command

30.12.3. Message types

Thefollowing constantsare defined for V ariabl e Configuration domain service command identifier values:

Name Value Definition

VAR_CONFI G_SET_REQ 0x0 Request setting avariable
VAR _CONFI G_DELETE_REQ 0x1 Request deleting avariable
VAR_CONFI G_SET_RESP 0x2 Response to a set request
VAR_CONFI G DELETE_RESP 0x3 Response to a del ete request

30.12.4. Set Variable Payload

The set command updates the variable in the store. If the variable already existsin the store, the new value
replaces the old value. If the variable does not exist in the store, it is added.

The Variable Configuration header is followed by two NUL-terminated strings. The first represents the
name of the variable to set. The second represents the value to set it to.

Offset Size Field name Description
0 variable name Name of variable to set
variable variable val ue Value of variable

30.12.5. Delete Variable Payload

The delete command removes a variable from the store. The Variable Configuration header is followed
by one NUL-terminated string. The string represents the name of the variable to delete.

Offset Size Field name Description
0 variable nane Name of variable to delete

30.12.6. Response Payload

Responses to set and delete commands share the same format. The Variable Configuration header is fol-
lowed by the following response payload:

Offset Size Field name Description
0 4 resul t Result of operation

30.12.6.1. Response Result Codes

The result field in the response payload details the result of the requested operation. The result codes are
defined asfollows:

Name Value Definition
VAR _CONFI G_SUCCESS 0x0 Operation succeeded

301

Domain services

Name Value Definition

VAR_CONFI G_NO_SPACE 0x1 Variable store is full
VAR_CONFI G_I NVALI D_VAR 0x2 Invalid variable format

VAR CONFI G_| NVALI D_VAL 0x3 Invalid value format
VAR_CONFI G_ VAR _NOT _PRESENT 0ox4 Variable not present to delete

30.13. Security key domain service version 1.0

The Security Key storage domain service provides the ability for aguest to update the Security Key storage
that is managed by the LDom manager or system controller (SC) (aka service processor).

30.13.1. Service IDs

There are two service |Ds defined to support Security key storage, one that describes a primary service
and one that describes a backup service. In the event that the primary service is not available, the control
domain can fall back to using the backup service. The backup service uses the identical protocol as the
primary service but is subordinate in priority to the primary service.

ServicelD Description
"keyst ore" Primary security key management
"keyst or e- backup” Secondary security key management

Programming Note

The LDom manager typically provides the primary service and the SC can provide the backup
service. For example, OpenBoot in the Control Domain can use the backup service to the SC as
the LDom manager will typically not be running when OpenBoot is active. All other domains
will use the primary service as long as the LDom manager is available.

30.13.2. Message Header

Offset Size Field name Description
0 4 cnd Command

30.13.3. Message types

The following constants are defined for Security Key Store domain service command identifier values:

Name Value Definition
KEYSTORE_SET_REQ 0x0 Request setting a security key
KEYSTORE_DELETE REQ 0x1 Request deleting a security key
KEYSTORE_SET_RESP 0x2 Response to a set request
KEYSTORE _DELETE RESP 0x3 Response to a del ete request

30.13.3.1. Set keystore Payload

The set command updates the security key in the store. If the security key already exists in the store, the
new value replaces the old value. If the security key does not exist in the store, it is added. The Security
Key header isfollowed by two NUL-terminated strings. The first represents the name of the Security Key
to set. The second represents the value to set it to.

302

Domain services

Offset Size Field name Description
0 variable nane Name of security key to set
variable variable val ue Value of security key

30.13.3.2. Delete keystore Payload

The delete command removes a Security Key from the store. The Security Key header isfollowed by one
NUL-terminated string. The string represents the name of the Security Key to delete.

Offset

Size

Field name Description

0

variable

nane Name of security key to delete

30.13.4. Response Payload

Responses to set and delete commands share the same format. The Security Key header is followed by

the following response payload:

Offset

Size

Field name Description

0

4

result

Result of operation

30.13.4.1. Response Result Codes

Ther esul t field in the response payload details the result of the requested operation. The result codes
are defined as follows:

Name Value Definition
KEYSTORE_SUCCESS 0x0 Operation succeeded
KEYSTORE_NO_SPACE 0x1 Security key storeisfull

KEYSTORE_|I NVALI D_NAME 0x2
KEYSTORE_| NVALI D_VAL 0x3
KEYSTORE_NOT_PRESENT Ox4

Invalid security key name format
Invalid security key value format
Security key not present to delete

30.14. PRI Domain Service 1.0

The PRI isintended to contain various kinds of information about a system. Much of thisinformation has

previously been contained in the Machine Description (MD). The PRI domain service will facilitate access
to thisinformation from the Control Domain.

The SC will generate the PRI and send PRI Update Messages containing the PRI to the Control domain
using domain service. The messages will generally be sent when the initial domain service registration
occurs. They may a so be sent asynchronously on a channel when the PRI is updated by the SC. Control

domain will respond to the PRI update message by sending a PRI update response. See following sections
for the details.

30.14.1. Service ID

ServicelD
“pri-update"

Description

PRI update domain service

303

Domain services

30.14.2. PRI Update Message

Offset Size Field name Description
0 8 pri _msgnum M essage number
8 8 pri_size Size of the PRI data
16 variable pri PRI data
30.14.3. PRI Update Response
Offset Size Field name Description
0 8 pri _msgnum Message humber responding to
8 8 st at us Status of PRI update

30.14.4. pri_msgnum

Thepri _nmsgnumisthe message number in the PRI Update header which is amonotonically increasing
number that uniquely identifies each message. Responses to messages are expected to use the same mes-
sage number so that they can be paired with their original message.

New messages may be issued without waiting for a response to a preceding message. The underlying
transport protocol is responsible to ensure reliable, in-order and unduplicated message packets.

Messages are to be processed in the order received.

30.14.5. Response Status Codes

Name Value Definition

PRI _UPDATE_ACK 0x0 PRI successfully received and verified
PRI _UPDATE_I NVALI D_MSG 0x1 Message payload invalid

PRI _UPDATE_I NVALI D_PRI 0x2 PRI format invalid

30.15. System Info version 1.0

The System Information capability provides for the ability to query various system information, such as
POSIX utsname strings. It is anticipated that this service may be expanded as needed in the future to
support such areas as, for example, Solaris sysinfo and Solaris kstats.

30.15.1. Service ID

ServicelD

Description

"systeminfo"

Guest system information queries

30.15.2. Message header

Offset Size

Field name Description

0 4

cnd Command

304

Domain services

30.15.3. Message types

The following constants are defined for System Information domain service command identifier values.

Name Value Definition
SYS | NFO GET_REQ 0x0 Request to get system information
SYS | NFO_GET_RESP Ox1 Response to a “get” request

30.15.4. Get Information Payload

The Get Information header is followed by a variable number of NUL-terminated strings. Each string
represents a specific piece of system information to return. The following are the supported strings:

Name Description

"ut s-sysnane" utsname.sysname
"ut s- nodenane" utsname.nodename
"uts-rel ease” utsname.release
"uts-version" utsname.version
"ut s- machi ne" utsname.machine

Note that the string values returned should be identical to what is provided by the POSIX uname(1) user
command. Non-POSIX compliant guest systems may choose to support any of these items if they are

appropriate.
30.15.5. Get Information Response Payload

Response to the Get Information request is a message with the Get Information header followed by the
following response payload. In the event that no datum names were identified, the result field will be
SYS | NFO_I NVALI D_NAME and the num_pairs field will be zero. If multiple datum names were pro-
vided and not al of them were matched, the result field will be SYS | NFO_SUCCESS and the number
of datum names matched will bein the num pai r s field and their corresponding name/value pairs will
bein the nane/val ue fields. Each datum name and datum value will be a NUL-terminated string.

Offset Size Field name Description

0 4 result Result of Operation

4 4 numpairs Number of name/value pairs returned

8 variable namel Name of first datum
variable variable val uel value of first datum
variable variable nanen Name of n'th datum
variable variable val uen value of n'th datum

30.15.6. Response Result Codes

Theresult field in the response payload details the results of the requested operation. The result codes are
defined asfollows:

Name Value Definition
SYS | NFO_SUCCESS 0x0 Operation succeeded
SYS | NFO | NVALI D NAME Ox1 Invalid datum name supplied

305

Domain services

30.16. SNMP service version 1.0

This case describes the domain service interface through which a client communicates with the system
controller (SC) (aka service processor) using the SNMP protocol. This service can be used to access en-
vironmental data and other information that may be exported from the system controller. Thisinformation
can be dynamically updated— it is the responsibility of a guest operating system to monitor and provide
access to thisinformation to it's users if so desired. Such presentation interfaces are beyond the scope of
this document.

Each of the SNMP Messages consists of a header and a payload. The headers are defined by this specifi-
cation and the payloads consist of data encoded according to the SNMP protocol, as defined by a number
of IETF RFCs. The SNMP protocol versions supported and their message formats are not part of this
specification. The version support is negotiated between the guest operating system'sdriver and the SNMP
Agent resident on the SC. The SNMP PDUs are simply encapsulated by the SNMP Domain Servicethat is
the subject of this specification. The length of the SNMP PDU is encoded in the message itself and is not
part of the header. It is |eft to the consumers at the endpoints on this domain service to send and receive
and detect properly formed SNMP messages. The domain service described below isversion 1.0.

30.16.1. Service ID

ServicelD Description
"snmp" SNMP domain service

30.16.2. Message header

Offset Size Field name Description
0 8 nunber M essage number
8 8 type Message type
16 variable payl oad M essage-dependent payload

All SNM P messages have the same header format consisting of amessage nunber and amessaget ype.

The message nunber isamonotonically increasing number that uniquely identifies each message. Re-
sponses to messages are expected to use the same message humber so that they can be paired with their
original message. The message number may also be used to distinguish between multiple instances of the
same message type.

New messages may be issued without waiting for a response to a preceding message. The underlying
transport protocol is responsible for ensuring reliable, in-order and unduplicated message packets.

Messages are to be processed in the order received.
30.16.3. Message types

The messaget ype isused to distinguish the different message types. There are three typesdefined in this
initial version of the protocol specification.

Name Value Definition

SNVP_REQUEST 0x0 SNMP request to an SNM P agent
SNWVP_REPLY Ox1 Message from an SNMP agent
SNVP_ERROR 0x2 Error message fro an SNMP agent

306

Domain services

30.16.3.1. SNMP Request Message

An SNVP_REQUEST messageis sent by the client carrying a payload to be delivered to the SNMP agent.
The message nunber value will be used in the SNMP_REPLY message sent in response to this request.
The messaget ype field should indicate an SNVP_ REQUEST.

The payl oad field has avariable length depending on the SNMP data sent as part of the request.

30.16.3.2. SNMP Reply Message

An SNVP_REPLY messageis sent by the server in responseto arequest fromtheclient. It carriesapayload
whose content is determined by the SNM P agent acting on the request.

Thenumber field containsthe valuein the nunber field of the original request being serviced.
The messaget ype field should indicate an SNMP_REPLY.

The payl oad field has avariable length depending on the SNMP data.

30.16.3.3. SNMP Error Message

An SNVP_ERROR message is sent by the server in response to a request from the client that cannot be
serviced. These include errors such as being unable to contact the SNMP Agent or timing out waiting for
areply from the SNMP agent.

The SNVP_ ERROR message has no payload.

The message nunber field contains the value in the message nunber field of the request that could not
be serviced.

The messaget ype field should indicate an SNMP_ ERROR.

30.17. Domain Suspend service version 1.0

30.17.1.

30.17.2.

The Domain Suspend domain service alows Solaris to initiate a domain suspend operation at the request
of the domain manager. Thisis required for Cooperative Guest migration wherein the guest initiates the
suspend operation by calling into the hypervisor. Existing Warm Migration makes use of CPU DR to
reduce adomain to 1-strand before the hypervisor pauses the domain. In order to eliminate CPU DR from
migration and to eliminate other restrictions on Warm Migration, Solaris on the guest will call into the
hypervisor to initiate suspension of the domain. Hypervisor calls to support the guest initiated suspend
are described in: Section 12.1.5, “mach_suspend”, Section 13.2.11, “cpu_tick_npt”, and Section 13.2.12,
“cpu_stick_npt”.

Service ID

ServicelD Description

"domai n- suspend"” Sequence a suspend operation on the domain

Domain Suspend Request

Offset Size Field name Description
0 8 reqg_num Request number

307

Domain services

Offset Size Field name Description
8 8 type Message type

Only one message type is supported and therefore there is only one valid value for thet ype field. How-
ever, at ype field isused to allow for more reguest types to be added in the future without changing the
request format.

30.17.3. Message types

Name Value Definition
DOVAI N_SUSPEND_SUSPEND 0x0 Request to suspend

30.17.3.1. Domain Suspend Reply Message

Offset Size Field name Description
0 8 reg_num Request number
8 4 result Result of operation
12 4 rec_result Result of recovery operation
16 variable reason_result NUL-terminated ASCI|I string
describing reason for error

The NUL-terminated reason string is limited to 512 charactersin length, including the NUL terminator.

When the reason field begins with its first byte being the NUL terminator, it is said to be set to the empty
string.

30.17.3.2. Domain Suspend response result values

Thefollowing constants are defined for the suspend serviceresponser esul t andr ec_resul t values.

Result values:

Name Value Definition

DOVAI N_SUSPEND PRE_SUCCESS 0x0 Pre-suspend success

DOVAI N_SUSPEND_PRE_FAI LURE 0x1 Pre-suspend failure

DOVAI N_SUSPEND _| NVALI D_MSG 0x2 Therequest isinvalid

DOVAI N_SUSPEND | NPROGRESS 0x3 Existing suspend isin progress
DOVAI N_SUSPEND_FAI LURE 0x4 Suspend failure

DOVAI N_SUSPEND _POST_SUCCESS 0x5 Post-suspend success

DOVAI N_SUSPEND POST_FAI LURE 0x6 Post-suspend failure

Recovery Result values:

Name Value Definition
DOVAI N_SUSPEND_REC_SUCCESS 0x0 Recovery success
DOVAI N_SUSPEND REC FAI LURE 0x1 Recovery falure

For responses with a result value of DOVAI N_SUSPEND PRE_FAI LURE,
DOMAI N_SUSPEND_FAI LURE, or DOVAI N_SUSPEND_POST_FAI LURE, the reason field

308

Domain services

may be populated with a NUL-terminated string describing the reason for the fail-
ure. This is optionA and when a NUL-terminated reason string is not provid-
ed, the reason fild must must be set to the empty string. For al other
response messages (DOMAI N_SUSPEND PRE_SUCCESS, DOVAI N_SUSPEND | NVALI D_MSG,
DOMAI N_SUSPEND_| NPROGRESS, and DOVAI N_SUSPEND_POST_SUCCESS) ther eason field is
not used and should be set to the empty string.

For responses with a result value of DOMAI N_SUSPEND PRE FAI LURE
or DOMAI N SUSPEND FAILURE the rec_result must be set to either
DOVAI N_SUSPEND REC SUCCESS or DOVAI N_SUSPEND REC FAI LURE. For al other
response messages (DOVAI N_SUSPEND PRE_SUCCESS, DOVAI N_SUSPEND | NVALI D_MSG
DOVAI N_SUSPEND_| NPROGRESS, and DOVAI N_SUSPEND_POST_SUCCESS, and
DOVAI N_SUSPEND_POST_FAI LURE) therec_resul t field is not used and its value should be
DOVAI N_SUSPEND _REC_SUCCESS.

30.17.4. Domain Suspend request handling
30.17.4.1. Invalid Request

Upon receiving a suspend domain request, the guest domain will confirm that the request
is a DOVAI N SUSPEND SUSPEND request type. If the request has a type field other
than DOVAI N_SUSPEND_ SUSPEND, the guest will send a response message with result value
DOVAI N_SUSPEND | NVALI D_MsGand ar eq_numequal to request r eq_numand then take no fur-
ther action in response to the message.

30.17.4.2. Suspend in Progress

If the request is a valid DOVAI N_SUSPEND_SUSPEND request, but the guest is already pro-
cessing a suspend request, the guest will send a response message with result value
DOVAI N_SUSPEND | NPROGRESS and r eq_numvalue equal to ther eq_numreceived in the newer
request. The guest will take no further action in response to the message.

30.17.4.3. Pre-suspend

The guest will then perform any pre-suspend processing which results in either success or fail-
ure. In the event of success, the guest will send a response message with result vaue
DOVAI N_SUSPEND PRE_SUCCESS and a r eq_numvaue equa to the request r eq_num In the
event of failure, the guest will undo any partial pre-suspend processing that successfully completed and
then send a response message with result value DOVAI N_SUSPEND_PRE_FAI LURE, ar eq_numval-
ue equal to the request r eq_num and optionally a NUL-terminated r eason string describing the rea-
son for the failure. If the partial pre-suspend processing is successfully undone, ther ec_resul t field
will be set to DOVAI N_SUSPEND_REC_SUCCESS. Otherwise, ther ec_resul t field will be set to
DOVAI N_SUSPEND_REC_FAI LURE. The guest will then take no further action in response to the re-
guest. Theintent hereisfor the user to be presented with awarning message derived from the reason field
indicating that the pre-suspend processing failed and (if applicable) that a particular recovery operation
failed. If a recovery operation failed, the user must then inspect the guest domain and take any action
required to cleanup after failed recovery.

30.17.4.4. Suspend

Next, after the guest sends the DOVAI N_SUSPEND PRE_SUCCESS response, it will attempt to suspend
itself using the hypervisor interface described in Section 12.1.5, “mach_suspend” which results in either
success or failure. In the event of success, the guest will be suspended and will do no further processing
until it isresumed.

309

Domain services

Implementation Note

Although not described here, an out-of-band mechanism exists allowing the domain manager to
guery the state of the domain and to determine when the guest has successfully suspended itself.
It is expected that the domain manager will monitor the guest state until the guest state indicates
that the guest is suspended OR until a DOVAI N_SUSPEND_FAI LURE response s received.

In the event that the guest fails to suspend, the guest will undo the pre-suspend processing and
then send a response message with r esul t value DOVAI N_SUSPEND_FAI LURE, ar eq_numval-
ue equal to the request r eq_num and optionally a NUL-terminated r eason string describing the
reason for the failure. If the pre-suspend processing is successfully undone, the rec_resul t field
will be set to DOMAI N_SUSPEND REC SUCCESS. Otherwise, therec_resul t field will be set to
DOVAI N_SUSPEND_REC_FAI LURE. The guest will then take no further action in response to the re-
guest. Theintent hereisfor the user to be presented with awarning message derived from the reason field
indicating that the suspend operation failed and (if applicable) that a particular recovery operation failed.
If arecovery operation failed, the user would then inspect the guest domain and take any action required
to cleanup after failed recovery.

30.17.4.5. Resume and Post-suspend

After the guest has successfully suspended itself by calling into the hypervisor, the domain manager per-
forms an out-of-band operation to resume the domain.

After the guest has been resumed, the guest will perform any post-suspend processing which results in
either successor failure. In the event of success, the guest will send aresponse messagewithr esul t value
DOVAI N_SUSPEND_POST_SUCCESS and ar eq_nhumvalue equal to therequest r eq_num The guest
will then take no further action in response to the request and the suspend operation will have completed
successfully, leaving the domain in anormal state. In the event of failure, the guest will send aresponse
message with r esul t value DOVAI N_SUSPEND POST_FAI LURE, ar eq_numyvalue equal to the
request r eq_num and optionally aNUL -terminated r eason string describing the reason for the failure.
The guest will then take no further action in response to the request. At this point, the guest is operational,
subject to how thefailing post-suspend processing leavesthe guest. Theintent isfor the user to be presented
with awarning message, derived from the reason string, indicating that the domain was resumed, but that a
particular post-suspend operation failed. The user would then inspect the guest domain and take any action
required to cleanup after failed post-suspend processing.

30.17.5. Message Sequences

The following sections describe the possible message sequences.

30.17.5.1. Sequence 1 (failure)

-> Request: (reg_numn, type: Invalid)
<- Response: (reg_numn, result:DOVAI N_SUSPEND | NVALI D_MsSG
rec_result: DOMVAI N SUSPEND REC SUCCESS, reason:0)

30.17.5.2. Sequence 2 (failure)

-> Request: (reqg_numn, type: DOVAI N_SUSPEND SUSPEND)
<- Response: (req_numn, result:DOVAI N _SUSPEND | NPROGRESS
rec_result: DOVAI N SUSPEND REC SUCCESS, reason: 0)

310

Domain services

30.17.5.3. Sequence 3 (failure)

-> Request: (req_numn, type: DOVAI N_SUSPEND SUSPEND)

<- Response: (reqg_numn, result:DOVAI N PRE SUSPEND FAl LURE,
rec_result: DOVAI N_SUSPEND REC SUCCESS,
reason: [optional string])

30.17.5.4. Sequence 4 (failure)

-> Request: (reqg_numn, type: DOVAI N_SUSPEND SUSPEND)

<- Response: (reqg_numn, result:DOVAI N PRE SUSPEND FAl LURE,
rec_result: DOVAI N_SUSPEND REC FAI LURE,
reason: [optional string])

30.17.5.5. Sequence 5 (failure)

-> Request: (req_numn, type: DOVAI N_SUSPEND SUSPEND)
<- Response: (reqg_numn, result:DOVAI N SUSPEND PRE SUCCESS, reason: O0)
<- Response: (req_numn, result:DOVAI N SUSPEND FAI LURE,

rec_result: DOVAI N_SUSPEND REC SUCCESS,

reason: [optional string])

30.17.5.6. Sequence 6 (failure)

-> Request: (req_numn, type: DOVAI N_SUSPEND SUSPEND)
<- Response: (reqg_numn, result:DOVAI N SUSPEND PRE SUCCESS, reason: O0)
<- Response: (req_numn, result:DOVAI N SUSPEND FAI LURE,

rec_result: DOVAI N_SUSPEND REC FAI LURE,

reason: [optional string])

30.17.5.7. Sequence 7 (suspend success, post-suspend failure)

-> Request: (req_numn, type: DOVAI N_SUSPEND SUSPEND)
<- Response: (reqg_numn, result:DOVAI N SUSPEND PRE SUCCESS, reason: O0)
-- [suspend and resune occurs]
<- Response: (req_numn, result:DOVAI N SUSPEND POST_FAI LURE,
rec_result: DOVAI N_SUSPEND REC SUCCESS,
reason: [optional string])

30.17.5.8. Sequence 8 (success)

311

Domain services

-> Request: (req_numn, type: DOVAI N_SUSPEND SUSPEND)

<-

<-

Response: (reqg_numn, result: DOVAI N SUSPEND PRE_SUCCESS,

[suspend and resunme occurs]

Response: (reg_numn, result: DOVAI N SUSPEND POST_SUCCESS,
rec_result: DOVAI N _SUSPEND REC SUCCESS,
reason: 0)

reason:

0)

312

Chapter 31. Diagnostic services

Guests may be allowed to invoke their own diagnostic code with hypervisor privileges. Such codeis often
used for bring-up, verification, and error injection purposes. It is expected that these services will only
be used internally at Sun.

The hypervisor will disallow the services defined here unless explicitly configured otherwise. The diag-
nostic code may destabilize the entire platform, including other guests, asit runswithout restriction. There
areno air bags.

31.1. APl calls
31.1.1. diag_ra2pa

trap# FAST_TRAP
function# DI AG_RA2PA
argo ra

ret0 st at us

retl pa

Trandates aguest's real addressinto the underlying platform's physical address.

Thisisrequired to specify the diagnostic codeinvoked by thedi ag_hexec call aswell asto passpointers
to guest data structures to the diagnostic code.

It isnot guaranteed that the entire span of an object isphysically-contiguoussimply becauseit iscontiguous
in the real address space. Care must be taken when using code or data larger than the smallest page size

the platform supports.

31.1.1.1. Errors
ENOACCESS Guest not permitted to invokedi ag_r a2pa
ENORADDR Invalid real addressr a

31.1.2. diag_hexec

trap# FAST_TRAP
function# DI AG_HEXEC
arg0 codepa

retO st at us

Invokes diagnostic code located at physical address codepa at the next higher trap level. The diagnostic
code executes in a hyperprivileged environment.

The caller may specify other arguments and the invoked code may return other return values. The code
isrun in the hyperprivileged, processor-specific environment of the underlying hardware. Arguments that
are guest pointers (virtual or real) will have to be converted to physical addresses using di ag_r a2pa
prior to invoking this service.

The diagnostic code is expected to execute a SPARC v9 done instruction to return to the caller. How or
if the code returns cannot be enforced by the hypervisor.

313

Diagnostic services

If the guest is not permitted to makethiscall thenr et 0 will contain ENOA CCESS. Otherwisetheinvoked
diagnostic code is expected to set r et O appropriately.

31.1.2.1. Errors

ENOACCESS Guest not permitted to invokedi ag_hexec

314

Appendix A. Number Registry

Thisappendix provides aregistry of APl services, their assigned trap and function numbers, and currently
defined version groups and version numbers.

A.1l. APl Groups

The definitions of the API groupings for the versioning API (Chapter 11, API versioning) are as follows:

TableA.1. API Groups

Group Group# Definition
Common 0x000 sundv platform
Common 0x001 Core APIs
Common 0x002 Interrupt APIs
Common 0x003 Guest Soft State

0x004 Reserved

Technology 0x100 PCI
Technology 0x101 Logical Domain Channels
Technology 0x102 Service Channels
Technology 0x103 Niagara Crypto Services
Technology 0x104 Niagara Random Number Generator
Common 0x105 Parallel Boot Services
Common 0x106 Sundv FMA Support Services
Technology 0x107 Trusted Platform Module (TPM) Services
Technology 0x108 Reserved for PCI Static Direct 1/0 and PCle IOV
Technology 0x109 Reserved for PCI Static Direct I/O Trivial Error Model
Common 0x110 Reboot Data Services
Performance Measurement 0x200 UltraSPARC-T1 performance counters
Performance Measurement 0x201 Fire PCI performance counters
Performance Measurement 0x202 UltraSPARC-T2 performance counters
Performance Measurement 0x203 UltraSPARC-T2 PIU performance counters
Technology 0x204 UltraSPARC-T2 NIU Services
Performance Measurement 0x205 UltraSPARC-T2+ performance counters
Performance Measurement 0x209 UltraSPARC-T3 performance counters
Performance Measurement 0x20a UltraSPARC-T3 1OS performance counters
Common 0x20e Globa De-Map
Test & Development 0x300 Platform-specific optional test interfaces

A.2. Hyper-fast Trap numbers

For hyper-fast traps, the sw_trap _numbers are encoded in the Tcc instruction that enters the hypervisor.

315

Number Registry

The use of unassigned trap numbers result in EBADTRAP being returned in %00 as described in section
2.3.

A.3. FAST_TRAP Function numbers

Function numbers for fast-traps are provided in %05 as a 64-bit value.

The use of unassigned function numbers used for fast-traps result in EBADTRAP being returned in %00
as described in section 2.3.

A.4. CORE_TRAP Function numbers

CORE_TRAP APIs are defined and guaranteed present for all sundv hypervisor versions.

A.5. Summary of trap and function numbers

These APIsfollow the same calling conventions as FAST_TRAP API services. Four CORE_TRAP func-

tions are currently defined as follows:

API_VERSION
See Section 11.1.1, “api_set_version”

API_PUTCHAR
an aliasfor FAST_TRAP function CONS_PUTCHAR, see Section 18.1.2, “cons_putchar”

API_EXIT
an aliasfor FAST_TRAP function MACH_EXIT, see Section 11.1.2, “api_get_version”

API_GET_VERSION

defined in Section 11.1.2, “api_get_version”

Table A.2. Trap and Function numbers

Trap# | Func# Group# Verst# Name Reference

0x80 — — — FAST _TRAP

0x83 — 0x001 1.0 MMU_MAP_ADDR Section 14.8.6
0x84 — 0x001 1.0 MMU_UNMAP_ADDR Section 14.8.8
0x85 — 0x001 10 TTRACE_ADDENTRY Section 21.3.5
Oxff — — — CORE_TRAP

0x80 0x00 0x001 1.0 MACH_EXIT Section 12.1.1
0x80 0x01 0x001 1.0 MACH_DESC Section 12.1.2
0x80 0x02 0x001 1.0 MACH_SIR Section 12.1.3
0x80 0x05 0x001 11 MACH_SET_WATCHDOG Section 12.1.4
0x80 0x10 0x001 1.0 CPU_START Section 13.2.1
0x80 0x11 0x001 11 CPU_STOP Section 13.2.2
0x80 0x12 0x001 10 CPU_YIELD Section 13.2.5
0x80 0x13 reserved reserved

0x80 0x14 0x001 1.0 CPU_QCONF Section 13.2.6
0x80 0x15 0x001 1.0 CPU_QINFO Section 13.2.7
0x80 0x16 0x001 1.0 CPU_MYID Section 13.2.9

316

Number Registry

Trap# | Func# Group# Verst Name Reference
0x80 0x17 0x001 10 CPU_STATE Section 13.2.10
0x80 0x18 0x001 1.0 CPU_SET_RTBA Section 13.2.3
0x80 0x19 0x001 10 CPU_GET_RTBA Section 13.2.4
0x80 0x20 0x001 1.0 MMU_TSB_CTXO0 Section 14.8.1
0x80 0x21 0x001 10 MMU_TSB_CTXNONO Section 14.8.2
0x80 0x22 0x001 1.0 MMU_DEMAP_PAGE Section 14.8.3
0x80 0x23 0x001 10 MMU_DEMAP_CTX Section 14.8.4
0x80 0x24 0x001 1.0 MMU_DEMAP_ALL Section 14.8.5
0x80 0x25 0x001 10 MMU_MAP_PERM_ADDR Section 14.8.7
0x80 0x26 0x001 1.0 MMU_FAULT_AREA_CONF Section 14.8.10
0x80 0x27 0x001 10 MMU_ENABLE Section 14.8.11
0x80 0x28 0x001 1.0 MMU_UNMAP_PERM_ADDR Section 14.8.9
0x80 0x29 0x001 10 MMU_TSB_CTXO0_INFO Section 14.8.12
0x80 Ox2a 0x001 1.0 MMU_TSB_CTXNONO_INFO Section 14.8.13
0x80 0x2b 0x001 10 MMU_FAULT_AREA_INFO Section 14.8.14
0x80 0x31 0x001 1.0 MEM_SCRUB Section 15.1.1
0x80 0x32 0x001 10 MEM_SYNC Section 15.1.2
0x80 0x42 0x001 1.0 CPU_MONDO_SEND Section 13.2.8
0x80 0x50 0x001 1.0 TOD_GET Section 17.1.1
0x80 0x51 0x001 1.0 TOD_SET Section 17.1.2
0x80 0x60 0x001 10 CONS_GETCHAR Section 18.1.1
0x80 0x61 0x001 1.0 CONS_PUTCHAR Section 18.1.2
0x80 0x62 0x001 11 CONS_READ Section 18.1.3
0x80 0x63 0x001 11 CONS WRITE Section 18.1.4
0x80 0x70 0x001 10 SOFT_STATE_SET Section 19.1.1
0x80 0x71 0x001 1.0 SOFT_STATE_GET Section 19.1.2
0x80 0x80 0x102 1.0 SVC_SEND
0x80 0x81 0x102 1.0 SVC_RCV
0x80 0x82 0x102 10 SVC_GETSTATUS
0x80 0x83 0x102 1.0 SVC_SETSTATUS
0x80 0x84 0x102 1.0 SVC_CLRSTATUS
0x80 0x90 0x001 1.0 TTRACE_BUF_CONF Section 21.3.1
0x80 0x91 0x001 10 TTRACE_BUF_INFO Section 21.3.2
0x80 0x92 0x001 1.0 TTRACE_ENABLE Section 21.3.3
0x80 0x93 0x001 10 TTRACE_FREEZE Section 21.3.4
0x80 0x94 0x001 1.0 DUMP_BUF_UPDATE Section 20.1.1
0x80 0x95 0x001 10 DUMP_BUF_INFO Section 20.1.2
0x80 0xa0 0x002 1.0 INTR_DEVINO2SY SINO Section 16.3.1

317

Number Registry

Trap# | Func# Group# Verst Name Reference
0x80 Oxal 0x002 10 INTR_GETENABLED Section 16.3.2
0x80 0xa2 0x002 1.0 INTR_SETENABLED Section 16.3.3
0x80 Oxa3 0x002 10 INTR_GETSTATE Section 16.3.4
0x80 Oxa4 0x002 1.0 INTR_SETSTATE Section 16.3.5
0x80 Oxab 0x002 10 INTR_GETTARGET Section 16.3.6
0x80 Oxab 0x002 1.0 INTR_SETTARGET Section 16.3.7
0x80 Oxa7 0x002 20 VINTR_GETCOOKIE Section 16.2.1
0x80 Oxa8 0x002 2.0 VINTR_SETCOOKIE Section 16.2.2
0x80 0xa9 0x002 20 VINTR_GETENABLED Section 16.2.3
0x80 Oxaa 0x002 20 VINTR_SETENABLED Section 16.2.4
0x80 Oxab 0x002 20 VINTR_GETSTATE Section 16.2.5
0x80 Oxac 0x002 2.0 VINTR_SETSTATE Section 16.2.6
0x80 Oxad 0x002 20 VINTR_GETTARGET Section 16.2.7
0x80 Oxae 0x002 20 VINTR_SETTARGET Section 16.2.8
0x80 |OxbO |0x100 1.1 PCI_IOMMU_MAP Section 23.4.1
0x80 Oxbl 0x100 1.0 PCI_IOMMU_DEMAP Section 23.4.2
0x80 0xb2 0x100 11 PCI_IOMMU_GETMAP Section 23.4.3
0x80 0xb3 0x100 1.0 PCI_IOMMU_GETBYPASS Section 23.4.4
0x80 Oxb4 0x100 1.0 PCI_CONFIG_GET Section 23.4.5
0x80 0xb5 0x100 1.0 PCI_CONFIG_PUT Section 23.4.6
0x80 0xb6 0x100 10 PCI_PEEK Section 23.4.7
0x80 0xb7 0x100 1.0 PCI_POKE Section 23.4.8
0x80 0xb8 0x100 1.0 PCI_DMA_SYNC Section 23.4.9
0x80 0xco 0x100 1.0 PCI_MSIQ_CONF Section 24.4.1
0x80 Oxcl 0x100 10 PCI_MSIQ_INFO Section 24.4.2
0x80 0xc2 0x100 1.0 PCI_MSIQ_GETVALID Section 24.4.3
0x80 Oxc3 0x100 10 PCI_MSIQ _SETVALID Section 24.4.4
0x80 Oxc4 0x100 1.0 PCI_MSIQ GETSTATE Section 24.4.5
0x80 0xc5 0x100 10 PCI_MSIQ SETSTATE Section 24.4.6
0x80 0xcé 0x100 1.0 PCI_MSIQ_GETHEAD Section 24.4.7
0x80 |Oxc7 |0x100 1.0 PCI_MSIQ SETHEAD Section 24.4.8
0x80 0xc8 0x100 1.0 PCI_MSIQ GETTAIL Section 24.4.9
0x80 0xc9 0x100 10 PCI_MSI_GETVALID Section 24.4.10
0x80 Oxca 0x100 1.0 PCI_MSI_SETVALID Section 24.4.11
0x80 Oxcb 0x100 1.0 PCI_MSI_GETMSIQ Section 24.4.12
0x80 Oxcc 0x100 1.0 PCI_MSI_SETMSIQ Section 24.4.13
0x80 Oxcd 0x100 10 PCI_MSI_GETSTATE Section 24.4.14
0x80 Oxce 0x100 1.0 PCI_MSI_SETSTATE Section 24.4.15

318

Number Registry

Trap# | Func# Group# Verst Name Reference
0x80 0xdo 0x100 10 PCI_MSG_GETMSIQ Section 24.4.16
0x80 Oxd1 0x100 1.0 PCI_MSG_SETMSIQ Section 24.4.17
0x80 0xd2 0x100 10 PCI_MSG_GETVALID Section 24.4.18
0x80 Oxd3 0x100 1.0 PCI_MSG_SETVALID Section 24.4.19
0x80 0xe0 0x101 10 LDC_TX_QCONF Section 22.4.1
0x80 Oxel 0x101 1.0 LDC_TX_QINFO Section 22.4.2
0x80 |Oxe2 |Ox101 1.0 LDC_TX_GET_STATE Section 22.4.3
0x80 0xe3 0x101 1.0 LDC_TX_SET_QTAIL Section 22.4.4
0x80 Oxed 0x101 10 LDC_RX_QCONF Section 22.4.5
0x80 0xe5 0x101 1.0 LDC_RX_QINFO Section 22.4.6
0x80 |Oxe6 |Ox101 1.0 LDC_RX_GET _STATE Section 22.4.7
0x80 Oxe7 0x101 1.0 LDC_RX_SET_QHEAD Section 22.4.8
0x80 Oxea 0x101 10 LDC_SET_MAP_TABLE Section 22.5.1
0x80 Oxeb 0x101 1.0 LDC_GET_MAP_TABLE Section 22.5.2
0x80 Oxec 0x101 1.0 LDC_COPY Section 22.5.3
0x80 Oxed 0x101 11 LDC _MAPIN Section 22.5.4
0x80 Oxee 0x101 11 LDC_UNMAP Section 22.5.5
0x80 Oxef 0x101 11 LDC_REVOKE Section 22.5.6
0x80 0xf8 0x108 10 PCI_1OV_ROOT_CONFIGURED Section 23.5.2.1
0x80 0xf9 0x108 1.0 PCI_REAL_CONFIG_GET Section 23.5.2.2
0x80 Oxfa 0x108 10 PCI_REAL_CONFIG_PUT Section 23.5.2.3
0x80 Oxff 0x109 1.0 PCI_ERROR_SEND Section 23.5.2.4
0x80 0x100 |0x200 10 NIAGARA_GET_PERFREG Section 27.1.1
0x80 0x101 |0x200 1.0 NIAGARA_SET_PERFREG Section 27.1.2
0x80 0x102 |0x200 10 NIAGARA_MMUSTAT_CONF Section 27.2.2
0x80 0x103 |0x200 1.0 NIAGARA_MMUSTAT_INFO Section 27.2.3
0x80 0x104 |0x202 10 NIAGARA2_GET_PERFREG Section 27.4.4
0x80 0x105 |0x202 1.0 NIAGARA2_SET_PERFREG Section 27.4.5
0x80 0x106 |0x205 10 VFALLS GET_PERFREG Section 27.5.9
0x80 0x107 |0x205 1.0 VFALLS GET_PERFREG Section 27.5.8
0x80 0x111 |0x103 2.0 NCS_QCONF Section 25.2.3
0x80 0x112 |0x103 2.0 NCS_QINFO Section 25.2.4
0x80 0x113 |0x103 20 NCS GETHEAD Section 25.2.5
0x80 0x114 |0x103 20 NCS GETTAIL Section 25.2.7
0x80 0x115 |0x103 2.0 NCS_SETTAIL Section 25.2.8
0x80 0x116 |0x103 2.0 NCS_QHANDLE_TO_DEVINO Section 25.2.9
0x80 0x117 |0x103 20 NCS SETHEAD_MARKER Section 25.2.6
0x80 0x118 |0x103 21 NCS _ULQCONF Section 25.2.10

319

Number Registry

Trap# | Func# Group# Verst Name Reference
0x80 0x120 |0x201 10 FIRE_GET_PERFREG Section 27.3.2
0x80 0x121 |0x201 1.0 FIRE_SET_PERFREG Section 27.3.3
0x80 0x122 |0x209 1.0 KT_GET_PERFREG Section 27.6.5
0x80 0x123 | 0x209 1.0 KT_SET_PERFREG Section 27.6.6
0x80 0x130 |0x104 10 RNG_GET_DIAG_CONTROL Section 25.1.12.1
0x80 0x131 |0x104 1.0 RNG_CTL_READ Section 25.1.12.2

2.0 RNG_CTL_READ Section 25.1.9
0x80 0x132 |0x104 1.0 RNG_CTL_WRITE Section 25.1.12.3
20 RNG_CTL_WRITE Section 25.1.10
0x80 0x133 |0x104 1.0 RNG_DATA_READ_DIAG Section 25.1.12.4
20 RNG_DATA_READ DIAG Section 25.1.11
0x80 0x134 |0x104 1.0,2.0 |RNG_DATA_READ Section 25.1.8
0x80 0x140 |0x203 10 N2PIU_GET_PERF_REG Section 27.4.7
0x80 0x141 |0x203 1.0 N2PIU_SET_PERF_REG Section 27.4.8
0x80 [0x142 |0x204 1.0 N2NIU_RX_LP SET Section 26.4.1
2.0 N2NIU_RX_LP_SET Section 26.6.1
0x80 0x143 |0x204 10 N2NIU_RX_LP_GET Section 26.4.2
20 N2NIU_RX_LP_GET Section 26.6.2
0x80 [0x144 |0x204 1.0 N2NIU_TX_LP_SET Section 26.4.3
2.0 N2NIU_TX_LP_SET Section 26.6.1
0x80 0x145 |0x204 10 N2NIU_TX_LP_GET Section 26.4.4
20 N2NIU_TX_LP_GET Section 26.6.2
0x80 0x146 |0x204 10 N2NIU_VR_ASSIGN Section 26.5.1.1
2.0 N2NIU_VR_ASSIGN Section 26.6.3.1
0x80 0x147 |0x204 1.0,2.0 |N2NIU_VR_UNASSIGN Section 26.5.1.2
0x80 0x148 |0x204 1.0,2.0 |N2NIU_VR_GETINFO Section 26.5.1.3
0x80 [0x149 |0x204 1.0,2.0 |[N2NIU_VR RX_DMA_ASSIGN Section 26.5.2.1
0x80 Ox14a |0x204 1.0,2.0 |[N2NIU_VR_RX_DMA_UNASSIGN Section 26.5.2.2
0x80 0x14b |0x204 1.0,2.0 |N2NIU_VR_TX_DMA_ASSIGN Section 26.5.2.1
0x80 Ox14c |0x204 1.0,2.0 |N2NIU_VR_TX_DMA_UNASSIGN Section 26.5.2.2
0x80 [Ox14d |0x204 1.0,2.0 |[N2NIU_VR GET_RX_MAP Section 26.5.2.3
0x80 Ox14e |0x204 1.0,2.0 |[N2NIU_VR_GET_TX_MAP Section 26.5.2.3
0x80 0x150 |0x204 1.0,2.0 |N2NIU_VRRX_SET_INO Section 26.5.2.4
0x80 0x151 |0x204 1.0,2.0 |N2NIU_VRTX_SET_INO Section 26.5.2.4
0x80 0x152 |0x204 1.0,20 |N2NIU_VRRX_GET_INFO Section 26.5.2.5
0x80 0x153 |0x204 1.0,2.0 |[N2NIU_VRTX_GET_INFO Section 26.5.2.5
0x80 0x154 |0x204 1.0,2.0 |N2NIU_VRRX_LP_SET Section 26.5.2.6
0x80 0x155 |0x204 1.0,2.0 |N2NIU_VRRX_LP_GET Section 26.5.2.7

320

Number Registry

Trap# | Func# Group# Verst Name Reference
0x80 0x156 |0x204 1.0,2.0 |N2NIU_VRTX_LP_SET Section 26.5.2.6
0x80 0x157 |0x204 1.0,2.0 |N2NIU_VRTX_LP_GET Section 26.5.2.7
0x80 0x158 |0x204 10,20 |N2NIU_VRRX_PARAM_GET Section 26.5.3.1
0x80 0x159 |0x204 1.0,2.0 |[N2NIU_VRRX_PARAM_SET Section 26.5.3.2
0x80 Ox15a |0x204 1.0,2.0 |N2NIU_VRTX_PARAM_GET Section 26.5.3.1
0x80 0x15b |0x204 1.0,2.0 |N2NIU_VRTX_PARAM_SET Section 26.5.3.2
0x80 0x165 |0x20a 10 KT_IOS GET_PERFREG Section 27.6.8
0x80 0x166 |0x20a 1.0 KT_IOS_SET_PERFREG Section 27.6.9
0x80 0x170 |0x105 10 MACH_PRI Section 12.1.6
0x80 0x171 |0x110 1.0 MACH_REBOOT_DATA_GET Section 12.1.9
0x80 0x172 |0x110 10 MACH_REBOOT_DATA_SET Section 12.1.8
0x80 0x176 |0x107 1.0 TPM_GET Section 25.3.2.1
0x80 0x177 |0x107 10 TPM_PUT Section 25.3.2.2
0x80 0x178 |0x105 1.0 MACH_VARS Section 12.1.7
0x80 0x181 |Ox1 12 MACH_SUSPEND Section 12.1.5
0x80 0x182 |0x1 12 CPU_TICK_NPT Section 13.2.11
0x80 0x183 |0x1 1.2 CPU_STICK_NPT Section 13.2.12
0x80 0x1la2 |0x20e 1.0 MMU_GLOBAL_DEMAP_PAGE Section 14.8.15
0x80 |Ox1a3 |Ox20e 1.0 MMU_GLOBAL_DEMAP_CTX Section 14.8.16
0x80 Oxlad4 |0x20e 1.0 MMU_GLOBAL_DEMAP_ALL Section 14.8.17
0x80 Oxla5 |0x20e 10 MMU_GLOBAL_DEMAP_STATUS Section 14.8.18
0x80 0x200 |0x300 1.0 DIAG_RA2PA Section 31.1.1
0x80 0x201 |0x300 1.0 DIAG_HEXEC Section 31.1.2
Oxff 0x00 — — API_SET_VERSION Section 11.1.1
Oxff 0x01 — — CONS _PUTCHAR Section 18.1.2
Oxff 0x02 — — MACH_EXIT Section 12.1.1
Oxff 0x03 — — API_GET_VERSION Section 11.1.2

A.6. Error codes

When a hypervisor API returns, unless explicitly described by the API service, the 64-bit value in %00

will be one of the following error identification values.

Table A.3. Error codes

Value Mnemonic Description
0 EOK Successful return

1 ENOCPU Invalid CPU ID

2 ENORADDR Invalid real address

3 ENOINTR Invalid interrupt ID

321

Number Registry

Value Mnemonic Description

4 EBADPGSZ Invalid page size encoding

5 EBADTSB Invalid TSB description

6 EINVAL Invalid argument

7 EBADTRAP Invalid function number

8 EBADALIGN Invalid address alignment

9 EWOULDBLOCK Cannot complete operation without blocking

10 ENOACCESS No access to specified resource

11 EIO 1/O error

12 ECPUERROR CPU isin the error state

13 ENOTSUPPORTED Function is not supported

14 ENOMAP No mapping found

15 ETOOMANY Too many items specified or limit reached

16 ECHANNEL Invalid LDC channel

17 EBUSY Operation failed because resource is otherwise busy
18 EPENDING A long-running operation was started and the corresponding

status function needs to be called

322

Servicesregistry.

TableB.1. Domain Services

Appendix B. Domain Service Registry

This table lists the capabilities described in this document, and which need to be added to a Domain

Service Description Reference

agent-device Guest device information
agent-dio Direct 1/0O agent
agent-system Guest system information
asr Primary ASR management service
asr-backup Secondary ASR management service
domain-panic Request a panic Section 30.7
domain-shutdown Request a graceful shutdown Section 30.6
domain-suspend Domain Suspend service Section 30.17
dr-cpu Dynamic Reconfiguration for CPUs Section 30.8
dr-mem Dynamic Reconfiguration for memory Section 30.9
dr-vio Dynamic Reconfiguration for virtual 1/0 Section 30.10
dr-crypto-mau Dynamic Reconfiguration for MAU devices | Section 30.11
dr-crypto-cwq Dynamic Reconfiguration for CWQ devices | Section 30.11
fma-cpu-service CPU Onlineg/Oflline service for fault manage-

ment
fma-io-domain-service 1/O service for fault management
fma-mem-service Memory retire service for fault management
fma-pri-service Domain Manager service for retrieving the

PRI
fma-phys-cpu-service Physical CPU Online/Offline service for fault

management
fma-phys-mem-service Physical Memory retire/resurrect service for

fault management
fw-progress-state Primary FW Progress State
keystore Primary keystore for WANboot service Section 30.13
keystore-backup Secondary keystore for WANboot service Section 30.13
md-update Notification of MD updates Section 30.5
pm-rm Power-Management Resource Manager
pri-update Notification of PRI updates Section 30.14
snmp SNMP service Section 30.16
system-info Guest System Information Section 30.15
var-config Primary LDom variable management Section 30.12
var-config-backup Secondary L Dom variable management Section 30.12

323

Appendix C. Physical Resource
Inventory

C.1. Introduction

Thisisthe specification for the Physical Resource Inventory (PRI). The PRI isintended to contain physical
information about a system. Much of thisinformation had previously been contained in the Machine De-
scription (M D) provided to the guest. With the advent of Logical Domains (LDoms), it becomes essential
to have a clean separation between the physical and virtual views of a system. To achieve this, much of
the physical information isno longer part of the M D within aguest domain. This providesastrictly virtual
view of the system within an LDom.

However, besides the System Controller (SC), other management entities (e.g. FMA, the LDom Manag-
er) still require a physical view of the system. This is now provided by the PRI. The PRI includes the
physical information which is no longer available in the MD (needed by FMA to perform diagnosis). It
alsoincludes additional information necessary for the LDom Manager to configure and manage individual
logical domains, including acting as a template for the LDom Manager to construct MDs for the various
logical domainsit is managing.

The PRI is provided by the System Controller (SC) to the domain. The PRI contains physical information
about system resources in aformat identical to that used by the guest MD. The names for the nodes and
properties used to accessthat information are defined to be platform independent, asare many of the values.
Some of the values may be platform-dependent and may require additional documentation to parse them.

The PRI may be updated at anytime on the SC depending on the state of its resources. Protocols and
transports may be agreed upon with thedomain for delivering the PRI toit sothat it may usetheinformation
for activities such as configuring LDOM guest domains or diagnosing error data.

One of the primary consumers of the PRI on the domain isthe LDOM Manager. It usesthe PRI to generate
guest MDs by extracting information from it that serves as a template for new domains. The PRI may
contain any of the nodes and properties that may be found in aguest MD on a system. For thisreason, this
case imports al past and future cases that specify new nodes or properties for the guest MD that may be
used on asystem. Since future cases cannot be explicitly imported, any new casesthat arise should specify
that they apply to both the guest MD and the PRI.

In addition to containing the information needed by the LDOM Manager for creating guest MDs, the PRI
also supplies the information it needs to generate the hypervisor data needed to boot a set of configured
guest domains. This hypervisor data may include information about either the SC or other firmware com-
ponents that it needs to know about. Some items in this specification in this category include the LDC
endpoints and host prom information.

Another of the primary consumers of the PRI are FMA modules such as diagnosis engines. There is a
requirement to provide additional information in the PRI so that FMA may make diagnoses and act on
them through fault, repair or logging actions. To enable this, the PRI contains system-wide information
that may not be available in the guest MD in the domain on which FMA modules are running. As an
example, FMA modules running in the control domain (the single domain running the LDOM Manager)
may handle ereports generated for resources owned by other guest domains in the system. It may access
the PRI to get information it needs to diagnose and act on data in the ereports. For more background, see
the FWARC case 2006/141 FMA Domain Services.

In addition to the requirements spelled out in the FMA Domain Services case, there is a requirement to
add additional information to the PRI so that FMA may generate reports with more specific details about

324

Physical Resource Inventory

components that have been diagnosed faulty. Some of this information is available in a FRUID present
on the component or on another component that is proxying the information. It is the responsibility of the
SC to derive this information for components present on a system and to populate the relevant property
valuesin the PRI.

The PRI also represents how components are contained within other componentsin a hierarchical fashion
inthe system. Each component can beidentified asaFRU or not based on aproperty. The parent component
that contains each component can also be found by following an arc property back to it. Based on this,
for any component in a system, its closest parent component that is a FRU can be found so that it may
be replaced if faulty. There should be only one parent component for each component, but a component
may have multiple children componentsif they are all physically contained by it. The idea of a component
physically containing another component is meant to indicate how they may be removed or replaced and
is determined on a platform-specific basis.

FMA also uses the hierarchy of the components node to build the FM topology in Solaris. The hierarchy
encoded into the PRI directly tranglates to the resulting topology in Solaris. In addition to hierarchy, new
properties have been added to guide how topology is enumerated in the OS.

C.2. Root Node

Name: r oot
Category: core
Required subordinates: conponent s (Section C.3, “Components Node”)

This node is the top-most node of the PRI.
C.2.1. PRI version property

Name Tag Required?
pri-version PROP_STR yes

This is the version string for the PRI. Format of string is “<x>.<y>", where “<x>" denotes the decimal
major version number and “<y>" denotes the decimal minor version number. In this context, major and
minor version numbers connote incompatible and compatible changes respectively, as defined in the API
versioning interface specified by FWARC 2005/499 and documented in the API versioning chapter (Chap-
ter 11, API versioning). The currently defined versionis"1.0".

C.3. Components Node

Name: conponent s
Category: core
Required subordinates: component (Section C.4, “Component Node”)

This node is the parent of all component nodes and has a back arc to the root node.
C.3.1. Power Management (PM) versioning property

Name Tag Required?
pm ver si on PROP_STR yes

The version string for the content of the Power Management related information in the PRI. The currently
defined versionis“1.0".

325

Physical Resource Inventory

C.4. Component Node

Name: conponent

Category: resource required

Required subordinates:

Optional subordinates: component (Section C.4, “Component Node”)

The component nodes represent physical entitiesin the system in order to provide component information
and system topology to the domain.

C.4.1. type Property

Name Tag Required?
type PROP_STR yes

This property contains the type of the component. Only types that have been submitted with an ARC case
should be present.

The currently acceptable values for thet ype property include:
pr oduct The product.
chassi s A system chassis.

systenmboard A system board.

di mm A single memory DIMM.
processor A physical processor that islogically a single agent on the system interconnect fabric.

It may contain several processor cores or strands.

core A physical processor core.

sp A service processor.

strand A physical strand in a processor.
mem board A physical memory board.

cpu- board A physical cpu board.

io An 1/O device such as a switch, bridge, slot, or leaf device.

C.4.1.1. Type-specific property requirements
The following requirements hold for component nodes of these types:

For processors that have multiple cores, the f wd property of the processor type node should link to a core
type node. For core type nodes, the f wd property should link to a strand type node. If there are multiple
component nodes for multiple processors in the system, this can be used to determine which processor a
core ison, and which core astrand is on.

Any type of node may have ani d property. Thei d property must be unique within a set of nodes with
the same t opo- hc- nane value as well as immutable across system reset events. In addition, for root

326

Physical Resource Inventory

complex 10 nodes (i.e. nodes whoset opo- hc- nane valueis “hostbridge”), thei d property is further
constrained to have whatever platform-specific binding is required for this value to denote a unique and
persistent root complex ID. This property isrequired for nodes that do not set thet opo- ski p property.
Grandfather clause: i d isalways required for strand, mem-board, and cpu-board nodes.

Any type of node may have a nac property. A nac property is required for component nodes that are
FRUSs (f r u property = Ox1).

An io type node may have a pat h property, as described below. For io nodes describing XAUI cards,
the pat h property isrequired.

Any type of node may set thet opo- hc- nane property. This property isrequired for nodes that do not
set thet opo- ski p property. The property is also required, irrespective of thet opo- ski p setting, for
io nodes that describe XAUI cards.

Any type of node may set thet opo- ski p property. For io nodes describing XAUI cards, this property
must be set to a non-zero value.

Nodes representing aroot complex must use at opo- hc- nane of "hostbridge" and set the pat h prop-
erty. The previous requirements for setting the cf g- handl e property for a node representing a root
complex is now deprecated.

Nodes representing a root port must use at opo- hc- nanme of "pciexrc”. This apparent misnomer is
intentional, as it follows the convention established on the x64 platforms.

The product and chassis type nodes must have serial_number properties.

Any typenodethatisaFRU (f r u =0x1) arerequiredtoincludetheseri al _nunber,part nunber,
rev_nunber,and dash_nunber properties.

The components node must provide at opo- hc- nane hierarchy of hostbridge/pciexrc. No intervening
nodes are allowed. Failure to comply will result in a Solaris-side FM topology that does not support PCIE
fabric diagnosis. The node hierarchy above the hostbridge is arbitrary per platform.

For platforms wishing to employ the sundv platform-independent SPARC cpu diagnosis engine, one of
the following nodes must be present: processor, core, or strand. One, some or all can be used. The most
logical hierarchy is processor/core/strand.

For platforms wishing to employ the sundv platform-independent SPARC memory diagnosis engine, the
followingt opo- hc- nane hierarchy must be provided in the components node: chip/memory-buffer OR
memory-controller/memory-buffer. No intervening nodes are allowed. The node hierarchy above or below
isarbitrary per platform.

For platforms wishing to employ diagnosis of a faulted service processor, at opo- hc- nane hierarchy
of chassis/sp must be provided in the components node. Furthermore, the node describing the “sp” must
be tagged as a FRU.

For platforms wishing to employ diagnosis of internal hard disks, io nodes describing hard drive bays (e.g.
nac = “HDD#") must specify at opo- hc- name of “bay” and thei d property. Thei d property must
match the physical identification (i.e. HDDOisid 0, HDD1 isid 1, etc.).

C.4.2. nac Property

Name Tag Required?
nac PROP_STR yes

327

Physical Resource Inventory

C.4.3.

C.4.4.

C.4.5.

C.4.6.

C.A4.7.

C.4.8.

This property contains the NAC for the component, as described in the system nomenclature document
for the system. It may appear in any type of component node. It is only required for nodes that are FRUs
(f r u =0x1).

fru Property

Name Tag Required?
fru PROP_VAL no

This property is present and has avalue of 1 if the component isa FRU.

serial_number Property
Name Tag Required?
serial _nunber PROP_STR no

This property contains the component serial number contained in the FRUID. It isrequired for “ product”
and “chassis’ type nodes and nodes that are that are FRUs (f r u = Ox1).

part_number Property

Name Tag Required?
part_nunber PROP_STR yes

This property contains the component part number contained in the FRUID. It is only required for nodes
that are FRUs (f r u = Ox1).

rev_number Property

Name Tag Required?
rev_nunber PROP_STR yes

This property contains the component rev number contained in the FRUID. It is only required for nodes
that are FRUs (f r u = Ox1).

dash_number Property

Name Tag Required?
dash_nunber PROP_STR yes

This property contains the component dash number contained in the FRUID. It is only required for nodes
that are FRUs (f r u = Ox1).

id Property
Name Tag Required?
id PROP_STR yes

This property contains the physical id (physical with respect to the system) of aresource in the system. It
isrequired for all nodes, except those that sett opo- ski p to anon-zero value. Thei d property must be
unique within a set of nodes with the samet opo- hc- nane value. In other words, no two nodes where
t opo- hc- nane="dimm” can havethesamei d value, but anodewitht opo- hc- nane="dimm” and
anodewitht opo- hc- name="cpu” can have the samei d value.

328

Physical Resource Inventory

C.4.9. path Property

Name Tag Required?
pat h PROP_STR yes

This property contains the canonical path of an 1/O device, composed of its full device path with de-
vice names removed. It is required on nodes where thet opo- hc- nanme property is set to “hostbridge”,
“pciexrc”, “bay” or “xaui”.

It ispossibleto find the FRU parent of an 1/0 device by performing a search beginning with its parent and
continuing through its ancestry until reaching a component node with af r u property with value of 1.

C.4.10. label Property

Name Tag Required?
| abel PROP_STR no

This property is currently only defined to appear in dimm type component nodes. It will contain the “J’
number that is silk-screened on the board next to the dimm dlot.

C.4.11. name Property

Name Tag Required?
name PROP_STR no

This property is a human readable string describing the component. Examples are “CPU Chip 0", “CPU
Chip 0 CoreQ”, and “Strand 1”.

C.4.12. pm_resource Property

Name Tag Required?
pm_resource PROP_STR no

Thisproperty indicatesthe type of resourcethat will stop carrying load if the resource has been transitioned
to a state that yields zero performance. Possible values are: “CPU", “10", etc. It is consumed by the PM
Engine.

C.4.13. pm_states Property

Name Tag Required?
pm st at es PROP_DATA no

This property encodes multiple string tuples. Within each tuple are two elements; the first element de-
scribes the performance value at the power state which is described by the second element. Performance
values are in units of 0.1%.

Examples are,
For “strand” type nodes,

pmstates = {
"0 Parked",

329

Physical Resource Inventory

"1000 Unparked"

For “core’ type nodes,

pmstates = {
"0 Di sabl ed",
"1000 Enabl ed"

1
For “processor” type nodes,

pmstates = {
"125 One- Ei ght h_Speed",
"250 One-Fourth_Speed",
" 375 Three-Ei ght hs_Speed"”,
"500 Hal f_Speed",
"625 Five- Ei ght hs_Speed",
"750 Three-Fourths_Speed”,
"875 Seven- Ei ght hs_Speed",
"1000 Full _Speed"

C.4.14. pm_cookie Property

Name Tag Required?
pm _cooki e PROP_STR no
This property encodes a string. The string is a resource identifier that is consumed by the PM Engine.
Each string consists of a space-delineated set of tokens, which taken together describe an instance of a
particular resource type. For pm-version 1.0, each string is a tuple describing a resource type and a type-
specific identifier. Examplesare“F 0", “C 3", and “S 12”.

C.4.15. pm_dependency Property

Name Tag Required?
pm dependency PROP_STR no

This property describes the power dependencies between the component and its children. It is consumed
by the PM Engine. An example value is “ StrictParental Performance”.

C.4.16. pm_coordination Property

Name Tag Required?
pm coor di nati on PROP_STR no

This property describes the power dependencies between the component and its peers. It is consumed by
the PM Engine. An example value is “NeedOne Defragment”.

330

Physical Resource Inventory

C.4.17. pm_mapping Property

Tag Required?

PROP_STR no

Name
pm_nmappi ng
This property describes the mapping from the component to the identity in the LDom manager's name

space of the resource upon which a reconfiguration operation may be required prior to transitioning the
component to zero performance state, or after transitioning the component out of zero performance state.

An examplevaueis*“cpu 77, which means:

* cpu known to the LDom manager as (physical) cpu 7

» when the PM Engine sets the component into or out of the zero performance state, reconfiguration can
be effected by asking the LDom manager to reconfigure cpu 7 prior to or after the power state transition.

C.4.18. topo-hc-name Property

Tag Required?

Name
PROP_STR yes

t opo- hc- nane
This property containsthe FM libtopo hc canonical namestring for anode. It isused by Solarisenumerators
when instantiating a topology. The value of t opo- hc- nane must be an approved name per FMA's hc
scheme ([fmahc]). It is required for all nodes that do not use/set t opo- ski p. It isaso required on io
nodes describing XAUI cards, irrespective of that node'st opo- ski p value.

C.4.19. topo-skip Property

Tag Required?

Name
PROP_VAL sometimes

t opo-skip
When this property ispresent and hasanon-zero integer value, the sundv platform-independent enumerator

will not create FM topology nodes for this node or any of its children. This property can be used on any
type of node. This property is required and must be anon-zero value for io nodes describing XAUI cards.

C.4.20. assignable-path Property

Tag Required?

PROP_STR no

Name
assi gnabl e- path
For a PCI-e assignable device (one where ownership can be transferred to another guest domain), this
defines the path of the assignable unit. This path is similar to, but not identical to, the pat h property
defined in Section C.4.9, “ path Property”.

C.4.21. pm_power Property

Tag Required?

PROP_DATA no

Name
pm_power
This property encodes multiple string tuples. Within each tuple are two elements: The first element de-

scribes the performance value for a Processor power state. The second element is an encoded string of
Cores powered on and the power consumed by those Cores at the given Processor power state.

331

Physical Resource Inventory

For example, using thefirst entry below: At full chip speed, 3 cores enabled consumes 500 Watts, 2 cores
enabled consumes 400 Watts, and 1 core enabled consumes 50 Waitts.

pm power = {
"500 3.475;2.225;1.20",
"1000 3.500; 2. 400; 1. 50"

C.5. Firmware Node

C.5.1.

C.5.2.

C.5.3.

C.5.4.

C.5.5.

Name: firnmnare
Category: core
Required subordinates: read_only_nenory (Section C.6, “Read Only_Memory Node")

This node contains information describing firmware constraints needed by the LDOM Manager for con-
figuring guest domains.

max_guests Property

Name Tag Required?
mex_guest s PROP_VAL yes

This property describes the maximum number of guests that the firmware supports.
max_hv_ldcs Property

Name Tag Required?
max_hv_| dcs PROP_VAL yes

This property describes the maximum number of hypervisor LDC endpoints that the hypervisor supports.
max_guest_ldcs Property

Name Tag Required?
max_guest | dcs PROP_VAL yes

This property describes the maximum number of guest L DC endpoints that the hypervisor supports.

max_guest_dependencies Property
Name Tag Required?
max_guest _dependenci es PROP_VAL no

Thisproperty describes the maximum number of guest dependencies (per guest) that the firmware supports.
If not present, should be treated as 0.

directio_capability Property

Name Tag Required?
directio_capability PROP_VAL no

332

Physical Resource Inventory

This property indicates that the platform and this version of firmware are capable of supporting Static
Direct |/O PCl-e virtualization.

C.6. Read_Only Memory Node

Name: read_only nenory
Category: core
Required subordinates: rom i ng (Section C.7, “Rom_Img Node")

This node contains information about the contents of read-only memory on the system, such as the host
or system PROM.

C.6.1. name Property

Name Tag Required?

nanme PROP_STR yes

This property contains a human readable string for identifying the read-only memory that this node rep-
resents. For example, “System PROM” may be used to indicate that this is the PROM for the system
firmware.

C.6.2. base Property

Name Tag Required?
base PROP_VAL yes

This property contains the base address of the read-only memory in the system address space.
C.6.3. size Property

Name Tag Required?
si ze PROP_VAL yes

This property contains the size of the read-only memory in bytes.

C.7. Rom_Img Node

Name: rom.ing
Category: core
Required subordinates:

This node contains information about a firmware component in read-only memory.
C.7.1. name Property

Name Tag Required?
name PROP_STR yes
This property contains a human readable string for identifying this firmware image in the read-only mem-

ory. For example, “Openboot” may be used to indicate that this image is the OpenBoot image used to
boot the guest.

333

Physical Resource Inventory

C.7.2. offset Property
Tag Required?
PROP_VAL yes

Name
of f set

This property contains the offset into read-only memory of this firmware image.

C.7.3. size Property
Tag Required?
PROP_VAL yes

Name
si ze

This property contains the size of the firmware image in bytes.

C.7.4. alignment Property
Tag Required?
PROP_VAL no

Name
al i gnnment

This property contains any memory alignment requirements of the firmwareimage, for placing that image
in memory so that it runs and boots successfully.

C.7.5. min_allocation Property
Tag Required?
PROP_VAL no

Name
m n_al |l ocation

This property contains any minimum memory allocation requirements of the firmware image.

C.7.6. guest_use Property
Tag Required?
PROP_VAL no

Name
guest _use

This property indicates that this firmware image is suitable for use as the start-up image for a guest.

C.8. Ldc_Endpoints Node

Name: | dc_endpoi nts

Category: core
Required subordinates: | dc_endpoi nt (Section C.9, “Ldc_Endpoint Node”)

This node aggregates fwd arc links to all the ldc_endpoint nodes needed by the LDOM Manager for gen-
erating the information hypervisor needs to configure itsinternal data structuresto route packets between

LDC channel endpoints.

C.9. Ldc_Endpoint Node

Name: | dc_endpoi nt

Category: core

334

Physical Resource Inventory

Required subordinates:

This node contai ns the information hypervisor needsto configure itsinternal data structuresto route pack-
ets between LDC channel endpoints.

C.9.1. resource_id Property

Name Tag Required?
resource_id PROP_VAL yes
This property contains a unique id for each Idc_endpoint node.

C.9.2. target_type Property
Name Tag Required?
target _type PROP_VAL yes

This property contains a value indicating one of several types of targets that is on the other end of a pair
of LDC endpoints.

Acceptable values are:

0 The target endpoint is a guest
The target endpoint is the hypervisor
The target endpoint is the system controller

C.9.3. channel Property

Name Tag Required?
channel PROP_VAL yes

This property containsthe endpoint id for the channel endpoint this node represents. The channel endpoint
may be owned by a guest, hypervisor or the SP.

C.9.4. target_channel Property

Name Tag Required?
t ar get _channel PROP_VAL yes

This property contains the endpoint id for the target endpoint on the other end of this channel. The target
channel endpoint may be owned by a guest, hypervisor or the SP.

C.9.5. tx-ino and rx-ino Properties

Name Tag Required?
tx-ino PROP_VAL yes
rx-ino PROP_VAL yes

These properties contains the same values as the corresponding t x- i no and r x- i no properties in the
channel - endpoi nt nodeintheguest MD. Thechannel - endpoi nt nodehasani d property value

335

Physical Resource Inventory

matching this | dc_endpoi nt node channel property value. This enables the hypervisor to target
interrupts to the guest LDC endpoint.

C.10. Memory Segments and related nodes

Name: nmenory-segnent s
Category: resource required

Required subordinates: menor y- segnent (Section C.11, “Memory-Segment Node”)

Child of the root node with fwd arcs to the memory-segment nodes.

C.11. Memory-Segment Node

Name: menor y- segnent
Category: resource required

Required subordinates: menor y- bank (Section C.12, “Memory-Bank Node”)

Describes a contiguous memory address range. Its properties define that address range and they link to
child nodes that specify criteriafor locating a physical address in the memory segment to a set of one or

more DIMMs that constitute a memory-bank.
A memory-segment node has the following properties.
C.11.1. base Property

Tag Required?
PROP_VAL yes

Name
base

The base physical address of the range represented by this memory segment.

C.11.2. size Property
Tag Required?
PROP_VAL yes

Name
si ze

The size of the address range represented by this memory segment.

C.12. Memory-Bank Node

Name: menor y- bank
resource required

Category:
conponent (Section C.4, “Component Node”)

Required subordinates:

Contains properties that describe the constraints for determining if a physical addressis located on the set
of one or more DIMMs that comprise this memory bank.

The menor y- bank node has f wd arcs to component nodes with DIMM type properties. The DIMM
type component nodes contain nac properties used to identify the DIMM. If an address belongs to this
memory bank, it islocated on one of the DIMM type component nodes that are linked to by this node.

336

Physical Resource Inventory

C.12.1. size Property

Name Tag Required?
si ze PROP_VAL yes

The size of this memory bank.

C.12.2. mask Property

Name Tag Required?
mask PROP_VAL yes

Thevalue of the mask property islogicaly and'd with aphysical address and the result is compared with
the value in the match property to determine if the physical addressisin thismenor y- bank.

C.12.3. match Property
Name Tag Required?
mat ch PROP_VAL yes

After the value of the mask property isand'd with aphysical address, if the resultant valueis equal to the
value of the mat ch property, the addressis on one of the DIMMs in this memory bank.

C.13. 10 Device node

Name: i odevi ce
Category: optional
Required subordinates:

Optional subordinates: i odevi ce (Section C.13, “10 Device node”), i nt er r upt - map-
ent ry (Section C.14, “Interrupt mapping node”),

Refer to Section 8.25.2, “1/O device node”, the PRI inherits properties from the machine description
i odevi ce- node. Additional propertiesor modificationstoinheritied propertiesarelisted inthissection.

C.13.1. Sun4v to PCI Express root nexus device

See Section 8.25.2.2.1, “ Sundv to PCl Express root nexus device” for inherited properties.

C.13.1.1. rcid Property

Name Tag Required?
rcid PROP_VAL yes

Root complex identifier. Monotonically assigned, the only requirement is that each PCI-e root complex
have aunique identifier.

C.13.2. Generic PCl device properties

See Section 8.25.2.2.2, “ Generic PCI device properties’.

337

Physical Resource Inventory

C.13.3. PCI bridge type device properties

See Section 8.25.2.2.3, “PCl bridge device properties’.

C.13.3.1. chassis-location-name Property

Name Tag Required?

chassi s-1 ocati on- nane PROP_STR no

This property, when present, contains a NAC name string matching a node in the “components” portion
of the PRI graph. This property will exist in the device nodes where a FRU boundary has been crossed in
the PCIE fabric. It will exist in the first device node entry pertaining to the FRU.

This property is only applicable to pcie-switch-upstream and pcie-switch-downstream device types. It is
only for locations within achassis. It does not apply for slot adapters or any sub-frus external to the chassis
itself.

C.13.4. PCl slot type device properties
See Section 8.25.2.2.4, “PCI dot device properties’.
C.13.5. PCI network device properties

See Section 8.25.2.2.5, “PCl network device properties’.

C.13.6. PCI SCSI device properties

See Section 8.25.2.2.6, “PCl SCSI device properties”.

C.14. Interrupt mapping node

Name: i nterrupt-map-entry
Category: optional

Required subordinates:

Optional subordinates:

See Section 8.25.4, “Interrupt mapping node”.

C.15. Power-Management node

Name: power - managenent

Category: core

Required subordinates:

Optional subordinates: menor y- gr oupi ng (Section C.16, “Memory-Grouping Node”)

Thisnodeisachild of root node and its children represent the system topology from a power management
perspective. Devices like memory which can not directly be mapped to component nodes are defined here.

C.16. Memory-Grouping Node

Name: menor y- gr oupi ng

338

Physical Resource Inventory

Category: core
Required subordinates: menor y-r egi on (Section C.17, “Memory-Region Nodg”),
Optional subordinates:

This node represents memory asit is grouped to form a power managesble entity.

C.16.1. id Property

Name Tag Required?
id PROP_VAL yes

This property contains an id which uniquely identifies a memory grouping in the system.
C.16.2. name Property

Name Tag Required?
name PROP_STR yes

This property contains a human readable string to identify a memory grouping.
C.16.3. pm_resource Property

Name Tag Required?
pm_resource PROP_STR yes

Thisproperty indicatesthe type of resourcethat will stop carrying load if the resource has been transitioned
to astatethat yieldszero performance. The string value of this property for memory groupingis“Memory”.
It is consumed by the PM Engine.

C.16.4. pm_states Property

Name Tag Required?
pm st at es PROP_DATA yes

This property encodes multiple string tuples. Within each tuple are two elements; the first element de-
scribes the performance value at the power state which is described by the second element. Performance
values are in units of 0.1%.

Example:

pmstates = {
"30 SlowExit",
"1000 FastExit"

C.16.5. pm_cookie Property

Name Tag Required?
pm_cooki e PROP_STR yes

339

Physical Resource Inventory

Thisproperty encodes astring. The string isaresourceidentifier that is consumed by the PM Engine. Each
string consists of aspace-delineated set of tokens, which taken together describe an instance of aparticular
resource type. A memory grouping with i d value 2 will be represented as string value of “M 2”

C.17. Memory-Region Node

Name: menory-regi on
Category: core

Required subordinates:

Optional subordinates:

This node represents a contiguous memory region within the parent menor y- gr oupi ng.

C.17.1. id Property

Name Tag Required?
id PROP_VAL yes

This property contains an id which uniquely identifies amemory region in the system.
C.17.2. name Property

Name Tag Required?
namne PROP_STR yes

This property containsahuman readable string to identify the memory region and to which memory group-
ing this region belongs.

C.17.3. base Property

Name Tag Required?
base PROP_VAL yes

The base physical address represented by this memory region.
C.17.4. size Property

Name Tag Required?
si ze PROP_VAL yes

The size of this memory region in bytes.

Bibliography

[sparcv9] 0-13-825001-4. David L. Weaver and Tom Germond. Copyright © 1994 SPARC International, Inc.. PTR
Prentice Hall. The SPARC Architecture Manual, Version 9 [http: //mww.spar c.or g/standar ds/SPARCV9.pdf] .

[ua2005] 950-5553-12. Copyright © 2008 Sun Microsystems, Inc.. Sun Microsystems, Inc.. UltraSPARC Architecture
2005 Specification [http://openspar c-t2.sunsour ce.net/specs/UA2007-current-draft-HP-EXT.pdf] . 19 June,
2008. Hyperprivileged Edition.

[ua2005n1] 819-3404-04. Copyright © 2006 Sun Microsystems, Inc.. Sun Microsystems, Inc.. UltraSPARC T1 Sup-
plement to the UltraSPARC Architecture 2005 [http: //openspar c-t1.sunsour ce.net/specs/UST1-UASuppl -cur -
rent-draft-HP-EXT.pdf]. 17 March, 2006.

[ua2007] 950-5553-12. Copyright © 2008 Sun Microsystems, Inc.. Sun Microsystems, Inc.. UltraSPARC Architecture
2007 Soecification [http://openspar c-t2.sunsour ce.net/specs/UA2007-current-draft-HP-EXT.pdf] . 19 June,
2008. Hyperprivileged Edition.

[ua2007n2] 950-5556-02. Copyright © 2006 Sun Microsystems, Inc.. Sun Microsystems, Inc.. UltraSPARC T2 Sup-
plement to the UltraSPARC Ar chitecture 2007 [http: //openspar c-t2.sunsour ce.net/specs/UST2-UASuppl -cur -
rent-draft-HP-EXT.pdf] .

[ua2007n3] Copyright © 2009 Sun Microsystems, Inc.. Sun Microsystems, Inc.. UltraSPARC {KT} Supplement to the
UltraSPARC Architecture 2007 [https://systemsweb.sfbay.sun.convkt/tearm/arch_specs/index.htm].

[ua2009] 950-5554-13. Copyright © 2009 Sun Microsystems, Inc.. Sun Microsystems, Inc.. UltraSPARC Architecture
2009 Soecification. 31 March, 2009. Hyperprivileged Edition.

[pcie2002] Copyright © 2002 PCI SIG. PCI SIG. PCI Express Base Specification Revision 1.0 [http: //www.pcisig.conm/
specifications/pciexpress/specifications/] . 29 April, 2002.

[sundvbind] Sun Microsystems, Inc.. “Sundv Bus Binding to Open Firmware (FWARC 2005/111) [http://
arc.opensolaris.org/casel og/FWARC/2005/111/]". 14 March, 2005.

[l[ddr] Sun Microsystems, Inc.. “Logica Domain Dynamic Reconfiguration Specification [http:/
cpubringup.sfbay.sun.com/twiki/pub/L Doms/ArchDesignPhasel5/dr-design.pdf]”. 21 February, 2006.

[efi] 731843-001. Intel Corp.. “Extensible Firmware Interface Specification [http://developer.intel.com/technolo-
gy/efi/main_specification.htm]”. 12 December, 2000.

[scsi3] INCITST10. “SCSI Standards Architecture [http://www.t10.org/scsi-3.htm]”.

[diskids] Sun Microsystems, Inc.. “PSARC 1995/352 Disk ID [http://sac.sfbay/Archives/Casel og/arc/
PSARC/1995/352/]". 10 April, 1996.

[tpm] Trusted Computing Group. “TPM Specification v1.2 [http://www.trustedcomputinggroup.org/re-
sources/tpm_main_specification]”. 26 October, 2006.

[tpmpc] Trusted Computing Group. “PC Client Work Group PC Specif-
ic Implementation Specification Version 1.1 [http://www.trustedcomputinggroup.org/re-
sources/pc_client_work_group_pc_specific_implementation specification version_11]". 18 Auguest,
2003.

[ofintrmap] Open Firmware Working Group. “Open Firmware Recommended Practice: Interrupt Mapping (v0.9)
[http://playground.sun.com/1275/practice/imap/imap0_9d.pdf]”. 12 July, 1996.

341

http://www.sparc.org/standards/SPARCV9.pdf
http://www.sparc.org/standards/SPARCV9.pdf
http://opensparc-t2.sunsource.net/specs/UA2007-current-draft-HP-EXT.pdf
http://opensparc-t2.sunsource.net/specs/UA2007-current-draft-HP-EXT.pdf
http://opensparc-t2.sunsource.net/specs/UA2007-current-draft-HP-EXT.pdf
http://opensparc-t1.sunsource.net/specs/UST1-UASuppl-current-draft-HP-EXT.pdf
http://opensparc-t1.sunsource.net/specs/UST1-UASuppl-current-draft-HP-EXT.pdf
http://opensparc-t1.sunsource.net/specs/UST1-UASuppl-current-draft-HP-EXT.pdf
http://opensparc-t1.sunsource.net/specs/UST1-UASuppl-current-draft-HP-EXT.pdf
http://opensparc-t2.sunsource.net/specs/UA2007-current-draft-HP-EXT.pdf
http://opensparc-t2.sunsource.net/specs/UA2007-current-draft-HP-EXT.pdf
http://opensparc-t2.sunsource.net/specs/UA2007-current-draft-HP-EXT.pdf
http://opensparc-t2.sunsource.net/specs/UST2-UASuppl-current-draft-HP-EXT.pdf
http://opensparc-t2.sunsource.net/specs/UST2-UASuppl-current-draft-HP-EXT.pdf
http://opensparc-t2.sunsource.net/specs/UST2-UASuppl-current-draft-HP-EXT.pdf
http://opensparc-t2.sunsource.net/specs/UST2-UASuppl-current-draft-HP-EXT.pdf
https://systemsweb.sfbay.sun.com/kt/team/arch_specs/index.html
https://systemsweb.sfbay.sun.com/kt/team/arch_specs/index.html
https://systemsweb.sfbay.sun.com/kt/team/arch_specs/index.html
http://www.pcisig.com/specifications/pciexpress/specifications/
http://www.pcisig.com/specifications/pciexpress/specifications/
http://www.pcisig.com/specifications/pciexpress/specifications/
http://arc.opensolaris.org/caselog/FWARC/2005/111/
http://arc.opensolaris.org/caselog/FWARC/2005/111/
http://arc.opensolaris.org/caselog/FWARC/2005/111/
http://cpubringup.sfbay.sun.com/twiki/pub/LDoms/ArchDesignPhase15/dr-design.pdf
http://cpubringup.sfbay.sun.com/twiki/pub/LDoms/ArchDesignPhase15/dr-design.pdf
http://cpubringup.sfbay.sun.com/twiki/pub/LDoms/ArchDesignPhase15/dr-design.pdf
http://developer.intel.com/technology/efi/main_specification.htm
http://developer.intel.com/technology/efi/main_specification.htm
http://developer.intel.com/technology/efi/main_specification.htm
http://www.t10.org/scsi-3.htm
http://www.t10.org/scsi-3.htm
http://sac.sfbay/Archives/CaseLog/arc/PSARC/1995/352/
http://sac.sfbay/Archives/CaseLog/arc/PSARC/1995/352/
http://sac.sfbay/Archives/CaseLog/arc/PSARC/1995/352/
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/pc_client_work_group_pc_specific_implementation_specification_version_11
http://www.trustedcomputinggroup.org/resources/pc_client_work_group_pc_specific_implementation_specification_version_11
http://www.trustedcomputinggroup.org/resources/pc_client_work_group_pc_specific_implementation_specification_version_11
http://www.trustedcomputinggroup.org/resources/pc_client_work_group_pc_specific_implementation_specification_version_11
http://playground.sun.com/1275/practice/imap/imap0_9d.pdf
http://playground.sun.com/1275/practice/imap/imap0_9d.pdf

Bibliography

[msiprops] Sun Microsystems, Inc.. “MSl Properties (FWARC 2005/030) [http://arc.opensolaris.org/casel-
0g/FWARC/2005/030/materials/msi-props.txt]”. 18 January, 2005.

[vpcierrs] Sun Microsystems, Inc.. “Sundv PCI Error Packet Definitions [http://pciexpress.sfbay.sun.com/fma/docs/
sundv-err.txt]”. 28 May, 2009.

[fmahc] Sun Microsystems, Inc.. “Solaris FMA hc scheme names [http://src.opensolaris.org/source/xref/onnv/on-
nv-gate/usr/src/lib/fm/topo/libtopo/common/topo_hc.h]”.

342

http://arc.opensolaris.org/caselog/FWARC/2005/030/materials/msi-props.txt
http://arc.opensolaris.org/caselog/FWARC/2005/030/materials/msi-props.txt
http://arc.opensolaris.org/caselog/FWARC/2005/030/materials/msi-props.txt
http://pciexpress.sfbay.sun.com/fma/docs/sun4v-err.txt
http://pciexpress.sfbay.sun.com/fma/docs/sun4v-err.txt
http://pciexpress.sfbay.sun.com/fma/docs/sun4v-err.txt
http://src.opensolaris.org/source/xref/onnv/onnv-gate/usr/src/lib/fm/topo/libtopo/common/topo_hc.h
http://src.opensolaris.org/source/xref/onnv/onnv-gate/usr/src/lib/fm/topo/libtopo/common/topo_hc.h
http://src.opensolaris.org/source/xref/onnv/onnv-gate/usr/src/lib/fm/topo/libtopo/common/topo_hc.h

	UltraSPARC Virtual Machine Specification
	Table of Contents
	Preface
	1. Foreward
	2. Related specifications

	Chapter 1. Overview
	1.1. Architectural requirements
	1.2. The hypervisor and sun4v architecture
	1.3. Privilege, isolation and virtualization
	1.4. Direct I/O
	1.5. Logical Domain Channels
	1.5.1. Stateless connections
	1.5.2. LDC security

	1.6. Machine Descriptions
	1.7. Virtual I/O
	1.7.1. Abstraction
	1.7.2. Stateless connections & multipathed I/O
	1.7.3. Virtual disk services
	1.7.4. Scalable virtual networking services
	1.7.5. Virtual I/O Limits

	1.8. Hybrid I/O
	1.9. Logical Domain Manager
	1.9.1. Domain roles
	1.9.1.1. I/O domain
	1.9.1.2. Service domain
	1.9.1.3. Control domain

	1.9.2. Domain dependencies
	1.9.3. Domain manager operation
	1.9.3.1. Constraint engine
	1.9.3.2. Transactional updates
	1.9.3.3. Sequencer

	1.10. Domain service infrastructure
	1.11. OpenBoot firmware
	1.12. Error Handling
	1.13. Advanced LDoms features
	1.13.1. Dynamic reconfiguration
	1.13.2. Logical domain migration

	Chapter 2. Hypervisor call conventions
	2.1. Hyper-fast traps
	2.2. Fast traps
	2.3. Post hypervisor trap processing

	Chapter 3. State Definitions
	3.1. Processor states
	3.2. Initial guest environment
	3.3. Privileged registers
	3.3.1. Non-Privileged Registers
	3.3.2. Ancillary State Registers
	3.3.3. Internal memory-mapped registers
	3.3.4. CPU-specific Registers

	3.4. Other initial guest state

	Chapter 4. Addressing Models
	4.1. Background
	4.2. Address types
	4.3. Address spaces
	4.4. Address space identifiers
	4.4.1. ASI 0x14 & 0x1c: REAL_MEM{_LITTLE}
	4.4.2. ASI 0x15 & 0x1d: REAL_IO{_LITTLE}
	4.4.3. ASI 0x26 & 0x2E: REAL_QUAD{_LITTLE}
	4.4.4. ASI 0x21: MMU
	4.4.4.1. Translation conflicts
	4.4.4.2. Barrier rules

	4.5. Translation mappings
	4.6. MMU Demap support
	4.7. MMU traps
	4.8. MMU fault status area

	Chapter 5. Trap Model
	5.1. Privilege mode trap processing
	5.2. Trap levels
	5.2.1. Privilege mode TL overflow

	5.3. Sun4v privileged-mode trap table

	Chapter 6. Interrupt model
	6.1. Definitions
	6.2. Interrupt reports
	6.3. Interrupt queues
	6.3.1. Queue support registers
	6.3.1.1. *_QUEUE_HEAD and *_QUEUE_TAIL

	6.4. Interrupt traps
	6.4.1. CPU mondo interrupts
	6.4.1.1. Sending CPU mondos
	6.4.1.2. Receiving CPU mondos

	6.4.2. Device mondo interrupts

	6.5. Device interrupts
	6.5.1. Device handles and devinos

	6.6. Sysinos and cookies
	6.6.1. Legacy use (the sysino)
	6.6.2. Interrupt cookies

	Chapter 7. Error model
	7.1. Definitions
	7.2. 7.2 Error classes
	7.2.1. Resumable error
	7.2.2. Non-resumable error

	7.3. Error reports
	7.4. Error queues
	7.4.1. Error Queue Head and Tail Pointers

	7.5. Error traps

	Chapter 8. Machine description
	8.1. Requirements
	8.2. Sections
	8.3. Encoding
	8.4. Header
	8.4.1. Version numbering
	8.4.2. Size fields

	8.5. Name Block
	8.6. Data Block
	8.7. Node Block
	8.7.1. Element format
	8.7.2. Tag definitions

	8.8. Nodes
	8.9. Node definitions
	8.9.1. Node categories

	8.10. Content versions
	8.11. Common data definitions
	8.11.1. String array

	8.12. How to use a machine description
	8.12.1. Using the MD as a list

	8.13. Accelerating string lookups
	8.14. Directed Acyclic Graph
	8.14.1. Graph nodes

	8.15. DAG construction
	8.16. Required nodes
	8.17. The vanilla MD
	8.18. Formation and meaning of a DAG
	8.19. Generic nodes
	8.19.1. Root node
	8.19.1.1. Description
	8.19.1.2. Properties
	8.19.1.3. Programming note

	8.19.2. Cpus node
	8.19.2.1. Description
	8.19.2.2. Properties

	8.19.3. cpu node
	8.19.3.1. Properties

	8.19.4. Memory node
	8.19.4.1. Description
	8.19.4.2. Properties

	8.19.5. Mblock node
	8.19.5.1. Description
	8.19.5.2. Properties

	8.19.6. Platform node
	8.19.6.1. Description
	8.19.6.2. Properties
	8.19.6.3. Programming notes

	8.19.7. Domain services node
	8.19.7.1. Description

	8.19.8. Domain services port node
	8.19.8.1. Description
	8.19.8.2. Properties

	8.20. Memory hierarchy nodes
	8.20.1. Cache node
	8.20.1.1. Description
	8.20.1.2. Properties

	8.20.2. Exec-unit node
	8.20.2.1. Description
	8.20.2.2. Properties
	8.20.2.3. Programming Note

	8.20.3. TLB node
	8.20.3.1. Description
	8.20.3.2. Properties

	8.21. Variables
	8.21.1. Description
	8.21.1.1. Properties

	8.22. Keystore
	8.22.1. Description
	8.22.1.1. Properties

	8.23. Virtual Devices
	8.23.1. Descriptions for virtual devices
	8.23.2. Virtual devices node
	8.23.2.1. Description
	8.23.2.2. Properties

	8.23.3. Channel devices node
	8.23.3.1. Description
	8.23.3.2. Properties

	8.23.4. Virtual device node
	8.23.4.1. Description
	8.23.4.2. Common properties
	8.23.4.3. Virtual device classes
	8.23.4.4. Device class specific properties

	8.23.5. Virtual device port node
	8.23.5.1. Description
	8.23.5.2. Common properties
	8.23.5.3. Device class-specific port properties
	8.23.5.4. Virtual-device-port class table

	8.23.6. Channel endpoints node
	8.23.7. Description
	8.23.8. Channel endpoint node
	8.23.8.1. Description
	8.23.8.2. Properties

	8.23.9. RNG virtual-device node
	8.23.9.1. Properties

	8.23.10. Crypto virtual-device node
	8.23.10.1. Properties

	8.23.11. MAC-addresses node
	8.23.11.1. Description
	8.23.11.2. Properties

	8.23.12. MAC-address node
	8.23.12.1. Description
	8.23.12.2. Properties

	8.24. Latency nodes
	8.24.1. Programming notes and accuracy
	8.24.2. Memory latency group node
	8.24.2.1. Description
	8.24.2.2. Properties
	8.24.2.3. Programming note on RA and physical address congruence
	8.24.2.4. Page coloring

	8.24.3. Programmed I/O latency group
	8.24.3.1. Description
	8.24.3.2. Properties

	8.24.4. I/O DMA latency group
	8.24.4.1. Description
	8.24.4.2. Properties

	8.24.5. I/O Interrupt latency group node
	8.24.5.1. Description
	8.24.5.2. Properties

	8.24.6. Latency groups node
	8.24.6.1. Description
	8.24.6.2. Properties

	8.25. I/O device nodes
	8.25.1. Physical Device Collection node
	8.25.1.1. Description

	8.25.2. I/O device node
	8.25.2.1. Description
	8.25.2.2. Properties
	8.25.2.2.1. Sun4v to PCI Express root nexus device
	8.25.2.2.2. Generic PCI device properties
	8.25.2.2.3. PCI bridge device properties
	8.25.2.2.4. PCI slot device properties
	8.25.2.2.5. PCI network device properties
	8.25.2.2.6. PCI SCSI device properties
	8.25.2.2.7. NIU device properties

	8.25.3. UltraSPARC-T2 NIU network device node
	8.25.3.1. Description
	8.25.3.2. Properties

	8.25.4. Interrupt mapping node
	8.25.4.1. Description
	8.25.4.2. Properties

	8.25.5. Slot name node
	8.25.5.1. Description
	8.25.5.2. Properties

	8.25.6. Device name alias node
	8.25.6.1. Description
	8.25.6.2. Properties

	8.25.7. I/O device path aliases collection node
	8.25.7.1. Description

	8.25.8. I/O device path alias node
	8.25.8.1. Description
	8.25.8.2. Properties

	Chapter 9. Logical domain variables
	9.1. Overview
	9.2. LDom variable store
	9.3. LDom variables and automatic reboot
	9.3.1. Format of reboot-command variable
	9.3.2. Guest OS management of LDom variables

	Chapter 10. Security keys
	Chapter 11. API versioning
	11.1. API calls
	11.1.1. api_set_version
	11.1.1.1. Errors
	11.1.1.2. Usage Notes

	11.1.2. api_get_version
	11.1.2.1. Errors

	Chapter 12. Core services
	12.1. API calls
	12.1.1. mach_exit
	12.1.1.1. Errors

	12.1.2. mach_desc
	12.1.2.1. Errors

	12.1.3. mach_sir
	12.1.3.1. Errors

	12.1.4. mach_set_watchdog
	12.1.4.1. Errors

	12.1.5. mach_suspend
	12.1.5.1. Errors

	12.1.6. mach_pri
	12.1.6.1. Errors

	12.1.7. mach_vars
	12.1.7.1. Errors

	12.1.8. mach_reboot_data_set
	12.1.8.1. Errors

	12.1.9. mach_reboot_data_get
	12.1.9.1. Errors

	Chapter 13. CPU services
	13.1. CPU id and CPU list
	13.2. API calls
	13.2.1. cpu_start
	13.2.1.1. Errors

	13.2.2. cpu_stop
	13.2.2.1. Errors

	13.2.3. cpu_set_rtba
	13.2.3.1. Errors

	13.2.4. cpu_get_rtba
	13.2.4.1. Errors

	13.2.5. cpu_yield
	13.2.5.1. Errors

	13.2.6. cpu_qconf
	13.2.6.1. Errors

	13.2.7. cpu_qinfo
	13.2.7.1. Errors

	13.2.8. cpu_mondo_send
	13.2.8.1. Errors

	13.2.9. cpu_myid
	13.2.9.1. Errors

	13.2.10. cpu_state
	13.2.10.1. Errors

	13.2.11. cpu_tick_npt
	13.2.11.1. Errors

	13.2.12. cpu_stick_npt
	13.2.12.1. Errors

	Chapter 14. MMU services
	14.1. Translation Storage Buffer (TSB) specification
	14.1.1. Page sizes
	14.1.2. Context index

	14.2. MMU flags
	14.3. Translation table entries
	14.3.1. TSB entry tag word
	14.3.2. TSB entry data word

	14.4. Translation storage buffer (TSB) configuration
	14.5. Permanent and non-permanent mappings
	14.6. MMU Fault status area
	14.7. Global MMU Operations
	14.8. API calls
	14.8.1. mmu_tsb_ctx0
	14.8.1.1. Errors

	14.8.2. mmu_tsb_ctxnon0
	14.8.2.1. Errors

	14.8.3. mmu_demap_page
	14.8.3.1. Errors

	14.8.4. mmu_demap_ctx
	14.8.4.1. Errors

	14.8.5. mmu_demap_all
	14.8.5.1. Errors

	14.8.6. mmu_map_addr
	14.8.6.1. Errors

	14.8.7. mmu_map_perm_addr
	14.8.7.1. Errors

	14.8.8. mmu_unmap_addr
	14.8.8.1. Errors

	14.8.9. mmu_unmap_perm_addr
	14.8.9.1. Errors

	14.8.10. mmu_fault_area_conf
	14.8.10.1. Errors

	14.8.11. mmu_enable
	14.8.11.1. Errors

	14.8.12. mmu_tsb_ctx0_info
	14.8.12.1. Errors

	14.8.13. mmu_tsb_ctxnon0_info
	14.8.13.1. Errors

	14.8.14. mmu_fault_area_info
	14.8.14.1. Errors

	14.8.15. mmu_global_demap_page
	14.8.15.1. Errors

	14.8.16. mmu_global_demap_ctx
	14.8.16.1. Errors

	14.8.17. mmu_global_demap_all
	14.8.17.1. Errors

	14.8.18. mmu_global_demap_status
	14.8.18.1. Errors

	Chapter 15. Cache and Memory services
	15.1. API calls
	15.1.1. mem_scrub
	15.1.1.1. Errors

	15.1.2. mem_sync
	15.1.2.1. Errors

	Chapter 16. Device interrupt services
	16.1. Definitions
	16.2. API calls
	16.2.1. vintr_getcookie
	16.2.1.1. Errors

	16.2.2. vintr_setcookie
	16.2.2.1. Errors

	16.2.3. vintr_getenabled
	16.2.3.1. Errors

	16.2.4. vintr_setenabled
	16.2.4.1. Errors

	16.2.5. vintr_getstate
	16.2.5.1. Errors

	16.2.6. vintr_setstate
	16.2.6.1. Errors

	16.2.7. vintr_gettarget
	16.2.7.1. Errors

	16.2.8. vintr_settarget
	16.2.8.1. Errors

	16.3. Deprecated API calls
	16.3.1. intr_devino_to_sysino
	16.3.1.1. Errors

	16.3.2. intr_getenabled
	16.3.2.1. Errors

	16.3.3. intr_setenabled
	16.3.3.1. Errors

	16.3.4. intr_getstate
	16.3.4.1. Errors

	16.3.5. intr_setstate
	16.3.5.1. Errors

	16.3.6. intr_gettarget
	16.3.6.1. Errors

	16.3.7. intr_settarget
	16.3.7.1. Errors

	16.4. Interrupt API version control

	Chapter 17. Time of day services
	17.1. API calls
	17.1.1. tod_get
	17.1.1.1. Errors

	17.1.2. tod_set
	17.1.2.1. Errors

	Chapter 18. Console services
	18.1. API calls
	18.1.1. cons_getchar
	18.1.1.1. Errors

	18.1.2. cons_putchar
	18.1.2.1. Errors

	18.1.3. cons_read
	18.1.3.1. Machine description properties
	18.1.3.2. Errors

	18.1.4. cons_write
	18.1.4.1. Machine description properties
	18.1.4.2. Errors

	Chapter 19. Domain state services
	19.1. API calls
	19.1.1. soft_state_set
	19.1.1.1. Errors
	19.1.1.2. Programming Notes

	19.1.2. soft_state_get
	19.1.2.1. Errors

	Chapter 20. Core dump services
	20.1. API calls
	20.1.1. dump_buf_update
	20.1.1.1. Errors

	20.1.2. dump_buf_info
	20.1.2.1. Errors

	Chapter 21. Trap trace services
	21.1. Trap trace buffer control structure
	21.2. Trap trace buffer entry format
	21.3. API calls
	21.3.1. ttrace_buf_conf
	21.3.1.1. Errors

	21.3.2. ttrace_buf_info
	21.3.2.1. Errors

	21.3.3. ttrace_enable
	21.3.3.1. Errors

	21.3.4. ttrace_freeze
	21.3.4.1. Errors

	21.3.5. ttrace_addentry
	21.3.5.1. Errors

	Chapter 22. Logical Domain Channel services
	22.1. Endpoints
	22.2. LDC queues
	22.3. LDC interrupts
	22.4. API calls
	22.4.1. ldc_tx_qconf
	22.4.1.1. Errors

	22.4.2. ldc_tx_qinfo
	22.4.2.1. Errors

	22.4.3. ldc_tx_get_state
	22.4.3.1. Errors

	22.4.4. ldc_tx_set_qtail
	22.4.4.1. Errors

	22.4.5. ldc_rx_qconf
	22.4.5.1. Errors

	22.4.6. ldc_rx_qinfo
	22.4.6.1. Errors

	22.4.7. ldc_rx_get_state
	22.4.7.1. Errors

	22.4.8. ldc_rx_set_qhead
	22.4.8.1. Errors

	22.5. Shared Memory API calls
	22.5.1. ldc_set_map_table
	22.5.1.1. Errors

	22.5.2. ldc_get_map_table
	22.5.2.1. Errors

	22.5.3. ldc_copy
	22.5.3.1. Errors

	22.5.4. ldc_mapin
	22.5.4.1. Errors

	22.5.5. ldc_unmap
	22.5.5.1. Errors

	22.5.6. ldc_revoke
	22.5.6.1. Errors

	Chapter 23. PCI I/O Services
	23.1. Introduction
	23.1.1. External documents

	23.2. IO Data Definitions
	23.3. PCI IO Data Definitions
	23.4. API calls
	23.4.1. pci_iommu_map
	23.4.1.1. Errors

	23.4.2. pci_iommu_demap
	23.4.2.1. Errors

	23.4.3. pci_iommu_getmap
	23.4.3.1. Errors

	23.4.4. pci_iommu_getbypass
	23.4.4.1. Errors

	23.4.5. pci_config_get
	23.4.5.1. Errors

	23.4.6. pci_config_put
	23.4.6.1. Errors

	23.4.7. pci_peek
	23.4.7.1. Errors

	23.4.8. pci_poke
	23.4.8.1. Errors

	23.4.9. pci_dma_sync
	23.4.9.1. Errors

	23.5. Static Direct I/O
	23.5.1. SDIO Definitions
	23.5.2. SDIO API Definitions
	23.5.2.1. pci_iov_root_configured
	23.5.2.1.1. Errors

	23.5.2.2. pci_real_config_get
	23.5.2.2.1. Errors

	23.5.2.3. pci_real_config_put
	23.5.2.3.1. Errors

	23.5.2.4. pci_error_send
	23.5.2.4.1. Errors

	Chapter 24. PCI MSI Services
	24.1. Message Signaled Interrupt (MSI)
	24.2. MSI Event Queue (MSI EQ)
	24.2.1. MSI/Message/INTx Data Record format

	24.3. Definitions
	24.4. API calls
	24.4.1. pci_msiq_conf
	24.4.1.1. Errors

	24.4.2. pci_msiq_info
	24.4.2.1. Errors

	24.4.3. pci_msiq_getvalid
	24.4.3.1. Errors

	24.4.4. pci_msiq_setvalid
	24.4.4.1. Errors

	24.4.5. pci_msiq_getstate
	24.4.5.1. Errors

	24.4.6. pci_msiq_setstate
	24.4.6.1. Errors

	24.4.7. pci_msiq_gethead
	24.4.7.1. Errors

	24.4.8. pci_msiq_sethead
	24.4.8.1. Errors

	24.4.9. pci_msiq_gettail
	24.4.9.1. Errors

	24.4.10. pci_msi_getvalid
	24.4.10.1. Errors

	24.4.11. pci_msi_setvalid
	24.4.11.1. Errors

	24.4.12. pci_msi_getmsiq
	24.4.12.1. Errors

	24.4.13. pci_msi_setmsiq
	24.4.13.1. Errors

	24.4.14. pci_msi_getstate
	24.4.14.1. Errors

	24.4.15. pci_msi_setstate
	24.4.15.1. Errors

	24.4.16. pci_msg_getmsiq
	24.4.16.1. Errors

	24.4.17. pci_msg_setmsiq
	24.4.17.1. Errors

	24.4.18. pci_msg_getvalid
	24.4.18.1. Errors

	24.4.19. pci_msg_setvalid
	24.4.19.1. Errors

	Chapter 25. Cryptographic services
	25.1. Random Number Generation
	25.1.1. Trusted Domains
	25.1.2. RNG Control Register data structure
	25.1.3. RNG State
	25.1.4. Maximum Data Read Length
	25.1.5. RNG Mutual Exclusion
	25.1.6. RNG Data Availability
	25.1.7. RNG Watchdog Timeout
	25.1.8. rng_data_read
	25.1.8.1. Errors

	25.1.9. rng_ctl_read (2.0)
	25.1.9.1. Programming note
	25.1.9.2. Write status
	25.1.9.3. Errors

	25.1.10. rng_ctl_write (2.0)
	25.1.10.1. Errors

	25.1.11. rng_data_read_diag (2.0)
	25.1.11.1. Programming Note
	25.1.11.2. Errors

	25.1.12. Deprecated RNG 1.0 APIs
	25.1.12.1. rng_get_diag_control (1.0)
	25.1.12.1.1. Errors

	25.1.12.2. rng_ctl_read (1.0)
	25.1.12.2.1. Programming note
	25.1.12.2.2. Errors

	25.1.12.3. rng_ctl_write (1.0)
	25.1.12.3.1. Programming note
	25.1.12.3.2. Errors

	25.1.12.4. rng_data_read_diag (1.0)
	25.1.12.4.1. Programming Note
	25.1.12.4.2. Errors

	25.2. Niagara crypto services
	25.2.1. Versioning
	25.2.2. Work queues
	25.2.2.1. Queue Type
	25.2.2.2. MAU queue
	25.2.2.3. CWQ queue (UltraSPARC-T2 only)

	25.2.3. ncs_qconf
	25.2.3.1. Programming note
	25.2.3.2. Errors

	25.2.4. ncs_qinfo
	25.2.4.1. Errors

	25.2.5. ncs_gethead
	25.2.5.1. Errors

	25.2.6. ncs_sethead_marker
	25.2.6.1. Errors

	25.2.7. ncs_gettail
	25.2.7.1. Errors

	25.2.8. ncs_settail
	25.2.8.1. Programming note
	25.2.8.2. Errors

	25.2.9. ncs_qhandle_to_devino
	25.2.9.1. Errors

	25.2.10. ncs_ulqconf (version 2.1)
	25.2.10.1. Errors

	25.3. Trusted Platform Module Physical Access
	25.3.1. TPM Definitions
	25.3.1.1. TPM Locality
	25.3.1.2. TPM Registers

	25.3.2. TPM Hypervisor Calls
	25.3.2.1. tpm_get
	25.3.2.1.1. Errors

	25.3.2.2. tpm_put
	25.3.2.2.1. Errors

	Chapter 26. UltraSPARC-T2 Network Interface Unit
	26.1. Introduction
	26.2. Definitions
	26.3. Version 1.0 and version 1.1 APIs
	26.4. Version 1.0 APIs
	26.4.1. niu_rx_logical_page_set
	26.4.1.1. Errors

	26.4.2. niu_rx_logical_page_get
	26.4.2.1. Errors

	26.4.3. niu_tx_logical_page_set
	26.4.3.1. Errors

	26.4.4. niu_tx_logical_page_get
	26.4.4.1. Errors

	26.5. Version 1.1 APIs
	26.5.1. NIU Virtual Region (VR) Specific APIs
	26.5.1.1. vr_assign
	26.5.1.1.1. Errors

	26.5.1.2. vr_unassign
	26.5.1.2.1. Errors

	26.5.1.3. vr_getinfo
	26.5.1.3.1. Errors

	26.5.2. NIU DMA Channel (DMAC) Specific APIs
	26.5.2.1. vr_rx_dma_assign and vr_tx_dma_assign
	26.5.2.1.1. Errors

	26.5.2.2. vr_rx_dma_unassign and vr_tx_dma_unassign
	26.5.2.2.1. Errors

	26.5.2.3. vr_get_rx_map and vr_get_tx_map
	26.5.2.3.1. Errors

	26.5.2.4. vrrx_set_ino and vrtx_set_ino
	26.5.2.4.1. Errors

	26.5.2.5. vrrx_get_info and vrtx_get_info
	26.5.2.5.1. Errors

	26.5.2.6. vrrx_lp_set and vrtx_lp_set
	26.5.2.6.1. Errors

	26.5.2.7. vrrx_lp_get and vrtx_lp_get
	26.5.2.7.1. Errors

	26.5.3. Virtualized Access to Non-virtualized NIU registers
	26.5.3.1. vrrx_param_get and vrtx_param_get
	26.5.3.1.1. Errors

	26.5.3.2. vrrx_param_set and vrtx_param_set
	26.5.3.2.1. Errors

	26.6. Version 2.0 APIs
	26.6.1. niu_rx/tx_logical_page_set
	26.6.2. niu_rx/tx_logical_page_get
	26.6.3. NIU Virtual Region (VR) Specific APIs
	26.6.3.1. vr_assign

	Chapter 27. Chip and platform specific performance counters
	27.1. UltraSPARC-T1 performance counters
	27.1.1. niagara_get_perfreg
	27.1.1.1. Errors

	27.1.2. niagara_set_perfreg
	27.1.2.1. Errors:

	27.2. UltraSPARC-T1 MMU statistics counters
	27.2.1. Hypervisor API for UltraSPARC-T1 MMU statistics collection
	27.2.1.1. MMU statistic buffer layout

	27.2.2. niagara_mmustat_conf
	27.2.2.1. Errors

	27.2.3. niagara_mmustat_info
	27.2.3.1. Errors

	27.3. Fire performance counter APIs
	27.3.1. Definitions
	27.3.2. fire_get_perf_reg
	27.3.2.1. Errors

	27.3.3. fire_set_perf_reg
	27.3.3.1. Errors

	27.4. UltraSPARC T2 performance counters
	27.4.1. Strand performance instrumentation
	27.4.2. DRAM Performance Instrumentation
	27.4.3. API calls for SPARC and DRAM performance counters
	27.4.4. niagara2_get_perfreg
	27.4.4.1. Errors

	27.4.5. niagara2_set_perfreg
	27.4.5.1. Errors

	27.4.6. API calls for PCI-Express interface unit performance counters
	27.4.7. n2piu_get_perf_reg
	27.4.7.1. Errors

	27.4.8. n2piu_set_perf_reg
	27.4.8.1. Errors

	27.5. UltraSPARC T2+ performance counters
	27.5.1. Strand performance instrumentation
	27.5.2. DRAM Performance Instrumentation
	27.5.3. L2 Cache Control Register
	27.5.4. LPU Performance Instrumentation
	27.5.5. GPD Performance Instrumentation
	27.5.6. ASU Performance Instrumentation
	27.5.7. API calls for SPARC and DRAM performance counters
	27.5.8. vfalls_get_perfreg
	27.5.8.1. Errors

	27.5.9. vfalls_set_perfreg
	27.5.9.1. Errors

	27.5.10. UltraSPARC T2+ PCIe performance instrumentation

	27.6. UltraSPARC KT performance counters
	27.6.1. Strand performance instrumentation
	27.6.2. DRAM Performance Instrumentation
	27.6.3. L2 Cache Control Register
	27.6.4. API calls for SPARC and DRAM performance counters
	27.6.5. kt_get_perfreg
	27.6.5.1. Errors

	27.6.6. kt_set_perfreg
	27.6.6.1. Errors

	27.6.7. API calls for UltraSPARC-T3 PCI-Express performance counters
	27.6.8. kt_ios_get_perf_reg
	27.6.8.1. Errors

	27.6.9. kt_ios_set_perfreg
	27.6.9.1. Errors

	Chapter 28. Logical Domain Channel (LDC) infrastructure
	28.1. Overview
	28.1.1. Packet based communication
	28.1.1.1. Between Domains
	28.1.1.2. Between Domain and Hypervisor
	28.1.1.3. Between SP and Domain/Hypervisor

	28.1.2. Shared memory communication
	28.1.2.1. Between domains
	28.1.2.2. Between domain and the Hypervisor
	28.1.2.3. Between Domain/Hypervisor and the service processor

	28.2. Hypervisor infrastructure
	28.2.1. Packet delivery
	28.2.2. Shared memory
	28.2.2.1. Map table
	28.2.2.2. Map table cookies
	28.2.2.3. Map table entry
	28.2.2.4. Copying in and out of a peer's exported memory
	28.2.2.5. Mapping page use and restrictions
	28.2.2.6. Mapping revocation

	28.3. LDC virtual link layer
	28.3.1. Communication overview
	28.3.1.1. Data Transfer Mechanisms
	28.3.1.2. Protocol Modes

	28.3.2. Packet formats
	28.3.3. Communication protocol
	28.3.3.1. Session establishment
	28.3.3.2. Session termination
	28.3.3.3. Session status notification
	28.3.3.4. Data transfer
	28.3.3.4.1. Packet format
	28.3.3.4.2. Streaming support
	28.3.3.4.3. Message ACKs
	28.3.3.4.4. Transmit queues and retransmissions
	28.3.3.4.5. Link errors
	28.3.3.4.6. Link interrupt handler

	Chapter 29. Virtual IO device protocols
	29.1. Virtual IO communication protocol
	29.1.1. VIO data transfer
	29.1.2. VIO device message tag
	29.1.3. VIO device peer-to-peer handshake
	29.1.3.1. Version negotiation
	29.1.3.2. Attribute exchange
	29.1.3.3. Descriptor ring registration
	29.1.3.4. Handshake completion

	29.1.4. VIO data transfer modes
	29.1.4.1. Packet based transfer
	29.1.4.2. Descriptor rings
	29.1.4.2.1. Descriptor format in VIO_RX_DRING_DATA mode
	29.1.4.2.2. Descriptor format in VIO_TX_DRING/VIO_RX_DRING mode
	29.1.4.2.3. Descriptor Ring Data Message Format (common to all dring modes)

	29.1.5. Virtual IO Dynamic Device Service (DDS)

	29.2. Virtual disk protocol
	29.2.1. Attribute information
	29.2.2. vDisk descriptors
	29.2.3. Disk operations
	29.2.3.1. Disks and slices
	29.2.3.2. VDisk Block Read command (VD_OP_BREAD)
	29.2.3.3. VDisk Block Write command (VD_OP_BWRITE)
	29.2.3.4. VDisk Flush command (VD_OP_FLUSH)
	29.2.3.5. VDisk Get Write Cache enablement status (VD_OP_GET_WCE)
	29.2.3.6. VDisk Enable/Disable Write Cache (VD_OP_SET_WCE)
	29.2.3.7. VDisk Get Volume Table of Contents (VD_OP_GET_VTOC)
	29.2.3.8. VDisk Set Volume Table of Contents (VD_OP_SET_VTOC)
	29.2.3.9. VDisk Get Disk Geometry (VD_OP_GET_DISKGEOM)
	29.2.3.10. VDisk Set Disk Geometry (VD_OP_SET_DISKGEOM)
	29.2.3.11. VDisk SCSI Command (VD_OP_SCSICMD)
	29.2.3.12. VDisk Get Device ID (VD_OP_GET_DEVID)
	29.2.3.13. VDisk Get EFI Data (VD_OP_GET_EFI)
	29.2.3.14. VDisk Set EFI Data (VD_OP_SET_EFI)
	29.2.3.15. VDisk Reset (VD_OP_RESET)
	29.2.3.16. VDisk Get Access (VD_OP_GET_ACCESS)
	29.2.3.17. VDisk Set Access (VD_OP_SET_ACCESS)
	29.2.3.18. VDisk Get Capacity (VD_OP_GET_CAPACITY)

	29.3. Virtual network protocol
	29.3.1. Attribute information
	29.3.1.1. Multicast information

	29.3.2. vNet descriptors
	29.3.3. Virtual LAN (VLAN) support
	29.3.4. Network Device Resource Sharing via DDS
	29.3.5. Network Device Physical Link Information Updates

	Chapter 30. Domain services
	30.1. Overview
	30.1.1. Communication Stack

	30.2. Domain Services Protocol
	30.2.1. Definitions
	30.2.2. DS Message Header
	30.2.3. DS protocol fixed message types
	30.2.4. Initiate DS connection
	30.2.5. Initiation acknowledgment
	30.2.6. Initiation negative acknowledgment
	30.2.7. DS protocol version negotiation

	30.3. DS protocol version 1.0
	30.3.1. Service Handles
	30.3.2. Service Identifier
	30.3.3. Result Codes
	30.3.4. DS Message types defined for v.1.0 of the DS protocol
	30.3.4.1. Register Service
	30.3.4.2. Register Acknowledgment
	30.3.4.3. Register Failed
	30.3.4.4. Unregister Service
	30.3.4.5. Unregister OK
	30.3.4.6. Unregister Failed
	30.3.4.7. Data Message
	30.3.4.8. Data Error

	30.3.5. DS Capability Version Negotiation & Registration
	30.3.6. Service Requests
	30.3.7. Unregistration

	30.4. DS Capabilities
	30.5. MD Update Notification version 1.0
	30.5.1. Service ID
	30.5.2. MD Update Request
	30.5.3. MD Update Response

	30.6. Domain Shutdown version 1.0
	30.6.1. Service ID
	30.6.2. Domain Shutdown Request
	30.6.3. Domain Shutdown Response

	30.7. Domain Panic version 1.0
	30.7.1. Service ID
	30.7.2. Domain Panic Request
	30.7.3. Domain Panic Response

	30.8. CPU DR Version 1.0
	30.8.1. Service ID
	30.8.2. CPU DR Message Header
	30.8.3. Message types
	30.8.3.1. CPU DR Request records payload
	30.8.3.2. Request number
	30.8.3.3. DR_CPU_CONFIGURE request
	30.8.3.4. CPU_UNCONFIGURE request
	30.8.3.5. CPU_FORCE_UNCONFIG request
	30.8.3.6. CPU_STATUS request

	30.8.4. CPU_DR_OK response payload
	30.8.4.1. CPU_DR_OK Result codes
	30.8.4.2. CPU_DR_OK status codes
	30.8.4.3. CPU DR OK response string

	30.8.5. CPU DR Error response

	30.9. Memory DR service version 1.0
	30.9.1. Service ID
	30.9.2. Memory DR message header
	30.9.3. Message types
	30.9.3.1. Message argument
	30.9.3.2. Request number
	30.9.3.3. DR_MEM_CONFIGURE request
	30.9.3.4. DR_MEM_UNCONFIGURE request
	30.9.3.5. DR_MEM_UNCONF_STATUS request
	30.9.3.6. DR_MEM_UNCONF_CANCEL request
	30.9.3.7. DR_MEM_QUERY request

	30.9.4. DR_MEM_OK response
	30.9.4.1. DR_MEM_OK result codes
	30.9.4.2. DR_MEM_OK status code
	30.9.4.3. DR_MEM_OK response string
	30.9.4.4. DR_MEM_CONFIGURE response payload
	30.9.4.5. DR_MEM_UNCONFIGURE response payload
	30.9.4.6. DR_MEM_UNCONF_STATUS response payload
	30.9.4.7. DR_MEM_UNCONF_CANCEL response payload
	30.9.4.8. DR_MEM_QUERY response payload

	30.9.5. DR_MEM_ERROR response

	30.10. VIO DR service version 1.0
	30.10.1. Service ID
	30.10.2. Message format
	30.10.3. Message types
	30.10.3.1. DR_VIO_CONFIGURE request
	30.10.3.2. DR_VIO_UNCONFIGURE request
	30.10.3.3. DR_VIO_FORCE_UNCONFIG request
	30.10.3.4. DR_VIO_STATUS request
	30.10.3.5. Request number
	30.10.3.6. Device Name
	30.10.3.7. Device ID

	30.10.4. VIO DR response message
	30.10.4.1. VIO DR response message format
	30.10.4.2. VIO DR Result codes
	30.10.4.3. VIO DR status codes
	30.10.4.4. VIO DR “reason” string

	30.11. Crypto DR service version 1.0
	30.11.1. Service ID
	30.11.2. Message format header
	30.11.3. Message Types
	30.11.3.1. Request messages
	30.11.3.2. Response messages

	30.11.4. Request Payload
	30.11.5. Request Number
	30.11.6. DR_CRYPTO_CONFIG request
	30.11.7. DR_CRYPTO_UNCONFIG request
	30.11.8. DR_CRYPTO_FORCE_UNCONFIG request
	30.11.9. DR_CRYPTO_STATUS
	30.11.10. DR_CRYPTO_OK response payload
	30.11.11. DR_CRYPTO_OK result codes
	30.11.12. DR CRYPTO OK status codes
	30.11.13. DR Crypto Error Response
	30.11.14. Operational Overview
	30.11.14.1. Offlining a Crypto Unit
	30.11.14.2. Onlining a Crypto Unit

	30.12. Variable Configuration version 1.0
	30.12.1. Service IDs
	30.12.2. Message Header
	30.12.3. Message types
	30.12.4. Set Variable Payload
	30.12.5. Delete Variable Payload
	30.12.6. Response Payload
	30.12.6.1. Response Result Codes

	30.13. Security key domain service version 1.0
	30.13.1. Service IDs
	30.13.2. Message Header
	30.13.3. Message types
	30.13.3.1. Set keystore Payload
	30.13.3.2. Delete keystore Payload

	30.13.4. Response Payload
	30.13.4.1. Response Result Codes

	30.14. PRI Domain Service 1.0
	30.14.1. Service ID
	30.14.2. PRI Update Message
	30.14.3. PRI Update Response
	30.14.4. pri_msgnum
	30.14.5. Response Status Codes

	30.15. System Info version 1.0
	30.15.1. Service ID
	30.15.2. Message header
	30.15.3. Message types
	30.15.4. Get Information Payload
	30.15.5. Get Information Response Payload
	30.15.6. Response Result Codes

	30.16. SNMP service version 1.0
	30.16.1. Service ID
	30.16.2. Message header
	30.16.3. Message types
	30.16.3.1. SNMP Request Message
	30.16.3.2. SNMP Reply Message
	30.16.3.3. SNMP Error Message

	30.17. Domain Suspend service version 1.0
	30.17.1. Service ID
	30.17.2. Domain Suspend Request
	30.17.3. Message types
	30.17.3.1. Domain Suspend Reply Message
	30.17.3.2. Domain Suspend response result values

	30.17.4. Domain Suspend request handling
	30.17.4.1. Invalid Request
	30.17.4.2. Suspend in Progress
	30.17.4.3. Pre-suspend
	30.17.4.4. Suspend
	30.17.4.5. Resume and Post-suspend

	30.17.5. Message Sequences
	30.17.5.1. Sequence 1 (failure)
	30.17.5.2. Sequence 2 (failure)
	30.17.5.3. Sequence 3 (failure)
	30.17.5.4. Sequence 4 (failure)
	30.17.5.5. Sequence 5 (failure)
	30.17.5.6. Sequence 6 (failure)
	30.17.5.7. Sequence 7 (suspend success, post-suspend failure)
	30.17.5.8. Sequence 8 (success)

	Chapter 31. Diagnostic services
	31.1. API calls
	31.1.1. diag_ra2pa
	31.1.1.1. Errors

	31.1.2. diag_hexec
	31.1.2.1. Errors

	Appendix A. Number Registry
	A.1. API Groups
	A.2. Hyper-fast Trap numbers
	A.3. FAST_TRAP Function numbers
	A.4. CORE_TRAP Function numbers
	A.5. Summary of trap and function numbers
	A.6. Error codes

	Appendix B. Domain Service Registry
	Appendix C. Physical Resource Inventory
	C.1. Introduction
	C.2. Root Node
	C.2.1. PRI version property

	C.3. Components Node
	C.3.1. Power Management (PM) versioning property

	C.4. Component Node
	C.4.1. type Property
	C.4.1.1. Type-specific property requirements

	C.4.2. nac Property
	C.4.3. fru Property
	C.4.4. serial_number Property
	C.4.5. part_number Property
	C.4.6. rev_number Property
	C.4.7. dash_number Property
	C.4.8. id Property
	C.4.9. path Property
	C.4.10. label Property
	C.4.11. name Property
	C.4.12. pm_resource Property
	C.4.13. pm_states Property
	C.4.14. pm_cookie Property
	C.4.15. pm_dependency Property
	C.4.16. pm_coordination Property
	C.4.17. pm_mapping Property
	C.4.18. topo-hc-name Property
	C.4.19. topo-skip Property
	C.4.20. assignable-path Property
	C.4.21. pm_power Property

	C.5. Firmware Node
	C.5.1. max_guests Property
	C.5.2. max_hv_ldcs Property
	C.5.3. max_guest_ldcs Property
	C.5.4. max_guest_dependencies Property
	C.5.5. directio_capability Property

	C.6. Read_Only_Memory Node
	C.6.1. name Property
	C.6.2. base Property
	C.6.3. size Property

	C.7. Rom_Img Node
	C.7.1. name Property
	C.7.2. offset Property
	C.7.3. size Property
	C.7.4. alignment Property
	C.7.5. min_allocation Property
	C.7.6. guest_use Property

	C.8. Ldc_Endpoints Node
	C.9. Ldc_Endpoint Node
	C.9.1. resource_id Property
	C.9.2. target_type Property
	C.9.3. channel Property
	C.9.4. target_channel Property
	C.9.5. tx-ino and rx-ino Properties

	C.10. Memory Segments and related nodes
	C.11. Memory-Segment Node
	C.11.1. base Property
	C.11.2. size Property

	C.12. Memory-Bank Node
	C.12.1. size Property
	C.12.2. mask Property
	C.12.3. match Property

	C.13. IO Device node
	C.13.1. Sun4v to PCI Express root nexus device
	C.13.1.1. rcid Property

	C.13.2. Generic PCI device properties
	C.13.3. PCI bridge type device properties
	C.13.3.1. chassis-location-name Property

	C.13.4. PCI slot type device properties
	C.13.5. PCI network device properties
	C.13.6. PCI SCSI device properties

	C.14. Interrupt mapping node
	C.15. Power-Management node
	C.16. Memory-Grouping Node
	C.16.1. id Property
	C.16.2. name Property
	C.16.3. pm_resource Property
	C.16.4. pm_states Property
	C.16.5. pm_cookie Property

	C.17. Memory-Region Node
	C.17.1. id Property
	C.17.2. name Property
	C.17.3. base Property
	C.17.4. size Property

	Bibliography

