
UltraSPARC Virtual
Machine Specification

UltraSPARC Virtual Machine Specification

Compiled from hg version 3033604f0239 3.0-draft7

Publication date 2012-03-13 19:43
Copyright © 2008, 2010 Oracle and/or its affiliates. All rights reserved.
Copyright © 2008, 2010 Oracle et/ou ses ailiés. Tous droits réservés.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property
laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit,
distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related software documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following
notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are “commercial
computer software” or “commercial technical data” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and,
to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December
2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications which may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability
for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. Intel and Intel Xeon are trademarks
or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc.
UNIX is a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its
affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Ce logiciel et la documentation qui l’accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions
d’utilisation et de divulgation. Sauf disposition de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, breveter,
transmettre, distribuer, exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il
est interdit de procéder à toute ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté à des fins d’interopérabilité avec des logiciels tiers ou
tel que prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu’elles soient exemptes
d’erreurs et vous invite, le cas échéant, à lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l’accompagne, est concédé sous licence au Gouvernement des Etats-Unis, ou à toute entité qui délivre la licence de ce logiciel
ou l’utilise pour le compte du Gouvernement des Etats-Unis, la notice suivante s’applique:

U.S. GOVERNMENT RIGHTS. Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial
computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and,
to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December
2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d’applications de gestion des informations. Ce logiciel ou matériel n’est pas conçu ni n’est
destiné à être utilisé dans des applications à risque, notamment dans des applications pouvant causer des dommages corporels. Si vous utilisez ce logiciel ou matériel dans
le cadre d’applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures nécessaires
à son utilisation dans des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés par l’utilisation
de ce logiciel ou matériel pour ce type d’applications.

Oracle et Java sont des marques déposées d’Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre à des marques appartenant à d’autres
propriétaires qu’Oracle.

AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d’Advanced Micro Devices. Intel et Intel Xeon sont des marques ou
des marques déposées d’Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques déposées de SPARC International,
Inc. UNIX est une marque déposée concédé sous license par X/Open Company, Ltd.

iii

Table of Contents
Preface .. xvii

1. Foreward ... xvii
2. Related specifications ... xvii

1. Overview ... 1
1.1. Architectural requirements ... 1
1.2. The hypervisor and sun4v architecture ... 2
1.3. Privilege, isolation and virtualization ... 2
1.4. Direct I/O ... 3
1.5. Logical Domain Channels .. 5

1.5.1. Stateless connections .. 6
1.5.2. LDC security .. 6

1.6. Machine Descriptions .. 6
1.7. Virtual I/O .. 7

1.7.1. Abstraction ... 9
1.7.2. Stateless connections & multipathed I/O ... 9
1.7.3. Virtual disk services ... 10
1.7.4. Scalable virtual networking services .. 10
1.7.5. Virtual I/O Limits .. 11

1.8. Hybrid I/O ... 11
1.9. Logical Domain Manager ... 12

1.9.1. Domain roles ... 12
1.9.2. Domain dependencies .. 13
1.9.3. Domain manager operation .. 13

1.10. Domain service infrastructure .. 15
1.11. OpenBoot firmware ... 16
1.12. Error Handling ... 16
1.13. Advanced LDoms features .. 17

1.13.1. Dynamic reconfiguration .. 17
1.13.2. Logical domain migration .. 17

2. Hypervisor call conventions .. 19
2.1. Hyper-fast traps .. 19
2.2. Fast traps .. 19
2.3. Post hypervisor trap processing ... 19

3. State Definitions ... 21
3.1. Processor states .. 21
3.2. Initial guest environment .. 21
3.3. Privileged registers .. 22

3.3.1. Non-Privileged Registers ... 22
3.3.2. Ancillary State Registers ... 22
3.3.3. Internal memory-mapped registers ... 23
3.3.4. CPU-specific Registers .. 23

3.4. Other initial guest state .. 23
4. Addressing Models .. 25

4.1. Background ... 25
4.2. Address types ... 25
4.3. Address spaces ... 25
4.4. Address space identifiers .. 25

4.4.1. ASI 0x14 & 0x1c: REAL_MEM{_LITTLE} ... 25
4.4.2. ASI 0x15 & 0x1d: REAL_IO{_LITTLE} ... 26
4.4.3. ASI 0x26 & 0x2E: REAL_QUAD{_LITTLE} ... 26
4.4.4. ASI 0x21: MMU ... 26

UltraSPARC Virtual
Machine Specification

iv

4.5. Translation mappings .. 27
4.6. MMU Demap support .. 27
4.7. MMU traps .. 27
4.8. MMU fault status area ... 28

5. Trap Model .. 29
5.1. Privilege mode trap processing .. 29
5.2. Trap levels .. 29

5.2.1. Privilege mode TL overflow ... 29
5.3. Sun4v privileged-mode trap table .. 29

6. Interrupt model ... 30
6.1. Definitions ... 30
6.2. Interrupt reports .. 30
6.3. Interrupt queues .. 30

6.3.1. Queue support registers ... 30
6.4. Interrupt traps .. 31

6.4.1. CPU mondo interrupts ... 31
6.4.2. Device mondo interrupts .. 32

6.5. Device interrupts .. 32
6.5.1. Device handles and devinos ... 32

6.6. Sysinos and cookies .. 32
6.6.1. Legacy use (the sysino) .. 32
6.6.2. Interrupt cookies .. 33

7. Error model .. 34
7.1. Definitions ... 34
7.2. 7.2 Error classes ... 34

7.2.1. Resumable error ... 34
7.2.2. Non-resumable error ... 34

7.3. Error reports .. 34
7.4. Error queues .. 34

7.4.1. Error Queue Head and Tail Pointers .. 35
7.5. Error traps ... 35

8. Machine description ... 37
8.1. Requirements ... 37
8.2. Sections .. 37
8.3. Encoding ... 37
8.4. Header .. 38

8.4.1. Version numbering ... 38
8.4.2. Size fields ... 38

8.5. Name Block ... 39
8.6. Data Block .. 39
8.7. Node Block ... 39

8.7.1. Element format .. 40
8.7.2. Tag definitions ... 41

8.8. Nodes ... 41
8.9. Node definitions ... 42

8.9.1. Node categories ... 42
8.10. Content versions ... 42
8.11. Common data definitions .. 43

8.11.1. String array ... 43
8.12. How to use a machine description .. 43

8.12.1. Using the MD as a list .. 43
8.13. Accelerating string lookups ... 44
8.14. Directed Acyclic Graph .. 45

8.14.1. Graph nodes .. 45

UltraSPARC Virtual
Machine Specification

v

8.15. DAG construction ... 45
8.16. Required nodes ... 46
8.17. The vanilla MD .. 46
8.18. Formation and meaning of a DAG ... 46
8.19. Generic nodes ... 47

8.19.1. Root node ... 47
8.19.2. Cpus node ... 47
8.19.3. cpu node ... 48
8.19.4. Memory node .. 50
8.19.5. Mblock node .. 51
8.19.6. Platform node .. 51
8.19.7. Domain services node ... 54
8.19.8. Domain services port node ... 54

8.20. Memory hierarchy nodes .. 54
8.20.1. Cache node .. 54
8.20.2. Exec-unit node ... 55
8.20.3. TLB node .. 57

8.21. Variables ... 58
8.21.1. Description .. 58

8.22. Keystore .. 58
8.22.1. Description .. 58

8.23. Virtual Devices ... 59
8.23.1. Descriptions for virtual devices ... 59
8.23.2. Virtual devices node ... 59
8.23.3. Channel devices node .. 60
8.23.4. Virtual device node ... 61
8.23.5. Virtual device port node .. 63
8.23.6. Channel endpoints node ... 66
8.23.7. Description .. 67
8.23.8. Channel endpoint node .. 67
8.23.9. RNG virtual-device node .. 67
8.23.10. Crypto virtual-device node .. 68
8.23.11. MAC-addresses node ... 68
8.23.12. MAC-address node .. 69

8.24. Latency nodes .. 69
8.24.1. Programming notes and accuracy ... 70
8.24.2. Memory latency group node ... 70
8.24.3. Programmed I/O latency group .. 73
8.24.4. I/O DMA latency group ... 73
8.24.5. I/O Interrupt latency group node .. 74
8.24.6. Latency groups node ... 75

8.25. I/O device nodes ... 75
8.25.1. Physical Device Collection node .. 75
8.25.2. I/O device node .. 75
8.25.3. UltraSPARC-T2 NIU network device node .. 80
8.25.4. Interrupt mapping node .. 81
8.25.5. Slot name node .. 82
8.25.6. Device name alias node ... 82
8.25.7. I/O device path aliases collection node ... 83
8.25.8. I/O device path alias node .. 83

9. Logical domain variables .. 84
9.1. Overview .. 84
9.2. LDom variable store .. 84
9.3. LDom variables and automatic reboot ... 84

UltraSPARC Virtual
Machine Specification

vi

9.3.1. Format of reboot-command variable ... 85
9.3.2. Guest OS management of LDom variables .. 86

10. Security keys .. 87
11. API versioning .. 88

11.1. API calls ... 88
11.1.1. api_set_version ... 88
11.1.2. api_get_version .. 90

12. Core services .. 91
12.1. API calls ... 91

12.1.1. mach_exit .. 91
12.1.2. mach_desc ... 91
12.1.3. mach_sir ... 92
12.1.4. mach_set_watchdog .. 92
12.1.5. mach_suspend .. 93
12.1.6. mach_pri ... 93
12.1.7. mach_vars ... 94
12.1.8. mach_reboot_data_set .. 95
12.1.9. mach_reboot_data_get ... 96

13. CPU services .. 98
13.1. CPU id and CPU list ... 98
13.2. API calls ... 98

13.2.1. cpu_start ... 98
13.2.2. cpu_stop ... 98
13.2.3. cpu_set_rtba .. 99
13.2.4. cpu_get_rtba .. 99
13.2.5. cpu_yield ... 100
13.2.6. cpu_qconf .. 100
13.2.7. cpu_qinfo .. 101
13.2.8. cpu_mondo_send .. 101
13.2.9. cpu_myid ... 102
13.2.10. cpu_state .. 102
13.2.11. cpu_tick_npt ... 103
13.2.12. cpu_stick_npt .. 103

14. MMU services ... 104
14.1. Translation Storage Buffer (TSB) specification .. 104

14.1.1. Page sizes .. 104
14.1.2. Context index ... 105

14.2. MMU flags .. 105
14.3. Translation table entries .. 106

14.3.1. TSB entry tag word ... 106
14.3.2. TSB entry data word ... 107

14.4. Translation storage buffer (TSB) configuration .. 108
14.5. Permanent and non-permanent mappings ... 108
14.6. MMU Fault status area ... 108
14.7. Global MMU Operations .. 111
14.8. API calls .. 112

14.8.1. mmu_tsb_ctx0 .. 112
14.8.2. mmu_tsb_ctxnon0 ... 112
14.8.3. mmu_demap_page ... 113
14.8.4. mmu_demap_ctx ... 113
14.8.5. mmu_demap_all .. 114
14.8.6. mmu_map_addr .. 114
14.8.7. mmu_map_perm_addr .. 115
14.8.8. mmu_unmap_addr ... 115

UltraSPARC Virtual
Machine Specification

vii

14.8.9. mmu_unmap_perm_addr .. 116
14.8.10. mmu_fault_area_conf ... 116
14.8.11. mmu_enable ... 117
14.8.12. mmu_tsb_ctx0_info ... 117
14.8.13. mmu_tsb_ctxnon0_info ... 118
14.8.14. mmu_fault_area_info ... 118
14.8.15. mmu_global_demap_page ... 118
14.8.16. mmu_global_demap_ctx ... 119
14.8.17. mmu_global_demap_all .. 119
14.8.18. mmu_global_demap_status .. 120

15. Cache and Memory services ... 121
15.1. API calls .. 121

15.1.1. mem_scrub .. 121
15.1.2. mem_sync ... 121

16. Device interrupt services ... 123
16.1. Definitions ... 123
16.2. API calls .. 124

16.2.1. vintr_getcookie ... 124
16.2.2. vintr_setcookie ... 124
16.2.3. vintr_getenabled .. 124
16.2.4. vintr_setenabled .. 125
16.2.5. vintr_getstate .. 125
16.2.6. vintr_setstate .. 125
16.2.7. vintr_gettarget .. 126
16.2.8. vintr_settarget ... 126

16.3. Deprecated API calls .. 127
16.3.1. intr_devino_to_sysino .. 127
16.3.2. intr_getenabled ... 127
16.3.3. intr_setenabled .. 127
16.3.4. intr_getstate ... 128
16.3.5. intr_setstate .. 128
16.3.6. intr_gettarget .. 128
16.3.7. intr_settarget .. 129

16.4. Interrupt API version control ... 129
17. Time of day services .. 131

17.1. API calls .. 131
17.1.1. tod_get .. 131
17.1.2. tod_set .. 131

18. Console services .. 132
18.1. API calls .. 132

18.1.1. cons_getchar .. 132
18.1.2. cons_putchar .. 132
18.1.3. cons_read .. 132
18.1.4. cons_write ... 133

19. Domain state services ... 135
19.1. API calls .. 135

19.1.1. soft_state_set .. 135
19.1.2. soft_state_get ... 136

20. Core dump services .. 138
20.1. API calls .. 138

20.1.1. dump_buf_update .. 138
20.1.2. dump_buf_info ... 139

21. Trap trace services ... 140
21.1. Trap trace buffer control structure .. 140

UltraSPARC Virtual
Machine Specification

viii

21.2. Trap trace buffer entry format .. 140
21.3. API calls .. 141

21.3.1. ttrace_buf_conf ... 141
21.3.2. ttrace_buf_info ... 141
21.3.3. ttrace_enable .. 142
21.3.4. ttrace_freeze ... 142
21.3.5. ttrace_addentry ... 142

22. Logical Domain Channel services ... 144
22.1. Endpoints ... 144
22.2. LDC queues ... 144
22.3. LDC interrupts .. 145
22.4. API calls .. 145

22.4.1. ldc_tx_qconf .. 145
22.4.2. ldc_tx_qinfo ... 146
22.4.3. ldc_tx_get_state .. 146
22.4.4. ldc_tx_set_qtail ... 147
22.4.5. ldc_rx_qconf .. 147
22.4.6. ldc_rx_qinfo ... 148
22.4.7. ldc_rx_get_state .. 148
22.4.8. ldc_rx_set_qhead .. 149

22.5. Shared Memory API calls ... 149
22.5.1. ldc_set_map_table ... 149
22.5.2. ldc_get_map_table ... 150
22.5.3. ldc_copy .. 150
22.5.4. ldc_mapin .. 151
22.5.5. ldc_unmap ... 152
22.5.6. ldc_revoke ... 152

23. PCI I/O Services .. 154
23.1. Introduction .. 154

23.1.1. External documents ... 154
23.2. IO Data Definitions ... 154
23.3. PCI IO Data Definitions ... 154
23.4. API calls .. 157

23.4.1. pci_iommu_map ... 157
23.4.2. pci_iommu_demap .. 158
23.4.3. pci_iommu_getmap ... 158
23.4.4. pci_iommu_getbypass .. 159
23.4.5. pci_config_get .. 159
23.4.6. pci_config_put .. 160
23.4.7. pci_peek .. 161
23.4.8. pci_poke .. 161
23.4.9. pci_dma_sync ... 162

23.5. Static Direct I/O .. 163
23.5.1. SDIO Definitions .. 163
23.5.2. SDIO API Definitions .. 163

24. PCI MSI Services .. 167
24.1. Message Signaled Interrupt (MSI) .. 167
24.2. MSI Event Queue (MSI EQ) ... 167

24.2.1. MSI/Message/INTx Data Record format .. 167
24.3. Definitions ... 169
24.4. API calls .. 170

24.4.1. pci_msiq_conf .. 170
24.4.2. pci_msiq_info ... 171
24.4.3. pci_msiq_getvalid ... 171

UltraSPARC Virtual
Machine Specification

ix

24.4.4. pci_msiq_setvalid .. 172
24.4.5. pci_msiq_getstate .. 172
24.4.6. pci_msiq_setstate .. 172
24.4.7. pci_msiq_gethead .. 173
24.4.8. pci_msiq_sethead .. 173
24.4.9. pci_msiq_gettail .. 173
24.4.10. pci_msi_getvalid ... 174
24.4.11. pci_msi_setvalid .. 174
24.4.12. pci_msi_getmsiq .. 174
24.4.13. pci_msi_setmsiq .. 175
24.4.14. pci_msi_getstate .. 175
24.4.15. pci_msi_setstate .. 175
24.4.16. pci_msg_getmsiq ... 176
24.4.17. pci_msg_setmsiq ... 176
24.4.18. pci_msg_getvalid ... 176
24.4.19. pci_msg_setvalid ... 177

25. Cryptographic services .. 178
25.1. Random Number Generation ... 178

25.1.1. Trusted Domains ... 178
25.1.2. RNG Control Register data structure ... 178
25.1.3. RNG State ... 179
25.1.4. Maximum Data Read Length .. 179
25.1.5. RNG Mutual Exclusion .. 179
25.1.6. RNG Data Availability ... 180
25.1.7. RNG Watchdog Timeout .. 180
25.1.8. rng_data_read ... 180
25.1.9. rng_ctl_read (2.0) .. 180
25.1.10. rng_ctl_write (2.0) ... 182
25.1.11. rng_data_read_diag (2.0) .. 183
25.1.12. Deprecated RNG 1.0 APIs .. 183

25.2. Niagara crypto services .. 186
25.2.1. Versioning ... 186
25.2.2. Work queues .. 186
25.2.3. ncs_qconf .. 188
25.2.4. ncs_qinfo ... 189
25.2.5. ncs_gethead ... 190
25.2.6. ncs_sethead_marker ... 190
25.2.7. ncs_gettail ... 190
25.2.8. ncs_settail .. 191
25.2.9. ncs_qhandle_to_devino .. 191
25.2.10. ncs_ulqconf (version 2.1) .. 192

25.3. Trusted Platform Module Physical Access .. 192
25.3.1. TPM Definitions ... 192
25.3.2. TPM Hypervisor Calls ... 193

26. UltraSPARC-T2 Network Interface Unit .. 195
26.1. Introduction .. 195
26.2. Definitions ... 195
26.3. Version 1.0 and version 1.1 APIs ... 196
26.4. Version 1.0 APIs ... 196

26.4.1. niu_rx_logical_page_set ... 196
26.4.2. niu_rx_logical_page_get ... 197
26.4.3. niu_tx_logical_page_set ... 197
26.4.4. niu_tx_logical_page_get ... 198

26.5. Version 1.1 APIs ... 198

UltraSPARC Virtual
Machine Specification

x

26.5.1. NIU Virtual Region (VR) Specific APIs .. 199
26.5.2. NIU DMA Channel (DMAC) Specific APIs ... 200
26.5.3. Virtualized Access to Non-virtualized NIU registers 205

26.6. Version 2.0 APIs ... 207
26.6.1. niu_rx/tx_logical_page_set .. 208
26.6.2. niu_rx/tx_logical_page_get ... 208
26.6.3. NIU Virtual Region (VR) Specific APIs .. 209

27. Chip and platform specific performance counters ... 210
27.1. UltraSPARC-T1 performance counters .. 210

27.1.1. niagara_get_perfreg ... 210
27.1.2. niagara_set_perfreg .. 211

27.2. UltraSPARC-T1 MMU statistics counters .. 211
27.2.1. Hypervisor API for UltraSPARC-T1 MMU statistics collection 211
27.2.2. niagara_mmustat_conf ... 212
27.2.3. niagara_mmustat_info .. 213

27.3. Fire performance counter APIs .. 213
27.3.1. Definitions ... 213
27.3.2. fire_get_perf_reg ... 214
27.3.3. fire_set_perf_reg ... 214

27.4. UltraSPARC T2 performance counters .. 215
27.4.1. Strand performance instrumentation .. 215
27.4.2. DRAM Performance Instrumentation .. 215
27.4.3. API calls for SPARC and DRAM performance counters 215
27.4.4. niagara2_get_perfreg .. 216
27.4.5. niagara2_set_perfreg .. 216
27.4.6. API calls for PCI-Express interface unit performance counters 217
27.4.7. n2piu_get_perf_reg .. 217
27.4.8. n2piu_set_perf_reg .. 218

27.5. UltraSPARC T2+ performance counters .. 218
27.5.1. Strand performance instrumentation .. 218
27.5.2. DRAM Performance Instrumentation .. 218
27.5.3. L2 Cache Control Register .. 219
27.5.4. LPU Performance Instrumentation .. 219
27.5.5. GPD Performance Instrumentation ... 219
27.5.6. ASU Performance Instrumentation ... 219
27.5.7. API calls for SPARC and DRAM performance counters 219
27.5.8. vfalls_get_perfreg .. 221
27.5.9. vfalls_set_perfreg .. 221
27.5.10. UltraSPARC T2+ PCIe performance instrumentation 222

27.6. UltraSPARC KT performance counters .. 222
27.6.1. Strand performance instrumentation .. 222
27.6.2. DRAM Performance Instrumentation .. 222
27.6.3. L2 Cache Control Register .. 222
27.6.4. API calls for SPARC and DRAM performance counters 222
27.6.5. kt_get_perfreg .. 223
27.6.6. kt_set_perfreg ... 224
27.6.7. API calls for UltraSPARC-T3 PCI-Express performance counters 224
27.6.8. kt_ios_get_perf_reg ... 225
27.6.9. kt_ios_set_perfreg ... 225

28. Logical Domain Channel (LDC) infrastructure .. 227
28.1. Overview ... 227

28.1.1. Packet based communication ... 227
28.1.2. Shared memory communication ... 228

28.2. Hypervisor infrastructure .. 229

UltraSPARC Virtual
Machine Specification

xi

28.2.1. Packet delivery ... 229
28.2.2. Shared memory .. 229

28.3. LDC virtual link layer .. 233
28.3.1. Communication overview ... 234
28.3.2. Packet formats .. 235
28.3.3. Communication protocol .. 237

29. Virtual IO device protocols .. 242
29.1. Virtual IO communication protocol ... 242

29.1.1. VIO data transfer .. 242
29.1.2. VIO device message tag ... 244
29.1.3. VIO device peer-to-peer handshake .. 245
29.1.4. VIO data transfer modes .. 249
29.1.5. Virtual IO Dynamic Device Service (DDS) .. 252

29.2. Virtual disk protocol .. 253
29.2.1. Attribute information ... 253
29.2.2. vDisk descriptors .. 254
29.2.3. Disk operations ... 255

29.3. Virtual network protocol ... 264
29.3.1. Attribute information ... 264
29.3.2. vNet descriptors .. 266
29.3.3. Virtual LAN (VLAN) support ... 268
29.3.4. Network Device Resource Sharing via DDS ... 268
29.3.5. Network Device Physical Link Information Updates 270

30. Domain services .. 271
30.1. Overview ... 271

30.1.1. Communication Stack .. 271
30.2. Domain Services Protocol ... 273

30.2.1. Definitions ... 273
30.2.2. DS Message Header .. 273
30.2.3. DS protocol fixed message types ... 273
30.2.4. Initiate DS connection ... 273
30.2.5. Initiation acknowledgment .. 273
30.2.6. Initiation negative acknowledgment .. 274
30.2.7. DS protocol version negotiation ... 274

30.3. DS protocol version 1.0 .. 274
30.3.1. Service Handles .. 274
30.3.2. Service Identifier .. 275
30.3.3. Result Codes .. 275
30.3.4. DS Message types defined for v.1.0 of the DS protocol 275
30.3.5. DS Capability Version Negotiation & Registration 277
30.3.6. Service Requests ... 278
30.3.7. Unregistration ... 278

30.4. DS Capabilities ... 278
30.5. MD Update Notification version 1.0 ... 279

30.5.1. Service ID ... 279
30.5.2. MD Update Request .. 279
30.5.3. MD Update Response .. 279

30.6. Domain Shutdown version 1.0 ... 279
30.6.1. Service ID ... 279
30.6.2. Domain Shutdown Request ... 280
30.6.3. Domain Shutdown Response ... 280

30.7. Domain Panic version 1.0 ... 280
30.7.1. Service ID ... 280
30.7.2. Domain Panic Request ... 280

UltraSPARC Virtual
Machine Specification

xii

30.7.3. Domain Panic Response ... 281
30.8. CPU DR Version 1.0 ... 281

30.8.1. Service ID ... 281
30.8.2. CPU DR Message Header .. 281
30.8.3. Message types .. 282
30.8.4. CPU_DR_OK response payload .. 284
30.8.5. CPU DR Error response ... 285

30.9. Memory DR service version 1.0 ... 285
30.9.1. Service ID ... 286
30.9.2. Memory DR message header ... 286
30.9.3. Message types .. 286
30.9.4. DR_MEM_OK response ... 289
30.9.5. DR_MEM_ERROR response .. 293

30.10. VIO DR service version 1.0 ... 294
30.10.1. Service ID .. 294
30.10.2. Message format ... 294
30.10.3. Message types .. 294
30.10.4. VIO DR response message .. 296

30.11. Crypto DR service version 1.0 ... 297
30.11.1. Service ID .. 297
30.11.2. Message format header ... 297
30.11.3. Message Types ... 298
30.11.4. Request Payload .. 298
30.11.5. Request Number .. 298
30.11.6. DR_CRYPTO_CONFIG request .. 298
30.11.7. DR_CRYPTO_UNCONFIG request .. 299
30.11.8. DR_CRYPTO_FORCE_UNCONFIG request .. 299
30.11.9. DR_CRYPTO_STATUS .. 299
30.11.10. DR_CRYPTO_OK response payload ... 299
30.11.11. DR_CRYPTO_OK result codes .. 299
30.11.12. DR CRYPTO OK status codes ... 299
30.11.13. DR Crypto Error Response .. 300
30.11.14. Operational Overview ... 300

30.12. Variable Configuration version 1.0 .. 300
30.12.1. Service IDs .. 300
30.12.2. Message Header .. 301
30.12.3. Message types .. 301
30.12.4. Set Variable Payload .. 301
30.12.5. Delete Variable Payload ... 301
30.12.6. Response Payload .. 301

30.13. Security key domain service version 1.0 ... 302
30.13.1. Service IDs .. 302
30.13.2. Message Header .. 302
30.13.3. Message types .. 302
30.13.4. Response Payload .. 303

30.14. PRI Domain Service 1.0 ... 303
30.14.1. Service ID .. 303
30.14.2. PRI Update Message .. 304
30.14.3. PRI Update Response ... 304
30.14.4. pri_msgnum ... 304
30.14.5. Response Status Codes ... 304

30.15. System Info version 1.0 .. 304
30.15.1. Service ID .. 304
30.15.2. Message header ... 304

UltraSPARC Virtual
Machine Specification

xiii

30.15.3. Message types .. 305
30.15.4. Get Information Payload ... 305
30.15.5. Get Information Response Payload ... 305
30.15.6. Response Result Codes ... 305

30.16. SNMP service version 1.0 ... 306
30.16.1. Service ID .. 306
30.16.2. Message header ... 306
30.16.3. Message types .. 306

30.17. Domain Suspend service version 1.0 ... 307
30.17.1. Service ID .. 307
30.17.2. Domain Suspend Request ... 307
30.17.3. Message types .. 308
30.17.4. Domain Suspend request handling .. 309
30.17.5. Message Sequences ... 310

31. Diagnostic services ... 313
31.1. API calls .. 313

31.1.1. diag_ra2pa ... 313
31.1.2. diag_hexec ... 313

A. Number Registry .. 315
A.1. API Groups ... 315
A.2. Hyper-fast Trap numbers ... 315
A.3. FAST_TRAP Function numbers .. 316
A.4. CORE_TRAP Function numbers ... 316
A.5. Summary of trap and function numbers .. 316
A.6. Error codes ... 321

B. Domain Service Registry .. 323
C. Physical Resource Inventory ... 324

C.1. Introduction ... 324
C.2. Root Node ... 325

C.2.1. PRI version property ... 325
C.3. Components Node .. 325

C.3.1. Power Management (PM) versioning property ... 325
C.4. Component Node .. 326

C.4.1. type Property ... 326
C.4.2. nac Property .. 327
C.4.3. fru Property .. 328
C.4.4. serial_number Property ... 328
C.4.5. part_number Property ... 328
C.4.6. rev_number Property .. 328
C.4.7. dash_number Property ... 328
C.4.8. id Property .. 328
C.4.9. path Property ... 329
C.4.10. label Property .. 329
C.4.11. name Property .. 329
C.4.12. pm_resource Property .. 329
C.4.13. pm_states Property ... 329
C.4.14. pm_cookie Property .. 330
C.4.15. pm_dependency Property ... 330
C.4.16. pm_coordination Property .. 330
C.4.17. pm_mapping Property ... 331
C.4.18. topo-hc-name Property .. 331
C.4.19. topo-skip Property .. 331
C.4.20. assignable-path Property .. 331
C.4.21. pm_power Property ... 331

UltraSPARC Virtual
Machine Specification

xiv

C.5. Firmware Node .. 332
C.5.1. max_guests Property ... 332
C.5.2. max_hv_ldcs Property ... 332
C.5.3. max_guest_ldcs Property ... 332
C.5.4. max_guest_dependencies Property ... 332
C.5.5. directio_capability Property .. 332

C.6. Read_Only_Memory Node ... 333
C.6.1. name Property ... 333
C.6.2. base Property .. 333
C.6.3. size Property ... 333

C.7. Rom_Img Node .. 333
C.7.1. name Property ... 333
C.7.2. offset Property ... 334
C.7.3. size Property ... 334
C.7.4. alignment Property ... 334
C.7.5. min_allocation Property ... 334
C.7.6. guest_use Property ... 334

C.8. Ldc_Endpoints Node ... 334
C.9. Ldc_Endpoint Node .. 334

C.9.1. resource_id Property ... 335
C.9.2. target_type Property .. 335
C.9.3. channel Property .. 335
C.9.4. target_channel Property ... 335
C.9.5. tx-ino and rx-ino Properties .. 335

C.10. Memory Segments and related nodes .. 336
C.11. Memory-Segment Node ... 336

C.11.1. base Property ... 336
C.11.2. size Property .. 336

C.12. Memory-Bank Node .. 336
C.12.1. size Property .. 337
C.12.2. mask Property .. 337
C.12.3. match Property ... 337

C.13. IO Device node .. 337
C.13.1. Sun4v to PCI Express root nexus device ... 337
C.13.2. Generic PCI device properties ... 337
C.13.3. PCI bridge type device properties .. 338
C.13.4. PCI slot type device properties .. 338
C.13.5. PCI network device properties .. 338
C.13.6. PCI SCSI device properties .. 338

C.14. Interrupt mapping node .. 338
C.15. Power-Management node ... 338
C.16. Memory-Grouping Node .. 338

C.16.1. id Property .. 339
C.16.2. name Property .. 339
C.16.3. pm_resource Property .. 339
C.16.4. pm_states Property ... 339
C.16.5. pm_cookie Property .. 339

C.17. Memory-Region Node ... 340
C.17.1. id Property .. 340
C.17.2. name Property .. 340
C.17.3. base Property ... 340
C.17.4. size Property .. 340

Bibliography ... 341

xv

List of Figures
1.1. Sun4v Architecture ... 2
1.2. Direct I/O ... 5
1.3. Virtual I/O .. 8
1.4. Virtual Network Multipath ... 10
1.5. Domain Manager .. 14
3.1. Sun4v Processor States .. 21
6.1. Interrupt queue head and tail register formats ... 31
7.1. Error queue head and tail register formats ... 35
8.1. Machine Description sections .. 37
8.2. Virtual Device hierarchy .. 59
14.1. Translation Table Entry (TTE) format ... 106
28.1. LDC Virtual Link Layer ... 233
29.1. Virtual I/O Layers ... 243
30.1. Domain Service communication stack Layers ... 272
30.2. Domain Services Communication Path Example ... 272

xvi

List of Tables
2.1. Hyper-fast trap calling convention ... 19
2.2. Fast trap calling convention .. 19
3.1. Privileged registers .. 22
3.2. Non-privileged registers ... 22
3.3. Ancillary state registers .. 22
3.4. Internal memory-mapped registers ... 23
4.1. Privileged registers .. 25
4.2. MMU registers ... 26
4.3. MMU context register barrier rules .. 27
6.1. Privileged registers .. 30
7.1. Error queue privileged registers ... 35
8.1. Machine description header .. 38
8.2. Element format .. 40
8.3. Element tag types ... 41
8.4. Virtual device classes .. 61
8.5. Virtual-device-port classes .. 66
14.1. TSB descriptor layout .. 104
14.2. MMU Fault Status Area Layout ... 108
14.3. MMU Fault Type values ... 109
14.4. MMU Fault Type values ... 109
16.1. Interrupt states .. 123
16.2. Interrupt states .. 123
19.1. Guest Software States .. 135
21.1. Trap Trace Control Structure ... 140
21.2. Trap Trace Buffer Entry Structure .. 140
21.3. Trap Trace Entry Types .. 141
25.1. RNG states ... 179
25.2. Niagara Crypto queue types .. 187
25.3. Niagara Crypto MAU queue entry .. 187
25.4. Niagara Crypto CWQ queue entry .. 188
25.5. TPM Registers .. 193
27.1. UltraSPARC-T1 J-Bus/DRAM Performance Counters .. 210
27.2. UltraSPARC-T1 MMU statistic buffer layout ... 211
27.3. Fire performance counters ... 214
27.4. SPARC performance counters .. 215
27.5. UltraSPARC-T2 SPARC and DRAM performance counters .. 216
27.6. UltraSPARC-T2 PCI-Express performance counters ... 217
27.7. SPARC performance counters .. 218
27.8. UltraSPARC-T2+ SPARC, L2, and DRAM performance counters 219
27.9. SPARC performance counters .. 222
27.10. UltraSPARC-T3 SPARC, L2, and DRAM performance counters 223
27.11. UltraSPARC-T3 PCI-Express performance counters ... 224
A.1. API Groups ... 315
A.2. Trap and Function numbers .. 316
A.3. Error codes ... 321
B.1. Domain Services .. 323

xvii

Preface
1. Foreward

This document is the software specification for the UltraSPARC virtual machine environment. The virtual
machine environment is created by a thin layer of firmware software (the “UltraSPARC Hypervisor”)
coupled with hardware extensions providing protection. The UltraSPARC Hypervisor not only provides
system services required by an operating system, but it also enables the separation of physical resources—
this allows multiple virtual machines to be hosted on a single platform. Each virtual machine is its own self-
contained partition (or “Logical Domain”) capable of supporting an independent operating system image.

This document details the UltraSPARC virtual machine environment together with the calling conventions
and detailed specifications of the virtual machine interfaces provided to a Logical Domain.

This document is intended for operating system and firmware engineers looking for detailed information
on the UltraSPARC virtual machine environment, as well as the merely curious.

2. Related specifications

The UltraSPARC virtual machine environment consists of a combination of machine registers described
by a programmer's reference manual, and a set of software services provided via the hypervisor APIs
described in this document.

The hardware registers available within a virtual machine environment form the basis of the hardware
architecture. This architecture incorporates the Level-1 SPARC v9[sparcv9] specification. However, it
supersedes and extends the Level-2 SPARC v9 specification in describing the programming model, register
and exception interfaces for privileged mode software. A full description of available machine registers
is given in the UltraSPARC Architecture[ua2007].

In addition to the UltraSPARC Architecture manual, processor specific details for each UltraSPARC pro-
cessor are provided in the supplemental manuals corresponding to each chip. These manuals provide in-
formation on chip specific hardware details, such as performance counters.

At the time of writing the latest versions of these specifications are available from the OpenSPARC website
[http://www.opensparc.org/]. The reader is recommended to visit the OpenSPARC website on a regular
basis for the most recent versions of these specifications.

http://www.opensparc.org/
http://www.opensparc.org/

1

Chapter 1. Overview
This document provides the detailed interface specifications for the UltraSPARC virtual machine environ-
ment. However, before the deep dive into the technical details, this section aims to provide an overview
of the entire architecture: the intentions behind much of the design, the individual components and how
they operate.

1.1. Architectural requirements
We start with the foundation stone for the UltraSPARC virtual machine environment; the UltraSPARC
Hypervisor.

The fundamental need to support multiple concurrently running operating systems on the same platform
was the goal. However, the UltraSPARC Hypervisor had to meet four architectural requirements in achiev-
ing this; security, heterogeneity, availability, and of course high performance.

One of the significant value propositions of a virtualization solution is the ability to consolidate multiple
workloads onto a single platform and thereby increase the overall efficiency of a datacenter. Achieving
this efficiency is however a non-trivial problem, after all operating systems have been able to run multiple
applications concurrently for decades, and yet datacenter administrators have traditionally avoided doing
so. Why?

In practice deploying an application in a datacenter often involves the careful selection and testing of a spe-
cific operating system together with its requisite patches and tuning parameters. Once selected, upgrades
to that application or even the underlying OS often occur on a timetable related to the application vendors
releases. Consequently, in an environment with multiple applications it is difficult to find OS versions,
patches etc. that work well for all applications, and for the same reasons upgrades have to be carefully
coordinated. So, it's usually just easier from an administrative perspective to assign a unique machine to
a specific application / task.

To deploy a OS virtualization solution into a typical data center environment for use as a consolidation
tool, the Hypervisor must be capable of supporting multiple different (heterogeneous) operating systems.

Often it is the case that different applications are owned and run by different departments within a corpo-
ration, or even different external customers. Consider a buggy or even malicious OS patch installed in
an operating system— while that could spell disaster for that specific virtual machine it should still be
effectively isolated from other virtual machines on the same platform. This means that an effective virtual
machine solution must provide strong security between virtual machines. Weak security (e.g. a poorly
chosen password) within one virtual machine should not leave the rest of the machine vulnerable to attack
either directly or by denial of service.

Similarly, placing so many eggs in one basket raises the need for improved fault tolerance, and increased
availability in the event of a failure. No matter what the capability for fault handling of an individual
OS, it is only as effective as the underlying hypervisor's ability to report and manage faults upwards.
For example, if a failing CPU can take out the entire hypervisor, the fault is not limited simply to the
virtual machine using that resource but is now expanded to the entire machine. Clearly then an effective
availability capability is required from a hypervisor in the event of system component failures.

Quite simply; the goal for a hypervisor is to create virtual machines that have the attributes of classic
independent machines, but consolidated onto a single platform where resources can be shared and for
that sharing to be as efficient as possible so that the overheads do not overwhelm the overall benefit of
consolidation.

The complete Logical Domaining solution is designed to behave as much like a collection of independent
machines as possible, even to the extent of all of the virtual machines being able to boot, shutdown, crash

Overview

2

and reboot independently of each other. The remainder of this section describes the final architectural
implementation to meet these requirements.

1.2. The hypervisor and sun4v architecture

Unlike other hypervisor solutions, the UltraSPARC Hypervisor is not booted from disk like a traditional
operating system. Instead the UltraSPARC Hypervisor is architected to be integrated into the firmware
PROM of each hardware platform, and starts up immediately after system initialization. This approach
enables chip-set specific code to be delivered directly with each platform as it is released. No careful
patching or tuning is required because each hypervisor is delivered with, and is specific to, a particular
platform.

The traditional firmware boot loader for SPARC, OpenBoot, is completely virtualized and each logical
domain uses its own independent copy for booting.

Key to high performance, as well as minimizing bugs and problems in the field, is keeping the hypervisor
as simple as possible. The overall Logical Domain architecture reflects the desire to keep features out of the
hypervisor and seat them within the virtual machines themselves. Quite simply, fewer lines of hypervisor
code mean fewer bugs, and a greater test coverage before each platform release.

The result then is a hypervisor that provides support functions to guest operating systems via a well defined
and stable software interface. Coupled with hardware support for protection and isolation the resultant
virtual machine environment is called the “sun4v” architecture.

Figure 1.1. Sun4v Architecture

Applicat ion Applicat ion Applicat ion

Solaris
OpenBoot

SPARC Hardware

Hypervisor

Sun4v
Interface

The figure above illustrates the sun4v interface provided by the UltraSPARC Hypervisor, and its relation-
ship to the virtualized clients that run within a logical domain.

1.3. Privilege, isolation and virtualization

In order to provide isolation and protection the UltraSPARC execution model is extended with a hy-
per-privileged mode. This additional privilege level is for the hypervisor alone, leaving guest operating
systems and their applications running in more restrictive modes that deny access to sensitive control reg-
isters and memory. The hypervisor in turn abstracts underlying hardware resources and exposes a subset
to each virtual machine or “Logical Domain”.

Overview

3

Consequently, guest operating systems within Logical Domains can only access or control platform re-
sources explicitly made available by the hypervisor. Typically that access is provided via hypervisor API
calls made by a guest operating system, where the parameters can be checked and approved by the hyper-
visor prior to being acted upon (or rejected). In a few cases where higher performance is required (such as
interrupt or timer handling) hardware support provides specific registers accessible from within a virtual
machine.

All sun4v architected registers are defined to be idempotent, and hypervisor API interfaces set or clear
state explicitly rather than by side effect. These criteria enable the complete state of a virtual machine
to be unloaded from machine resources, encapsulated, and then later resurrected on different hardware
resources— even on a different physical machine. This fundamental capability allows a hypervisor to
support a range of useful feature. For example, simple capabilities such as the time-multiplexing of multiple
virtual CPUs onto a single physical CPU, or more complex functionality such as the live-migration of a
running virtual machine from one physical platform to another.

With hardware support the hypervisor also virtualizes memory. Physical memory is subdivided and allo-
cated to different domains. A unique address space is created for each virtual machine and supported by
the hypervisor.

By not being able to address anything outside its own domain a virtual machine is rigorously isolated from
memory and memory mapped devices it does not own. Hardware tags in the CPU translation look aside
buffers (TLBs) strictly enforce the separation of these address spaces allowing multiple virtual CPUs to
be efficiently time multiplexed onto a single physical CPU.

1.4. Direct I/O

While the hypervisor provides APIs for basic system components such as virtual CPUs, more complex I/
O devices are handled differently.

Most modern I/O devices designed for performance have fairly sophisticated device drivers to handle
multiple functions, concurrency, complex bug workarounds and even to upload device specific firmware.
Moreover, these I/O devices are often provided by third party vendors that have developed their own
closed-source device drivers.

Consequently, the UltraSPARC Hypervisor makes no attempt to virtualize hardware I/O devices. Instead
I/O devices are directly mapped into Logical Domains.

This approach is enormously beneficial on three levels;

Firstly, by avoiding a loadable device driver model, there are no possible security holes by which a guest
OS or an operator can insert buggy or malicious code into the hypervisor.

Secondly, no device specific patching or tuning of the hypervisor is required. This better matches the
stability model expected of system firmware. This is particularly important given that many I/O devices
are plug in cards from third party vendors and true testing can therefore only be achieved in the field.

Thirdly, no loadable device driver capability means no need for a device driver framework. This signifi-
cantly reduces the size of the hypervisor and therefore the number and range of possible bugs. For example,
at the time of writing, the Solaris device driver interface (DDI) framework contains more lines of code
than the entire hypervisor source base for either the UltraSPARC-T1 or UltraSPARC-T2 processors.

Depending on the platform hardware capabilities, devices can be mapped into individual domains at the
system bus level, the device level, or even down to functions within devices. (The latter requires capa-
ble multifunction devices such as the UltraSPARC-T2's network interface unit, or PCI-IOV devices). To

Overview

4

achieve this the hypervisor relies on the capabilities of the processor's memory management unit (MMU)
to control CPU access to device registers. Similarly, it requires the use of an I/O MMU to map and control
device access to system memory. Specifically, the I/O MMU is used to prevent one domain being able to
DMA to or from memory belonging to other domains sharing the same system.

The result is performance I/O devices being exclusively assigned to specific logical domains. The guest
operating systems running in those domains have direct access to the device registers and can configure
device operations such as DMA activity. DMA mappings for the I/O MMU are configured using hypervisor
APIs so that addresses specified can be validated by the hypervisor.

Device interrupts and system bus errors are directed from I/O devices via the hypervisor to virtual CPUs
in a virtualized form. This enables the hypervisor to remap, suspend or context switch virtual CPUs on
physical CPUs without risk of device interrupts being lost.

Thus domains with I/O devices can have direct control over those devices when performance is required.
Furthermore, guest operating systems do not require special device drivers to run in logical domains and
can continue to use the device driver frameworks they already have. This even allows legacy devices and
drivers from non virtualized systems to be used. And finally, system administrators do not have to change
their procedures when testing and patching of their operating systems to deal with third-party devices.

This model is the basic building block for all I/O in a Logical Domain system. However, it is insufficient
when there are more logical domains than physical I/O devices available for use. To overcome this restric-
tion, the architecture requires that some of the logical domains that are assigned physical I/O devices act
as proxies on behalf of the other domains. For this to work the domains need to be able to communicate.

Overview

5

Figure 1.2. Direct I/O

Logical Domain

Hypervisor
Virtual Nexus

App
App

App

Device Driver

Nexus Driver

Privileged Mode

Hyperprivileged
Mode

Hardware

I/ O
Bridge

I/ O MMU

Root Port

PCIe Device

PCIe Device

Logical Domain owns
PCIe root port and tree.
Device driver has direct
access to device registers.
Device driver calls into
nexus driver to control
I/ O MMU mappings for
DMA act ivit ies.

1.5. Logical Domain Channels

A logical domain channel (LDC) is a point-to-point, full-duplex virtual link created between domains by
the hypervisor. LDCs provide a data path, a means to share memory and a mechanism to deliver asyn-
chronous interrupts between domains.

The most basic communication mechanism is the delivery of short (64-byte) datagrams along a logical
domain channel. Guest operating system code can build higher level protocols for larger packet and reliable
communication. Thus the complexity for sophisticated domain- to-domain protocols remains with each
guest operating system, leaving the hypervisor to implement only the most basic transport mechanism.

In addition to the short message delivery capability, one domain can export memory to another directly
for sharing. With a direct shared memory interface both domains can then communicate as fast as the
implemented protocol and memory subsystem bandwidth will allow. Direct I/O devices can be configured
to DMA directly to/from memory imported from or exported to another domain. Either domain can revoke
the shared memory mapping at any time, and domains can only access the memory of another domain that
has been explicitly exported to them.

Overview

6

1.5.1. Stateless connections

Logical Domain Channels may be closed by either domain, or by the hypervisor at any time. It is expected
that guest operating systems utilizing LDCs are able to handle the arbitrary closure and re-connection of an
LDC. After an LDC closes, if the connection comes up again, a guest operating system must re-negotiate
the communication protocol without assumptions about the domain on the other side of the link.

This requirement is by convention and not enforced by the hypervisor, however it is specified in order to
support the dynamic re-configuration of system services wherein a domain's LDC may be disconnected
from one service and re-connected to a different service. A prime example of this is in the case of live-
migration, where a domain is moved from one box to another and subsequently connected to new support
domains on the new box.

Therefore domains utilizing LDC connections must be able to recover from a reset (closed and opened)
connection by re-negotiating protocol interfaces and be able to re-submit any pending transactions.

1.5.2. LDC security

Security is a paramount concern with any communication mechanism. In particular, the problems tradi-
tionally associated with networks of machines have been architected out - namely; information leakage,
authentication, faked credentials and denial of service attacks.

Unlike more general purpose communication mechanisms such as the Internet Protocol (IP), the hypervisor
Logical Domain Channel APIs provide no capability for a domain to open a connection to another domain.
LDCs can only be created by the system “Domain manager” (which we discuss later). Without a means
to establish their own connections, domains do not have to deal with problems of addressing, connection
management and authentication. A rogue domain cannot randomly connect to another domain. There is
no mechanism by which to undertake activities like port scanning.

If a LDC exists between two domains it had to have been created by the administrator for a specific named
purpose (for example a virtual disk interface), and both sides of that connection are clearly informed of
the role they are expected to play. As LDCs are simple point-to-point connections there is no risk of
information leakage to other domains via snooping techniques. Denial of service attacks are easily closed
off by a recipient domain by simply ignoring the rogue LDC; traffic from other domains cannot be blocked
since it arrives by separate point-to-point LDCs.

This unconventional approach to interconnecting domains is made possible because the virtual machines
all execute on the same shared memory system. Higher level protocols such as TCP/IP are expected for
use between applications in different domains or for in and out of box communication.

1.6. Machine Descriptions

Operating system code running within a virtual machine environment needs a means to discover the re-
sources that are available within that environment. On traditional non-virtual machines hardware resources
are typically probed for, which is an exhaustive process of testing hardware registers and waiting for lack
of response or bus errors to indicate that suspected hardware is not in fact present.

In a para-virtualized world, there is no need to go through this arcane process to discover available re-
sources. A simple hypervisor API provides a detailed description of the resources within the virtual ma-
chine. This description is called a “Machine Description” (or “MD”) and is a one-stop catalog of every
resource a guest operating system has available.

Aside from the basics such as CPU and memory map details, a domain's MD also contains detailed rela-
tional information about resources, such as NUMA latencies and the sharing between caches in the mem-
ory system hierarchy.

Overview

7

Some of the information provided in the MD is mandatory, and the rest is typically advisory to be used
for performance optimizations. The key advantage of storing this information with the hypervisor is that
it is always retrievable by a domain. This avoids any bottle-necking on a “master” domain to disseminate
the information. This allows for a simultaneous parallel boot after power-on of all logical domains in a
system without the single-point-of-failure that a master domain would introduce into the boot process.

1.7. Virtual I/O

Direct I/O is the foundation model for I/O access in a Logical Domain system. However, it is possible to
create more domains than there are physical I/O devices. In order to support sharing of I/O devices for
virtualization, we enable some domains with direct I/O access to act as proxies on behalf of other domains.

Communication between client and proxy domains is achieved using a high level negotiated protocol over
a dedicated LDC between domains. This document details the protocols currently in use between domains
for proxy services such as disk and networking I/O. These protocols are not in anyway enforced by the
hypervisor, and are a convention between domains.

As illustrated below a domain acting as a proxy for I/O is assigned a physical I/O device for direct access.
For this reason it is defined as an “IO domain”. The domain runs the appropriate device driver for the
specific hardware device.

Overview

8

Figure 1.3. Virtual I/O

Logical Domain

Hypervisor
Virtual Nexus

Device Driver

Nexus Driver

I/ O
Bridge

I/ O MMU

Root Port

PCIe Device

PCIe Device

Virtual Service
 Driver

Service Domain

Applicat ion

Applicat ion

Applicat ion

Virtual Service
 Driver

Domain Channel

The domain also runs a proxy service responsible for exporting an abstracted form of the device to other
client domains. For this reason it is also designated as a “Service domain”.

Overview

9

Note: There is no requirement for a “service domain” to also be an “IO domain”. For example, a service
domain may provide a virtual network switch to other clients without requiring a physical connection
outside of the box; thus the domain may have no IO domain capability. (We will cover domain roles later
in this section).

The proxy service run by the service domain receives I/O requests from each of its client domains, and
is responsible for servicing those requests on behalf of its client. For example, a disk read request is sent
to the service domain from its client. The LDC framework delivers the request to the service proxy in the
service domain, the proxy is then responsible for deciphering the request and utilizing an IO device driver
to schedule the request as appropriate. Once complete the proxy service then acknowledges completion
back to the client domain.

1.7.1. Abstraction

Typically the communication protocol for a given service is highly abstracted and agnostic with regard to
the physical device in the actual IO domain. For example, the disk server deployed with Solaris 10 uses
internal Solaris interfaces to access an underlying storage medium on behalf of its clients. This enables
storage bits to be provide by many different sources such as a disk, or a file or a RAID-ed volume — all
of which is abstracted and invisible to the client at the other end of the LDC channel. The client instead
sees is a disk service capable of reading and writing disk blocks according to the abstracted protocol.

This abstraction has enormous advantages when deploying multiple domains on a single system. For ex-
ample, instead of a dedicated boot disk for each virtual machine, a simple file on a RAID protected filesys-
tem can be used on the IO domain to store the boot disk images of each of the client domains. Backup of
the domains then becomes a simple matter of backing up the files on the IO domain.

1.7.2. Stateless connections & multipathed I/O

Following the requirements of the underlying LDC infrastructure, all virtual device protocols should be
designed to be stateless or transactional. This allows for a LDC channel to be arbitrarily broken and re-
connected (possibly to a different IO service). This functionality is expected by the domain manager, and
is relied upon to support resiliency, live migration and dynamic fail-over of system services.

For example, in the basic proxy configuration illustrated above, if the service were a virtual disk service,
and the service domain were to panic, (perhaps due to a hardware fault or buggy driver), the client domain
would observe the LDC being reset and wait until the channel came back up again. Once the service has
reestablished itself on the LDC, the client could re-negotiate the service capabilities and re-submit any
uncompleted transactions.

The subtlety here is that the client domain was unaffected by the failure and rebooting of its service do-
main. This mirrors how the client and server model would function if provided on two physically separate
machines. Another way to view this is as a means to harden IO devices and drivers that are prone to catas-
trophic failure by restricting them to their own domain.

In a more complex configuration, a multipath arrangement of I/O domains could be provided as illustrated
in the figure below.

Overview

10

Figure 1.4. Virtual Network Multipath

Service Domain Virtual Domain Service Domain

I/ O Bridge I/ O Bridge

Gb
Ethernet

Gb
Ethernet

Virtual LAN 1: 192.168.0/ 24

Virtual LAN 1b: 192.168.0/ 24

Device
Driver

V- Ether
Switch

V- Ether
Switch

V- Ether
Driver

V- Ether
Driver

Device
Driver

In this example, a client domain (2) has access to an external network via two service IO domains. Assum-
ing the client domain's operating system can support this kind of multipathed I/O, the configuration allows
for the failure of almost any part of the system up to the client domain itself. Traffic can be easily diverted
via the service domain on the right if the hardware (or operating system) in the service domain on the left
should fail. In addition, because the protocol is designed as stateless, a service action (e.g. card swap or
reboot) could bring the domain on the left back on line again, after which traffic from the redundantly
connected client can be load balanced back.

It is easy to see with this infrastructure, how even scheduled outages can be avoided. For example, because
the protocols are re-negotiated, a rolling service domain upgrade could be implemented first by upgrading
and rebooting first the left and then the right service domain without loss of external connectivity.

This simple set of requirements, implemented by the virtual device protocols, allows for some very inge-
nious and robust virtual I/O infrastructures to be created. Thus not only can physical I/O devices be shared
by multiple domains, but greater robustness and flexibility can be achieved using this kind of virtualization.

1.7.3. Virtual disk services

The virtual disk protocol defined in this specification assumes the stateless behavior described above. A
straightforward LDC is created between the service domain and the client domain by the domain manager.
The disk proxy service then slavishly responds to requests from the client.

In the same way that a service domain can support multiple client domains, a client domain can be config-
ured to utilize multiple service domains. If supported by the client domain's operating system, this multi-
pathed configuration can be used for redundant access to storage as described above.

1.7.4. Scalable virtual networking services

The virtual networking protocol defined in this specification allows for a full layer-2 Ethernet network
switch to be created in a service domain. This switch can also be configured with multiple upstream ports
(utilizing direct IO interfaces), or be configured to communicate with the local kernel for higher level
routing or firewalling functionality.

Each of the client domains of the networking switch has a LDC to the service domain. In the most basic
incarnation, network packets are sent by a client domain to its virtual network switch, that then forwards
those packets to the appropriate destination. The destination may be upstream or simply another domain
in the same machine.

Overview

11

The switch service protocol also provides broadcast and multicast functionality, as well as VLAN tagging
support.

For larger machines, where many domains may be consolidated1, it is possible that most of the commu-
nication occurs between domains on the same machine. In this scenario simply forwarding packets back
and forth via the service domain is remarkably inefficient. The switch must inspect each packet it receives
to determine its destination. Without hardware acceleration this uses CPU resources in the service domain
for packets remaining within the physical box.

To improve on latency and lower this overhead expenditure, the virtual networking protocol supports
the creation of a distributed switching capability. Where possible, LDCs are created to fully connect all
domains that are associated with the same switch. In this way most of the switching burden is moved to the
client domain sending the packet. If the destination MAC address of a packet is to a domain with which
the guest has a direct LDC link the packet is sent over that link rather than via the switch.

This fully connected distributed switching capability is only possible because the domains are running on
a shared memory platform where LDCs are essentially a software creation rather than a scarce hardware
resource.

With this capability, the service domain hosting a virtual network switch typically only requires resources
to handle broadcast, multicast or upstream packets.

1.7.5. Virtual I/O Limits

There are no architectural limits on the number of services a domain can provide, or on the number of
clients that can be serviced. In reality, system resources typically limit practical implementation. Service
domains should be sized to accommodate required load and responsiveness. As the virtualized IO is oper-
ating by proxy sufficient CPU and memory resources will be required by a service domain to accommo-
date the load generated by its clients.

This provisioning does not have to be static; if the guest OS in a service domain supports dynamic recon-
figuration (“DR”) (see later) then resources can be dynamically added or removed in response to changing
loads. It is recommended that operating systems supporting DR are utilized for service domains to provide
flexibility in resource assignment and to avoid having to over-provision service domains to accommodate
worst-case scenarios.

1.8. Hybrid I/O

For certain I/O devices, for example the in-built network interface unit (NIU) of the UltraSPARC-T2, the
underlying hardware consists of multiple functions. In the case of NIU these functions are DMA engines
for networking traffic. The intention behind multiple functions is to enable spreading the packet processing
load between multiple CPUs— this is important for a unit providing two 10GB/s Ethernet ports.

The direct I/O model allows control of the NIU from a single logical domain where it can be exported as
a virtual network interface to other client domains using the virtual I/O model described earlier.

To improve performance the hypervisor also supports a coupled capability, where the device is managed
like the virtual I/O model, but with some registers of each device function exported to client domains for
higher performance direct I/O access. The combination of a Virtual I/O model with a Direct I/O model
for a device is called Hybrid I/O.

The Hybrid I/O model uses the virtual I/O model for device management; in particular the receipt and
handling of errors in common device infrastructure. However in addition, direct I/O access is allowed by
each client domain to its own subset of the physical device registers. This provides for a higher performance
I/O capability without having to use a proxy service.

Overview

12

Physical I/O functions are typically limited to fewer than the possible number of client domains. Therefore,
the Hybrid infrastructure is designed to allow a dynamically configurable fall-back to a purely virtual I/O
model when hardware functions are needed by other domains. In this way the service domain in a Hybrid I/
O model acts as a scheduler for I/O resources switching its client domains between the Virtual and Hybrid
modes of device interaction depending on service needs and resource availability. For example, initially
8 DMA engines may be split evenly between 7 client domains and the service domain itself. If another
client domain suddenly experiences a high traffic load, all the 7 client DMA engines may be withdrawn
and re-assigned to the high load domain.

1.9. Logical Domain Manager

As discussed earlier the hypervisor was architected to be as simple as possible, it provides the machine
specific core virtualization functionality and acts as the strict security enforcer between domains.

Management of logical domains requires a set of administrative interfaces (both user and machine) as well
as code to ensure correct reconfiguration of the system when domains are created, changed or removed.

To avoid complexity in the hypervisor, this administrative functionality was consigned to an application
called the Logical Domain Manager capable of being run on any POSIX compliant guest OS.

The Logical Domain Manager controls the hypervisor and all of the supported logical domains. It provides
control interfaces for CLI or automated management interfaces. And, most importantly, it is responsible
for the assignment of physical resources to logical domains.

The Logical Domain (LDom) Manager communicates with the hypervisor via a special LDC endpoint
called the hypervisor control (“hvctl”) channel. The LDC endpoint is exposed to the user-level Domain
Manager via a kernel driver. This LDC endpoint is only accessible from a domain that has been assigned
the privilege to control the hypervisor. This is designated the Control Domain.

Other than the Control Domain, no other domain has access to a hypervisor control interface. Since there
is no access to a Logical Domain Manager either, other domains in the system are not able to reconfigure
the virtual environment or potentially disrupt the machine.

This ensures the strictest possible security for the virtualization control point. Security weaknesses can
only be introduced by the system administrator by poor configuration choices. These issues are no different
than with any conventional non-virtualized network(s) of machines, and should be familiar to experienced
administrators.

1.9.1. Domain roles

From the hypervisor's perspective all domains are the same. We introduce terms describing roles and
capabilities only to aid descriptive text. Each and every domain can have one or more of the following roles;

1.9.1.1. I/O domain

An I/O domain has been granted direct access to one or more I/O devices. Typically this provides a limi-
tation on this domain that curtails live-migration to another box unless the guest OS software also supports
the ability to dynamically remove the I/O device(s) in support of migration. The LDom Manager should
automatically detect and sequence this as required.

1.9.1.2. Service domain

A service domain provides a virtualized (virtual or hybrid I/O) service to other domains in the system.
This may be for disk storage or networking, or other future services. A service domain can also be the

Overview

13

client of another service domain. Indeed two service domains can even be each other's client and service
respectively. The designation of service domain merely indicates that there is a dependency relationship
on this domain by another client domain.

A service domain is often also an IO domain— to provide access to external I/O resources— this is not
a requirement. A domain can provide services purely to other clients within the system. For example, a
service domain can provide a virtual network (switch) for a number of client domains entirely within the
box. For this, no external network interfaces are required, and no need to assign an IO capability.

A service domain can also be the client of another domain's service. For example, a firewall domain may
provide a virtual network switch to it clients and at the same time employ a virtual network interface as
its upstream link.

1.9.1.3. Control domain

In concrete terms a Control Domain has been granted access to the hypervisor's control interface. If capable
of running the Logical Domain Manager it may control and reconfigure the hypervisor and effectively
the entire system.

1.9.2. Domain dependencies

A system administrator can define domains to be as dependent or independent of each other as desired
within the constraints of available hardware resources.

For example, a very simple configuration of two domains each with direct IO access to its own devices
effectively behaves as two entirely separate machines. Essentially these domains can be considered as
sharing only the system chassis, power supply and are susceptible only to the most catastrophic of system
errors.

At the other end of the spectrum, it is possible to configure all guest domains to have a dependency on a
single domain that functions as a combined IO, service and control domain. Even in this extreme single
point of failure scenario, this single domain should not crash any of the other client domains if it fails,.
Moreover, if it can be rebooted and brought back online the dependent clients should be able to recover.

Key to this is the lack of dependency other domains have on the control domain. The control domain is
not required for other guest domains to (re)boot, and can itself be rebooted without affecting any other
domains in the system. However, if configuration changes to the hypervisor are required this must be done
using the control domain.

From the hypervisor's perspective, there is no special quality or differentiated functionality a role imbibes
a domain. Thus, any and all domains can be shutdown, reconfigured or restarted at any time.

The only system dependencies that exist are created by the system administrator in the configuration of
client and service domains. As described earlier the failure of a service domain will exhibit only a tempo-
rary outage to a client domain if that service domain can be brought back online. In other words the client
does not have to be rebooted with the server. And, if resilience against even temporary outages is sought,
multipathed configurations can be created with a single client utilizing two or more service domains.

1.9.3. Domain manager operation

A full description of the internal workings of the Logical Domain Manager is worthy of its own document,
and certainly beyond the scope of this one. However it is useful to briefly discuss how the domain manager
functions, and how it interacts with each of the logical domains it manages.

A high-level view of the LDom manager is illustrated below.

Overview

14

Figure 1.5. Domain Manager

Logical Domain Control Domain

Domain Services
Stack

Guest
Back End

HV
Back End

LDom
Sequencer

Hypervisor

DB Module

LDom
Controller

CLI

Reset & Config

Control

Ldom Manager

The LDom manager is a user level application responsible for coordinating and allocating the physical
resources of its platform and reconfiguring the hypervisor's internal security rules.

There are two core components to the LDom manager: the LDom controller responsible for domain man-
agement and resource assignment decisions, and the the LDom sequencer responsible for sequencing the
steps necessary to effect any changes to the overall system.

Typically a system administrator will use a command line or higher level control application to instruct the
LDom manager to make configuration changes or to query the state of the virtual machine environment.
This is done using a simple TCP/IP socket connection with the control protocol being encapsulated within
an XML schema.

The LDom controller receives instructions from its control interfaces and acts upon them using an internal
database of resources and domain configuration requirements. The database module itself contains the
complete physical resource inventory (“PRI”) of the machine. This inventory is determined by the reset
and configuration code run while the system is powering up and retrieved either from the external system
controller (or possibly the hypervisor) over a LDC. The PRI itself is in the same binary form as a guest
machine description. Although it contains only physical resource information it forms the basis template
used to construct the virtual machine descriptions provided to each of the guest domains.

1.9.3.1. Constraint engine

At the heart of the the LDom controller is a constraint engine that assigns resources to domains based upon
configuration requirements provided by the administrator. Typically constraints are provided at a high
level, such as “5 CPUs” and “1GB of memory”, leaving the constraint engine to pick the most suitable
resources using default heuristics appropriate to the platform.

Overview

15

For example, cache sharing information from the PRI can serve to guide the constraint manager in selecting
available CPUs that share the same cache for a domain. At the same time it will try to select CPUs that do
not share caches with other domains so as to minimize cache interference effects between domains.

If allowed to, by configured constraint rules, the constraint engine may also reconfigure other existing
domains to better balance resources in the system.

New configurations are described by new machine descriptions generated by the LDom manager. Each
affected domain receives an updated machine description, and the hypervisor is given an update to its
hypervisor machine description.

1.9.3.2. Transactional updates

All machine descriptions are downloaded to the hypervisor from the domain manager in a transactional
fashion, ensuring that the end state of any reconfiguration operation is either the complete resultant state,
or the previous stable state in the case of a configuration error.

By enforcing this transactional model with the LDom manager, the hypervisor can protect itself from
unstable or incomplete reconfiguration operations.

Moreover, should the Control Domain fail (crash) part way through a reconfiguration operation, the hy-
pervisor will be left in the previously defined stable state— as if the failed reconfiguration operation had
never been attempted.

In the event that the Control Domain or LDom manager do fail, once restarted the LDom manager can
retrieve the complete current running state of the virtual machines and available resources from the hyper-
visor. This key feature enables the control domain to be rebooted arbitrarily without killing or affecting
any of the other running domains in the system.

1.9.3.3. Sequencer

After resources are allocated, the LDom controller binds them to the configured domains. Once this step is
completed the domain manager proceeds to notify the hypervisor and (appropriate) domains of the change
in configuration to the system.

These notifications are delivered via back-end drivers that communicate via LDC to the hypervisor and to
live guest domains. Care has to be taken to notify the different parties in the correct order and to ensure
correct completion of the transactional model described above.

To achieve this a sequencer in the LDom manager controls the update steps taken during the reconfigu-
ration operation.

For example, adding a CPU to a domain requires first notifying the hypervisor to make the new CPU
resource available. Upon completion the domain manager notifies the guest OS in that domain of the
availability of the new resource.

A more complex example is the creation of a domain; again the hypervisor is notified first to ensure that
the domain is created and resources correctly assigned. Then, any service or other client domains have to
be notified to ensure they are aware of the new domain's existence.

Removing resources typically occurs in reverse order, first notifying domains that resources are going
away, and when safe notifying the hypervisor to complete the resource reconfiguration.

1.10. Domain service infrastructure
Aside from fundamental services like virtual IO devices, LDCs are also used to connect domains to the
domain manager and to other system services.

Overview

16

These channels operate using a “domain services” protocol described later in this document. This protocol
enables a domain to advertise its capabilities to the domain manager and to provide non virtual IO services
to other domains.

For example, most operating systems cannot easily recover from the unexpected loss of a CPU. So if an
operating system is capable of supporting dynamic reconfiguration of CPUs it can announce this capability
to the domain manager using the domain services protocol. This serves two purposes; firstly to notify the
domain manager that dynamic CPU reconfigurations can be undertaken on this domain while it is running,
and secondly to provide a request protocol from the domain manager to the guest to cleanly stop using a
CPU resource prior to its removal.

Domain services are negotiated using a common versioned registration protocol, allowing domains to dy-
namically advertise any reconfiguration operations they are capable of supporting. If a service is not ad-
vertised by a domain, the LDom manager infers that it is not safe to undertake the corresponding recon-
figuration operation while the guest is running.

Similarly, domain services provide additional proxy capabilities to the domain manager. Thus the domain
manager can remotely query domain performance statistics, request reboots or shutdowns. Also, the do-
main can request changes to its environment variables.

1.11. OpenBoot firmware

Unless otherwise configured for a domain, a virtualized OpenBoot firmware image is provided to each
logical domain as it starts. This enables initial loading and execution of an operating system, diagnostic
programs, and the ability to configure boot time parameters.

The retention of the OpenBoot command line interface is to maintain compatibility with existing non-vir-
tualized systems. However, for most administrators boot parameter configuration is more easily done when
configuring a domain using the LDom manager rather than starting and then logging into the domain's
console.

1.12. Error Handling

Handling errors in a virtualized environment poses a number of interesting problems.

Typically errors are delivered via platform specific hardware registers, and correspond to specific hardware
resources.

Only the hypervisor can capture these errors, decipher them, and direct them to the affected domain (or
worse-case domains) for further recovery.

Ignoring errors often leads to deeper problems such as data corruption. Simply crashing or panicking is
not acceptable for a hypervisor that supports multiple virtual machine environments.

The UltraSPARC Hypervisor typically performs the first stage of triage on received errors, collecting the
error information (recording for later analysis on the system controller) and then converting this into a
virtualized form for delivery to affected domains.

Errors corrected by hardware are typically not reported to affected guest domains. Instead they are recorded
for chronic analysis on the system controller. Abnormal correctable error rates can result in the domain
manager taking corrective action to avoid using a system resource. For example, CPUs or memory can
be pro-actively offlined before they fail.

Uncorrectable errors typically result in some form of data damage. This may be in critical data, (e.g. a
kernel data structure), or unused data (e.g. a free page pool) for a guest operating system. The hypervisor

Overview

17

does not know which errors are critical and which are irrelevant, so it reports all uncorrectable errors to
the affected domains in a virtualized form.

Use of virtualized error reporting serves two purposes;

Firstly, a guest OS only knows about its virtual resources, not the underlying physical ones. So when
reporting a memory error, the hypervisor simply identifies the region of the guest n domain's address space
that has become corrupted.

Secondly a guest OS may very well be older than the hardware it is running on. Supplying hardware
specific data such as ECC syndromes to a guest operating system is pointless as that OS most likely will
not know what to do with the information. Consider a message of the form: “warning temperature 72
degrees”. Without knowledge of the physical hardware, is this a warning of something being too hot or
too cold? To avoid these problems error messages have a more precisely defined semantic meaning. For
example; “warning: too hot”, or “data corrupted between address X and address Y”.

The information provided to a guest OS is designed to enable the quarantining of affected resources. For
example, the off-lining of a corrupted memory page, or at least the (semi) graceful shutdown of the guest
OS itself.

Errors can occur as a direct result of a domain action (e.g. a CPU write to memory), or be detected in the
background (e.g. via a memory scrubber).

For this reason the hypervisor further categorizes errors into “resumable” and “non-resumable” forms;
meaning “after receipt of this error message you can resume what you were doing”, or “you cannot com-
plete what you were doing respectively”.

1.13. Advanced LDoms features

The architectural design of logical domains technology translates into unique capabilities beyond platform
virtualization. Logical domains include advanced features that help enterprises ease software migration,
simplify reconfiguration of hardware resources, and improve application isolation.

1.13.1. Dynamic reconfiguration

Spikes in demand and changing business needs cause individual IT services to use varying amounts of
compute capacity over time. The Logical Domains Manager enables administrators to optimize use of
compute resources by modifying the number and type of virtual resources, including CPU, memory, and
I/O devices assigned to a logical domain.

The ability to do this is a function of a guest OS's capabilities. However, the domain services mechanism,
described earlier, provides an extensible mechanism for a guest to describe those capabilities to the domain
manager.

Where the guest OS itself cannot support a dynamic reconfiguration operation, the LDom manager can still
support reconfiguring the domain during a reboot of that guest OS. This does not impact any of the other
virtual machines in the system. This technique is called “delayed reconfiguration”, and hypervisor updates
to a domain's configuration are delayed until the guest OS in that domain shuts down its virtual machine.

1.13.2. Logical domain migration

As mentioned earlier in this section the virtual machine architecture and interfaces have been designed to
allow the complete capture of a virtual machine state. This enables a running guest operating system to be
frozen and then saved, to be thawed later, or migrated while still running to a different physical machine.

The emphasis on state-less transactional interfaces enables guest domains to be re-bound to new resources
arbitrarily. This mechanism is leveraged when moving or saving logical domains.

Overview

18

It falls to the domain manager(s) to ensure that appropriate resources are available at the destination prior
to live-migrating a logical domain, but once that determination has been made the operation can proceed
until completion.

Snapshots of running domains can be taken to support rapid roll-back or rapid reboot in scenarios where
high-availability is paramount. Even for basic domain deployment, a pre-booted snapshot of a domain
can be brought online rapidly without having to wait for a guest OS to boot. Dynamic technologies like
DHCP can be leveraged to ensure that unique domain characteristics such as host names or IP addresses
are dynamically assigned once a “vanilla” snapshot image is started.

19

Chapter 2. Hypervisor call conventions
Hypervisor API calls are made through the use of a trap (Tcc) instruction using sw_trap_numbers
0x80 and above. The calling convention has two forms; fast-trap and hyper-fast-trap. The principle dif-
ference between these two forms is whether the function number is passed in a register or is encoded in
the trap instruction itself. The latter is the faster form, but has a limited number of possible functions, and
is therefore reserved for performance critical operations only.

2.1. Hyper-fast traps

This trap mechanism encodes the API function number (0x80 + a 7-bit value) in the Tcc instruction's
sw_trap_number itself, and therefore provides the fastest possible method of reaching the actual func-
tion implementation. The calling convention is as follows:

Table 2.1. Hyper-fast trap calling convention

Register Input Output

%o0 argument 0 return status

%o1 argument 1 return value 1

%o2 argument 2 return value 2

%o3 argument 3 return value 3

%o4 argument 4 return value 4

All arguments and return values are 64-bit values unless explicitly stated by the description of a specific
API service. Further arguments may be passed in memory, as defined on a per function basis.

2.2. Fast traps

Fast traps are the preferred mechanism for hypervisor API calls. Fast trap API calls primarily use
sw_trap_number 0x80 in the Tcc instruction, with the required function number provided as a 64-
bit value in register %o5. The calling convention is as follows:

Table 2.2. Fast trap calling convention

Register Input Output

%o5 function number undefined

%o0 argument 0 return status

%o1 argument 1 return value 1

%o2 argument 2 return value 2

%o3 argument 3 return value 3

%o4 argument 4 return value 4

All arguments and return values are 64-bits unless explicitly stated by the description of a specific API
service. Further arguments may be passed in memory, as defined on a per function call basis.

2.3. Post hypervisor trap processing

The following convention is used, unless explicitly described for a particular API service:

Hypervisor call conventions

20

• All API services resume executing at the next logical instruction after the service trap as with a done
instruction.

• All sun4v defined registers are preserved across an API service except as explicitly stated below;

• Registers providing arguments to an API service (including the function number %o5 for fast traps)
should be considered volatile, and their values upon return are undefined unless they are explicitly
specified on a per-service basis. Registers not used for passing arguments or returning values are
preserved across the API service.

• Upon return from the API service, the returned status is given in register %o0. A value of zero in
%o0 indicates successful execution of the API service, all other values indicate an error status (as
defined in Section A.6, “Error codes”).

• If an invalid sw_trap_number is issued, or if an invalid function number is specified, the hypervisor will
return with EBADTRAP (as defined in Section A.6, “Error codes”) in %o0.

• All 64 bits of the argument or return values are significant.

21

Chapter 3. State Definitions
3.1. Processor states

Each virtual CPU can have one of three different states:

Stopped Stopped CPU is stopped, not executing code, and may be started via the cpu_start API
service

Running CPU is executing

Error CPU is in error, and is no longer executing code

The relationship of these CPU states and hypervisor services may be summarized with the state diagram
below.

Figure 3.1. Sun4v Processor States

Stopped

Running
cpu_start

cpu_stop

cpu_yield

Error

error

reset
mach_ex it
mach_sir

3.2. Initial guest environment

The initial state of each sun4v virtual CPU is defined in the Sun4v Architecture Specification. Initial
register state is duplicated here together with initial register configuration performed by the hypervisor
for completeness.

State Definitions

22

3.3. Privileged registers

Table 3.1. Privileged registers

Register Initial Value

%cwp 0

%cansave NWINDOWS - 2

%cleanwin NWINDOWS - 2

%canrestore 0

%otherwin 0

%wstate 0

%pstate all 0 except pstate.priv=1, pstate.mm=tso

%tl MAXPTL (2)

%gl MAXPGL (2)

%pil MAXPIL (15)

%tba current rtba

%tt POR

3.3.1. Non-Privileged Registers

Table 3.2. Non-privileged registers

Register(s) Initial Value

%g1-%g7 0

%i0[%cwp] real address of start-up memory segment

%i1[%cwp] size of start-up memory segment

%i2-%i7[%cwp] 0

%i0-%i7[all other windows] 0

%l0-%l7[all windows] 0

%f0-%f63 binary 0

%fsr 0

3.3.2. Ancillary State Registers

Table 3.3. Ancillary state registers

Register Description Initial Value

ASR 0 %y 0

ASR 2 %ccr 0

ASR 3 %asi ASI_REAL

ASR 4 %tick >0, npt=0

ASR 5 %pc current program counter

ASR 6 %fprs 0

State Definitions

23

Register Description Initial Value

ASR 19 %gsr 0

ASR 22 %softint 0

ASR 24 %stick >0, npt=0

ASR 25 %stick_cmpr 0 with interrupt disabled (bit 63=1)

3.3.3. Internal memory-mapped registers

Table 3.4. Internal memory-mapped registers

ASI VA Initial Value

ASI_SCRATCHPAD 0x00 0

ASI_SCRATCHPAD 0x08 0

ASI_SCRATCHPAD 0x10 0

ASI_SCRATCHPAD 0x18 0

ASI_SCRATCHPAD 0x2, if implemented 0

ASI_SCRATCHPAD 0x28, if implemented 0

ASI_SCRATCHPAD 0x30 0

ASI_SCRATCHPAD 0x38 0

ASI_MMU 0x08 (primary context) 0

ASI_MMU 0x10 (secondary context) 0

ASI_MMU 0xn08 (for valid n>0) 0

ASI_MMU 0xn10 (for valid n>0) 0

ASI_QUEUE 0x3c0 (cpu mondo queue head) 0

ASI_QUEUE 0x3c8 (cpu mondo queue tail) 0

ASI_QUEUE 0x3d0 (dev mondo queue head) 0

ASI_QUEUE 0x3d8 (dev mondo queue tail) 0

ASI_QUEUE 0x3e0 (resumable error queue head) 0

ASI_QUEUE 0x3e8 (resumable error queue tail) 0

ASI_QUEUE 0x3f0 (non-resumable error queue head) 0

ASI_QUEUE 0x3f8 (non-resumable error queue tail) 0

3.3.4. CPU-specific Registers

Platform-specific performance counters will be configured such that exceptions/interrupts are disabled.

3.4. Other initial guest state

• MMU state is disabled.

• MMU fault status area location is undefined.

• TSB info is undefined.

• All queue base addresses and sizes are undefined.

State Definitions

24

• One CPU is placed into the running state, all other CPUs are in the stopped state.

• Initial guest soft state is set to SIS_TRANSITION, with an empty description string (zeros).

25

Chapter 4. Addressing Models
4.1. Background

This section defines the sun4v memory management architecture. The intent is to provide a memory ad-
dressing capability for a virtualized architecture at the same time removing the explicit dependence on
hardware mechanisms for virtual memory management. Mechanisms are provided to privileged mode to
manipulate the memory made available, and in turn to virtualize and make that memory available to non-
privileged mode processes.

4.2. Address types

The sun4v architecture has two address types, as in legacy architectures. The main difference is that virtual
addresses are translated to real addresses, as opposed to being translated to physical addresses. This
change is made in order to enable the segregation of physical memory into multiple partitions.

Virtual addresses Virtual addresses are translated by an MMU in order to locate data in physical
memory. This definition is unchanged from current systems for non-privileged
and privileged mode addresses.

Real addresses Real addresses are provided to privileged mode code to describe the underly-
ing physical memory allocated to it. Translation storage buffers (TSBs) main-
tained by privileged mode code are used to translate privileged or non-privi-
leged mode virtual addresses into real addresses. MMU bypass addresses in
privileged mode are also real addresses.

4.3. Address spaces

Address spaces are unchanged from UltraSPARC-1. Primary and secondary virtual addresses are associ-
ated with context identifiers that are used by privileged code to create multiple address spaces.

4.4. Address space identifiers

Instructions can explicitly specify an address space via address space identifiers. All the SPARC v9 ASI
definitions are unchanged for sun4v, and a number of new ASIs are also defined. ASIs related to memory
management are described below:

Table 4.1. Privileged registers

ASI Number ASI Name

0x14 REAL_MEM

0x15 REAL_IO

0x1c REAL_MEM_LITTLE

0x1d REAL_IO_LITTLE

0x21 MMU

4.4.1. ASI 0x14 & 0x1c: REAL_MEM{_LITTLE}

This ASI provides privileged mode access to cached memory using a real rather than virtual address.
For this access the context id is unused. A nonresumable_error trap occurs if the access cannot be
completed.

Addressing Models

26

4.4.2. ASI 0x15 & 0x1d: REAL_IO{_LITTLE}

This ASI provides privileged mode access to uncached memory addresses using a real rather than virtual
address. For this access the context id is unused. A nonresumable_error trap occurs if the access
cannot be completed.

4.4.3. ASI 0x26 & 0x2E: REAL_QUAD{_LITTLE}

This ASI provides atomic access to 16 bytes of data using real addresses. A
mem_address_not_aligned trap is taken if the address is not 16 byte aligned.

4.4.4. ASI 0x21: MMU

The sun4v MMU interface consists of the following registers:

Table 4.2. MMU registers

Register Address

PRIMARY_CONTEXTn 0xn08

SECONDARY_CONTEXTn 0xn10

These registers are used for the primary and secondary context values utilized by the processor TLB for
distinguishing address space contexts. The number of primary and secondary context registers provided
is implementation dependent subject to the following rules:

1. The number of primary context registers must be the same as the number of secondary context registers.

2. The context registers must start with n=0, and be arranged sequentially without gaps. So, for example
with 4 registers, n=0,1,2,3.

3. The number of bits provided must be the same for all context registers.

4. For ease of programming, a write to PRIMARY_CONTEXT0 causes the same context value to be written
to all other PRIMARY_CONTEXT registers. Similarly, a write to SECONDARY_CONTEXT0 causes the
same context value to be written to all other SECONDARY_CONTEXT registers.

Sun4v provides a minimum of 13 bits of context (bits 0 through 12). Further bits (from 13 and up) may
be provided as an implementation dependent feature. The maximum number of bits for a given hardware
platform are given as a property in the guest's machine description. Privileged code is responsible for
honoring the number of bits supported by hardware.

Programming note

The policy of how privileged code chooses to use the primary and secondary context registers
is beyond the scope of this document. However, because sun4v only guarantees the existence
of PRIMARY_CONTEXT0 and SECONDARY_CONTEXT0 it is recommended that these be used
as process private context registers, while any remaining context registers be used for possibly
shared context address spaces.

4.4.4.1. Translation conflicts

For sun4v platforms that implement more than one primary and more than one secondary context register
privileged code must ensure that no more than one page translation is allowed to match at any time.

Addressing Models

27

An illustration of erroneous behavior is as follows: an operating system constructs a mapping for virtu-
al address A valid for context P, it then constructs a mapping for address A for context Q. By setting
PRIMARY_CONTEXT0 to P and PRIMARY_CONTEXT1 to Q both mappings would be active simultane-
ously— potentially with conflicting translations for address A. Care must be taken not to construct such
scenarios.

To prevent errors/data corruption sun4v processors will detect such conflicts, flush the TLB, and issue a
{data/instruction}_access_exception.

4.4.4.2. Barrier rules

By definition changing either the primary or secondary context registers has side effects on processor
behavior. The following table describes the behavior of a store to these registers.

Table 4.3. MMU context register barrier rules

 @ TL = 0 @ TL > 0

PRIMARY_CONTEXT undefined; privileged
code should not change
PRIMARY_CONTEXT at TL=0

membar #Sync, DONE or
RETRY are required for effect to
be guaranteed observable, other-
wise results are undefined

SECONDARY_CONTEXT membar #Sync is required for ef-
fect to be guaranteed observable,
otherwise results are undefined

membar #Sync, DONE or
RETRY are required for effect to
be guaranteed observable, other-
wise results are undefined

4.5. Translation mappings

Privileged code describes virtual to real address mappings to manage its virtual address spaces. These
mappings are declared either as translation table entries (TTEs) in a translation storage buffer (TSB) de-
scribed in Section 14.1, “Translation Storage Buffer (TSB) specification ”, or can be established directly
by the use of the hypervisor API call mmu_map_perm_addr (Section 14.8.7, “mmu_map_perm_addr”).
This call can also be used to establish a limited number of “locked” mappings for which privileged code
cannot tolerate an MMU miss trap.

4.6. MMU Demap support

Privileged mode demap operations become hypervisor API calls.

It is important to note that sun4v provides a coherent demap capability for the privileged mode. The demap
API call takes a list of virtual CPUs for which the demap operation is to be applied.

The following three demap operations are required for sun4v:

Demap Page The translations demapped match the virtual address and context id designated.

Demap Context the translations demapped match the context id designated.

Demap All this demaps all translations.

4.7. MMU traps

MMU privilege mode traps are a subset of the MMU traps described in the SPARC v9 specification:

Addressing Models

28

instruction_access_mmu_miss, data_access_mmu_miss
shall be generated when a non-privileged or privileged mode access does not have a translation in
any of the TSBs.

data_access_protection
shall be generated when a non-privileged or privileged mode access matches a translation that does not
allow the requested action, i.e. store when TTE write enable field is clear. This also enables software
simulation of a TLB entry modified bit, as well as fast copy-on-write page processing.

To speed processing of a copy-on-write or modified-bit usage, the faulting TLB entry is guaranteed
flushed from the local CPU's TLB upon entry of this exception. Thus, in the common case, no flush
operation needs to be generated before enabling write permission in the faulting TTE.

instruction_access_exception, data_access_exception
shall be generated as the result of a non-privileged mode access when TTE privilege field is set, or
as the result of an instruction fetch when the TTE execute permission bit is not set, or as the result of
two conflicting translation matches for the same virtual address.

fast_instruction_access_MMU_miss, fast_data_access_MMU_miss
shall be generated when a non-privileged or privileged mode access does not have a translation in any
TLB and no TSB is specified for the virtual CPU.

fast_data_access_protection
shall be generated when no TSB is specified for the virtual CPU and a non-privileged or privileged
mode access matches a TLB translation that does not allow the requested action, i.e. store when TTE
write enable field is clear. This also enables software simulation of a TLB entry modified bit, as well
as fast copy-on-write page processing.

To speed processing of a copy-on-write or modified-bit usage, the faulting TLB entry is guaranteed
flushed from the local CPU's TLB upon entry of this exception. Thus, in the common case, no flush
operation needs to be generated before enabling write permission in the faulting TTE.

4.8. MMU fault status area

MMU-related faults have their status and fault address information placed into a memory region made
available by privileged code. Like the TSBs above, the fault status area for each virtual processor is de-
clared via a hypervisor API call.

The MMU fault area is arranged on an aligned address boundary with instruction and data fault fields
arranged into distinct 64-byte blocks. The contents and layout of the MMU fault status area are currently
specified in Section 14.6, “MMU Fault status area” of this specification.

29

Chapter 5. Trap Model
For sun4v, two of the three SPARC v9 trap types: precise and disrupting, behave according to the SPARC
v9 specification. The third, deferred, may behave according to the UltraSPARC-I specification. The key
difference is that UltraSPARC-I deferred traps do not provide additional information so that uncompleted
instructions older than TPC can be emulated.

In the case of a CPU that implements SPARC v9 deferred traps, the hypervisor will present a deferred trap
to privileged mode, but will also make available enough information so that privileged code can attempt to
emulate any uncompleted instructions. In the case of a non-resumable error trap, the emulation information
will appear in the error report. This is also the rationale for not including the SPARC v9 FQ register in
sun4v, since it is used for emulation of deferred floating point traps.

A more precise description of the MMU, interrupt and error traps is made below to clarify behaviors left
unspecified by SPARC v9.

5.1. Privilege mode trap processing

As with the SPARC v9 specification, the processor's action during trap processing depends on the trap
type, the current trap level (TL register), and the processor state.

For trap processing from non-privileged or privileged mode to privileged mode the steps taken are the
same as the SPARC v9 specification. Note that if a privileged code lowers the value of TL, there is no
guarantee that the values of TSTATE, TPC, TNPC and TT will remain consistent for larger values of TL.

5.2. Trap levels

The maximum trap level available to privileged software in sun4v is defined to be 2 (MAXPTL).

5.2.1. Privilege mode TL overflow

When TL = MAXPTL, an additional privileged mode trap results in the delivery of a watchdog_reset trap
to privileged mode with TT set to the type of trap that caused the error. TL remains at MAXPTL.

5.3. Sun4v privileged-mode trap table

The privileged-mode trap table is defined in the programmers reference manual for each specific processor.

30

Chapter 6. Interrupt model
This chapter describes the sun4v architecture for sending and receiving interrupts.

6.1. Definitions

CPU mondo CPU to CPU interrupt message.

Device mondo Interrupt sent by an I/O device.

Interrupt report A message describing an interrupt.

Interrupt queue A FIFO list of interrupt reports.

6.2. Interrupt reports

Interrupts are described by interrupt reports. Each interrupt report is 64 bytes long and consists of eight
64-bit words. If a report contains less than eight meaningful words it will be padded with zeros.

6.3. Interrupt queues

Interrupts are indicated to privileged mode via interrupt queues each with its own associated trap vector.
There are 2 interrupt queues, one for device mondos and one other for CPU mondos. New interrupts are
appended to the tail of a queue, and privileged code reads them from the head of the queue.

Privileged code is responsible for allocating real memory regions for these queues. Each queue region
must be a power of 2 multiple of 64 bytes in size. The base real address must be aligned to the size of
the region. For example, a queue of 128 entries is 8K bytes in size and must be aligned on an 8K byte
real memory address boundary.

The queue configuration is described via hypervisor API calls when the queue region is created or modified
(see Section 13.2.6, “cpu_qconf”).

6.3.1. Queue support registers

The contents of each queue is described by a head and tail pointer. The head and tail pointer for each
queue are held in registers as offsets from the base of their respective queue region. These interrupt queue
registers are accessed with the QUEUE ASI (0x25). Each of the registers are addressable and accessible
as 64-bit quantities. The ASI addresses are as follows:

Table 6.1. Privileged registers

Register Address Access

CPU_MONDO_QUEUE_HEAD 0x3c0 Read/Write

CPU_MONDO_QUEUE_TAIL 0x3c8 Read-only

DEV_MONDO_QUEUE_HEAD 0x3d0 Read/Write

DEV_MONDO_QUEUE_TAIL 0x3d8 Read-only

In privileged mode, the head offset registers are read and write accessible, the tail offset reg-
isters are only readable. Attempting to write the tail register from privileged mode results in a
data_access_exception trap.

Interrupt model

31

6.3.1.1. *_QUEUE_HEAD and *_QUEUE_TAIL

The status of each queue is reflected by its head and tail pointers:

*_QUEUE_HEAD holds the offset to the oldest interrupt report in the queue.

*_QUEUE_TAIL holds the offset to the area where the next interrupt report will be stored.

An event that results in the insertion of a queue entry causes the tail of that queue to be incremented by 64
bytes. Privileged code is responsible for similarly incrementing the head pointer to remove an entry from
the queue. The queue pointers are updated using modulo arithmetic based on the size of a queue. A queue
is empty when the head is equal to the tail. A queue is full when the insertion of one more entry would
cause the tail pointer to equal the head pointer.

Figure 6.1. Interrupt queue head and tail register formats

 6
 3 6 5 0
+--+-------+
| head/tail offset | 0 |
+--+-------+

The format of each of the QUEUE_HEAD and QUEUE_TAIL register is shown above. Bits 0 through 5
always read as 0, and attempts to write them are ignored.

The minimum head and tail register size is provided as a property value in the machine description given
to a guest.

6.4. Interrupt traps

The sun4v architecture has an interrupt trap for each of the two interrupt queues:

cpu_mondo this trap informs privileged mode that an interrupt report has been appended to the CPU
mondo queue.

dev_mondo this trap informs privileged mode that an interrupt report has been appended to the dev
mondo queue.

Both traps are disrupting, meaning that the current instruction stream can be restarted with a retry instruc-
tion, and that they can be blocked by setting pstate.ie = 0.

6.4.1. CPU mondo interrupts

CPU to CPU messages are are sent via CPU mondo interrupts. The term mondo refers to the original
UltraSPARC-1 bus transaction where they were first introduced.

6.4.1.1. Sending CPU mondos

CPU mondos are sent via hypervisor API calls. The API allows 64 bytes of data to be sent to the targeted
CPUs. The API call also includes the ability to send mondos to multiple CPUs in a single call to improve
efficiency.

Interrupt model

32

6.4.1.2. Receiving CPU mondos

CPU mondos are received via the CPU mondo queue.. When this queue is non-empty, a cpu_mondo
disrupting trap is pended to the target CPU. The mondo data received is stored as the interrupt report.

6.4.2. Device mondo interrupts

Device mondo interrupts are received via the device mondo queue. When this queue is non-empty, a
dev_mondo disrupting trap is pended to the target CPU. The interrupt report contents are device-specific,
although a hypervisor API call does exist to allow privileged code to target device interrupts to specific
CPUs.

6.5. Device interrupts

Every device (both virtual and physical) has differing interrupt needs. The device mondo payload was
defined to provide a modest amount of information in support of an interrupt so as to minimize the number
of additional hypervisor calls required to service an interrupt.

With the device mondo queue registers being implemented by hardware, and directly accessible by the
virtual machine's Operating System, no hypervisor API calls are required to identify the source of an
interrupt, dispatch the appropriate interrupt handler and subsequently clear the pending interrupt status.
Only the device driver itself may need API calls to access the specific device concerned.

6.5.1. Device handles and devinos

To manage devices and their interrupts each device is identified by a device handle. A device handle is
unique for a specific device within a virtual machine. The device handle for a device is typically provid-
ed to the guest OS running in a virtual machine via the Machine Description (see Chapter 8, Machine
description) obtainable from the hypervisor. A device handle (or dev_handle) should be treated as an
opaque cookie value. No semantic information can be derived from the value itself, it is merely a handle
by which a guest operating system can identify a device instance to the hypervisor when using an API call.

Devices often have more than one interrupt source. For example, a simple serial device may have sepa-
rate transmit and receive interrupts. Consequently to identify interrupt sources within a device a second
parameter - a device interrupt number or “devino”— is used to disambiguate interrupts belonging to a
specific dev_handle.

6.6. Sysinos and cookies

As described above, the sun4v virtual machine architecture delivers interrupt notifications to a virtual CPU
by means of a device mondo queue. Each interrupt entry in the device mondo queue is a fixed 64 Bytes in
size and is used to hold a modest amount of additional information regarding the interrupt it represents.

The first 64-bit word of each device mondo packet holds an identifier for the interrupt source, and the
remaining 7 words are defined to be interrupt source specific.

Hypervisor APIs that relate to interrupt handling typically require the passing of a devhandle and the
devino to uniquely identify a specific interrupt within the virtual machine.

6.6.1. Legacy use (the sysino)

The initial UltraSPARC T1 hypervisor supplied a “sysino” in word 0 of each device mondo to identify
the source of an interrupt. This hypervisor's sysino was derived from the actual device handle and devino
of the interrupt source. For the devices in use by a guest operating system the sysinos to be generated by

Interrupt model

33

the hypervisor in device mondos could be determined using the Hypervisor's INTR_DEVINO2SYSINO
API call.

The sysino API was intended for the Hypervisor to return a 64-bit value of it's choosing to represent an
interrupt source. The arbitrary sysino value was intended such that any algorithm might be employed in
generating a sysino for the corresponding device handle and interrupt number. In practice the implemen-
tation was simply to concatenate the devhandle and ino values into a single 64-bit sysino number.

Solaris 10 uses this sysino value as an index into a linear table programmed with information relevant
to the specific interrupt source. The size of this table fixed at Solaris compile time as a function of the
number of CPUs.

The above assumption made by Solaris requires that the sysinos supplied in each device mondo lie in the
range 0-2047 - the size of the table when Solaris is compiled for 64 CPUs.

There is no mechanism to enforce this contract between guest OS and hypervisor. The result is simply that
the sysinos generated by the hypervisor that are out of range of the table are silently dropped (interrupts
are lost), and worse, the upper end of the Solaris table is used for software induced timer interrupts, so
unfortunate generation of Hypervisor sysinos can in fact be interpreted as interrupts other than those for
the device they represent.

The additional hurdle of dynamic assignment of sysinos presents itself for Logical Domaining and Live
Migration. Both features require the ability to dynamically assign and delete interrupt sources for a guest
OS, and furthermore transfer those assignments between machines.

Given these and a number of other problems, the sysino interface is being deprecated, and is unlikely to be
supported in future hypervisors. New guest operating system code should not use interrupt APIs requiring
sysinos unless compatibility with old UltraSPARC-T1 hypervisors is required.

The hypervisor API versioning interfaces can be used to identify the availability of old and new interrupt
interfaces when necessary.

As described below the interrupt cookie mechanism that replaces sysinos may be used in a backwards
compatible manner to avoid significant re-writes of legacy OS interrupt handling code.

6.6.2. Interrupt cookies

To solve the aforementioned problems with sysinos, Guest OSs and Hypervisor a cookie based mechanism
has been implemented.

Instead of a sysino provided by the hypervisor to identify an interrupt source, a guest OS will be able to
set a 64-bit cookie value of its choice for a specific devhandle + devino pair. This cookie is returned as
word 0 in a device mondo entry when the interrupt occurs. The cookie may be defined and interpreted in
anyway by the guest - for example as a pointer to an internal data structure for the interrupt.

Though legacy interrupt sources (for example the existing PCI-E infrastructure on Ontario/Erie) may have
cookie support in the Hypervisor, the corresponding guest OS nexus drivers must continue to provide
support for existing hypervisor defined sysinos so as to continue to function on legacy firmware imple-
mentations.

Similarly, new firmware implementations should continue to provide support for sysino based interrupt
APIs, in order to support legacy guest OS nexus drivers.

Chapter 16, Device interrupt services of this document defines the APIs used to set and get interrupt
cookies in addition to APIs to manipulate the interrupt state machine using by dev_handle and ino —
thus removing the need for the sysino and the problems of its dynamic allocation and migration between
machines.

34

Chapter 7. Error model
This section describes the sun4v error handling and reporting architecture. To allow for a degree of future
proofing, this component of sun4v has to be flexible, and robust enough to gracefully cope with error
situations yet to be envisioned by system designers. In particular it is a design goal of sun4v that an older
sun4v OS be able to handle reports from new hardware — if only via a set of default actions.

7.1. Definitions

Error class a group of errors with common attributes that are handled in a similar manner.

Error report a message describing an error sent to privileged mode.

Error queue a FIFO list of error reports of the same class.

7.2. 7.2 Error classes

The sun4v architecture defines two classes of errors: resumable and non-resumable errors.

7.2.1. Resumable error

A resumable error indicates the delivery of an error notification that leaves the current instruction stream
in a consistent state so that execution can be resumed after the error is handled. A resumable error does
not require any specific action by privileged code; the error may even be ignored. More sophisticated
privileged code may record the error and/or forward it to a diagnosis agent. While all corrected errors are
resumable, it is important to note that some uncorrectable errors are also resumable, e.g., an uncorrectable
write-back error is resumable since the current instruction stream is not affected, but if the corrupted data
is later fetched, a non-resumable error would occur. Whether or not the error was corrected is indicated
in the error header.

7.2.2. Non-resumable error

A non-resumable error indicates the delivery of an error notification that leaves the current instruction
stream in an inconsistent state. The instruction stream (non-privileged or privileged) interrupted by this
error cannot be resumed without explicit software intervention. In addition to possibly recording the error
and/or forwarding it to a diagnosis agent, privileged code must either abort the current instruction stream,
or attempt to recover from the error. The instruction stream may only be repaired if the error caused a
precise trap. If the error caused a deferred trap, it cannot be repaired. The error's trap type is indicated
in the error header.

7.3. Error reports

The sun4v architecture presents error information to privileged mode via error reports. An error report
consists of a common 64 byte header, followed by error-specific data. The error-specific data will also be a
multiple of 64 bytes in length, so the entire length of an error message will always be a multiple of 64 bytes.

7.4. Error queues

Errors are reported to privileged mode via error reports. Error reports are appended to a FIFO error queue.
There are two error queues, one for each error class (resumable and non-resumable). Privileged code
removes errors from the front of the error queue as it handles them.

The contents of each queue is described by a head and tail pointer. The head and tail pointer for each queue
are held in registers as offsets from the base of their respective queue region. These interrupt queue registers

Error model

35

are accessed with the ASI_QUEUE ASI (0x25). Each of the registers are addressable and accessible as
64-bit quantities. The ASI addresses are as follows:

Table 7.1. Error queue privileged registers

Register Address Access

RESUMABLE_ERROR_QUEUE_HEAD 0x3e0 Read/Write

RESUMABLE_ERROR_QUEUE_TAIL 0x3e8 Read-only

NONRESUMABLE_ERROR_QUEUE_HEAD 0x3f0 Read/Write

NONRESUMABLE_ERROR_QUEUE_TAIL 0x3f8 Read-only

In privileged mode, the head offset registers are read and write accessible, the tail offset reg-
isters are only readable. Attempting to write the tail register from privileged mode results in a
data_access_exception trap.

7.4.1. Error Queue Head and Tail Pointers

The status of each queue is reflected by its head and tail pointers:

RESUMABLE_ERROR_QUEUE_HEAD, NONRESUMABLE_ERROR_QUEUE_HEAD
holds the offset to the oldest error report in the queue.

RESUMABLE_ERROR_QUEUE_TAIL, NONRESUMABLE_ERROR_QUEUE_TAIL
holds the offset to the area where the next error report will be stored.

An event that results in the insertion of a queue entry causes the tail of that queue to be incremented by 64
bytes. Privileged code is responsible for similarly incrementing the head pointer to remove an entry from
the queue. The queue pointers are updated using modulo arithmetic based on the size of a queue. A queue
is empty when the head is equal to the tail. A queue is full when the insertion of one more entry would
cause the tail pointer to equal the head pointer.

Figure 7.1. Error queue head and tail register formats

 6
 3 6 5 0
+--+-------+
| head/tail offset | 0 |
+--+-------+

The format of each of the QUEUE_HEAD and QUEUE_TAIL registers is shown above. Bits 0 through 5
always read as 0, and attempts to write them are ignored. The minimum head and tail register size is 16
bits (bits 6 though 21). Unimplemented bits must read as zero, and be ignored when written.

7.5. Error traps

The sun4v architecture has two error traps:

resumable_error
this trap informs privileged code that an error report has been appended to the resumable error queue.
This trap is a disrupting trap, meaning that the current instruction stream can be restarted with a retry
instruction, and that resumable_error traps can be blocked by setting pstate.ie to 0.

Error model

36

nonresumable_error
this trap informs privileged code that an error report has been appended to the non-resumable error
queue. This trap may be precise or deferred, as indicated in the error header. A precise trap may
be restartable if the corruption can be repaired, but a deferred trap cannot be restarted even if the
corruption is repaired. Non-resumable errors cannot be blocked, or nest. Privileged code must update
the non-resumable error queue head as quickly as possible to indicate when it is prepared to take
another non-resumable error trap. If the non-resumable error queue is not empty when another non-
resumable error trap occurs, the hypervisor will stop the current CPU, and send a resumable error to
another CPU in the same partition. If only one CPU has been configured in the partition, the hypervisor
will inform the service processor.

At entry of the trap handler, the processor caches will be enabled and cleared of any faults. System memory,
however, may have uncorrectable errors. If the real address of a memory error can be determined, this
information will appear in the error header.

37

Chapter 8. Machine description
To describe the resources within a virtual machine (or logical domain), a data structure called a machine
description (MD) is made available to the guest running in each logical domain / virtual machine envi-
ronment.

This section describes the transport format for the machine description (MD).

This format is provided for the contract between the producer of the MD (typically the Service Entity) and
the consumers in the logical domains (for example, OBP boot firmware and the Solaris OS).

8.1. Requirements
The format of the machine description is designed so that any consumer may either elect to read and
transform it into an internal representation, or merely use it in place. For the latter, the encoding needs to
be easily readable with an efficient decoder. Similarly a simple encoding requirement also exists for the
system software responsible for generating a particular machine description.

A hypervisor will provide a machine description as a whole to a guest operating system upon request in
response to an API call. The machine description is written into a buffer owned by the guest, and not shared
with any other guest or with the hypervisor. Once provided it is truly private to the guest. Therefore, there
is no requirement that the encoding format support any form of dynamic update or extension. Updates to
a machine description are indicated by providing a complete new machine description.

8.2. Sections
The machine description is provided in four sections as illustrated below and described below.

Figure 8.1. Machine Description sections

Header

Node Block

Name Block

Data Block

These sections are linearly concatenated together to provide a single machine description.

8.3. Encoding
Unless otherwise specified, all fields described herein are encoded in network byte order (big-endian).

Unless otherwise specified, all fields are packed without intervening padding, and have no required byte
alignment.

Machine description

38

Where alignment is specified, it is defined in relation to the first byte of the machine description header.

8.4. Header
The format for the machine description header is defined below:

Table 8.1. Machine description header

Byte offset Size in bytes Field name Description

0 4 transport_version Transport version number

4 4 node_blk_sz Size in bytes of node block

8 4 name_blk_sz Size in bytes of name block

12 4 data_blk_sz Size in bytes of data block

The header is easily described by the following packed C structure for a big-endian machine:

struct md_header {
 uint32_t transport_version;
 uint32_t node_blk_sz;
 uint32_t name_blk_sz;
 uint32_t data_blk_sz;
};

The transport_version specifies the version encoding that applies to this MD. The transport ver-
sion is a 32-bit integer value. The upper 16 bits correspond to a major version number, the lower 16 bits
correspond to a minor version number change.

8.4.1. Version numbering

The transport_version number for this specification is 0x10000, namely version 1.0.

An increase in the minor number of the transport version corresponds to the compatible addition or removal
of information encoded in the machine description. This includes, but is not limited to, the removal of
certain property types, or the addition of new property types. Guests can expect to be able to decode some,
but not all of the Machine Description, and must handle this expectation accordingly by ignoring unknown
types.

Future specification revisions defining new element types found outside a node encapsulation (e.g. between
NODE_END and NODE) are considered incompatible and require an increase in the major version number
of the MD transport header.

8.4.2. Size fields

• Each size field describes the size in bytes of the remaining three blocks in the machine description.

• The node block follows immediately after the section header.

• The name block starts at byte offset: 16 + node_blk_sz.

• The data block starts at byte offset: 16 + node_blk_sz + name_blk_sz.

• All sizes are multiples of 16 bytes.

• The total size of the MD is 16 + node_blk_sz + name_blk_sz + data_blk_sz.

Machine description

39

• Each section (sizes; node_blk_sz, name_blk_sz, data_blk_sz) may be a maximum of 232-16
bytes in length.

Note: The name block and data block sections are described below first, to assist in understanding of the
subsequent node block description.

8.5. Name Block
The name block provides name strings to be used for node entry naming. Legal name strings are defined
as follows:

• A name string is a human readable string comprised of an unaligned linear array of bytes (characters)
terminated by a zero byte (NUL '\0' character). NUL termination enables the use of C functions such
as strcmp(3) for comparison.

• Character encoding consists of all human readable letters and symbols from ISO standard 8859-1 not
including: blanks, “/”, “\”, “;”, “[”, “]”, “@”.

Each name string is referenced by its starting byte offset within the name block.

Name string lengths are stored along with the byte offset in the node elements, limiting name length to
255 bytes, not including the terminating NUL character.

There may not be duplicate strings in the name block; a given name string may appear only once in the
name block. Thus the offset within the name block becomes a unique identifier for a given name string
within a machine description.

A single name string may be referenced from more than one node element.

The name block is padded with zero bytes to ensure that the subsequent data block is aligned on a 16
byte boundary relative to the start of the machine description. These pad bytes are included in the name
block size.

Note: The name block contains name strings that are held independently from the data block section in
order to assist with accelerated string lookups. This technique is described later in Section 8.13, “Accel-
erating string lookups”.

8.6. Data Block
The data block provides raw data that may be referenced by nodes in the node block.

Raw data associated with node block elements is simply a linear concatenation of the raw data itself and
has no further intrinsic structure. The size, location and content of each data element is identified by the
referring element in the node block.

Data block contents are unaligned unless specified as part of the referring property's requirements. When
alignment is required it is considered relative to the first byte of the overall machine description. Alignment
is achieved by preceding a data element with zero bytes in the data block.

The producer of a machine description is required to arrange that data requiring a specific alignment in
the MD is placed on an appropriate alignment boundary relative to the start of the MD. The consumer of
an MD is required to read the machine description into a buffer aligned correctly for the largest alignment
requirement the consumer may have, or be prepared to handle unaligned data references correctly.

8.7. Node Block
The node block is comprised of a linear array of 16 byte elements aligned on a 16 byte boundary relative
to the first byte of the entire machine description.

Machine description

40

The node block elements have specific types and are grouped as defined below so as to form “nodes” of
data. Each element is of fixed length, and each element may be uniquely identified by its index within
the node block array.

Any element A may refer to another element B simply by using the array index for the location of element
B. For example, the first element of the node block has index value 0, the second has index 1, and so on.

8.7.1. Element format

Elements within the node block have a fixed 16-byte length format comprised of big-endian fields de-
scribed below:

Table 8.2. Element format

Byte offset Size in bytes Field name Description

0 1 tag Type of element

1 1 name_len Length in bytes of element name. Element
name is located in the name block.

2 2 _reserved_field reserved field (contains bytes of value 0)

4 4 name_offset Location offset of name associated with
this element relative to start of name block.

8 8 val 64-bit value for elements of tag type NODE,
PROP_VAL or PROP_ARC

8 4 data_len Length in bytes of data in data block for
elements of type PROP_STR and of type
PROP_DATA

12 4 data_offset Location offset of data associated with
this element relative to start of data block
for elements of tag type PROP_STR and
PROP_DATA

For a big-endian machine this is illustrated by the packed C structure below:

struct md_element {
 uint8_t tag;
 uint8_t name_len;
 uint16_t _reserved_field;
 uint32_t name_offset;
 union {
 struct {
 uint32_t data_len;
 uint32_t data_offset;
 } y;
 uint64_t val;
 } d;
};

The tag field defines how each element should be interpreted.

The name associated with this element is given by the name_offset and name_len fields giving the
offset within the name block and length of the node name not including the terminating NUL character.

Machine description

41

The remainder of the node element has two formats depending upon the node's tag field. The node element
either contains a 64-bit immediate data value, or, for elements requiring an extended data or string, it
consists of two 32-bit values providing the size and offset of the relevant data within the data block.

8.7.2. Tag definitions

Note: Element tag enumerations are chosen so that an ASCII dump of the node section will reveal each
element type thus aiding debugging.

The following element tag types are defined:

Table 8.3. Element tag types

Tag Value ASCII
equiv

Name Description Value field

0x00 NUL LIST_END End of element list

0x4e 'N' NODE Start of node definition 64-bit index to next node in
list of nodes

0x45 'E' NODE_END End of node definition

0x20 SPC NOOP No-op list element— to be
ignored

0

0x61 'a' PROP_ARC Node property arcing to an-
other node

64-bit index of node refer-
enced

0x76 'v' PROP_VAL Node property with an inte-
ger value

64-bit integer value for prop-
erty

0x73 's' PROP_STR Node property with a string
value

offset and length of string
within the data block

0x64 'd' PROP_DATA Node property with a block
of data

offset and length of string
within the data block

8.8. Nodes

The array of elements in the node block form a sequence of nodes terminated by a single LIST_END
element.

• A node is a linear sequence of two or more elements whose first element is NODE and whose last element
is NODE_END.

• Between NODE and NODE_END there are zero or more elements that define properties for that node.
These are PROP_* elements. The ordering of these elements (between NODE and NODE_END) does
not confer meaning.

• The name given to a NODE element is non-unique and defines the binding of property elements that
may be encapsulated within that node.

• The NOOP element is provided so that an entire node may be removed by overwriting all of its constituent
elements with NOOP. A NODE link that arrives at a NOOP element is equivalent to the next NODE or
LIST_END element after the sequence of NOOP elements.

• The PROP_ARC element is used to denote an arc in a DAG, therefore a PROP_ARC element may only
reference a NODE element.

Machine description

42

• Note: A node referenced by any PROP_ARC element cannot be removed by use of NOOP element unless
all the referring PROP_ARC elements are removed. PROP_ARC elements may be removed by conver-
sion to a NOOP element.

• The element index of a NODE element is serves as a unique identification of a complete node and its
encapsulated properties.

• The value field associated with a NODE element (elem_ptr->d.val) holds the element index to the
next NODE element within the MD.

• A reader may skip from one node to the next without having to scan within each node for the NODE_END
by using this index value to locate the next NODE element in the node block.

8.9. Node definitions
The type of a node is defined by the name string associated with the NODE element designating the start
of the node in the machine description node block. Nodes can be found by linear search matching on type
or by following the PROP_ARCs of a DAG.

8.9.1. Node categories

Nodes in a machine description serve one or two purposes; to provide information about a virtual machine
resource they represent and, optionally to function as a construction node within a DAG formed within
the machine description. A construction node may contain properties about certain resources, however its
primary function is as a container for the arc links (PROP_ARC properties) that connect to other descriptive
nodes.

Nodes belong to one of four categories that determine what walkers must handle within the MD. A node's
category determines whether nodes of that type can be expected to found within the MD, or whether nodes
of that type are optional. The categories are defined below:

core Nodes of this type are always required to be present in the MD.

resource required If the resource described by the node is available within the virtual machine,
an associated node of this type is required to be present in the MD in order
to describe the resource.

required by X If a node of type X is present in the MD, then one (or more) nodes of this type
will be present in the MD and associated with X.

optional A node of this type need not appear as part of the MD, it is entirely optional,
and guest OS code should have a default policy to continue functioning despite
this absence.

8.10. Content versions
The root node (Section 8.19.1, “Root node”) is unique in the entire machine description. It is; the one node
from which all other nodes can be reached, guaranteed to be the first node defined in the node block, and
is required to be present in a properly formed machine description.

The root node is primarily a construction node, with arc properties connecting to other nodes in the de-
scription. The root node carries a string property content-version that defines the version number
of the content of the machine description.

Content versioning is defined independently of the machine description transport version. The content
version identifies the rules surrounding construction of the DAG describing the machine.

This specification is for content version “1”.

Machine description

43

Minor changes such as the addition of new node types, properties or arc names, or the removal of optional
nodes or properties, do not require a content version number change.

Incompatible changes to the node definitions such that any possible earlier machine description consumer
will encounter problems with the newer content cause a version change.

8.11. Common data definitions

As defined by the machine description transport, data values for string and data property elements
(PROP_STR and PROP_DATA) are placed in the data block of the machine description. This section de-
fines commonly used formats of data placed in the data block of a machine description and referred to
using elements with the PROP_DATA tag.

Additional data formats may also be defined explicitly with a specific node definition.

8.11.1. String array

A string array is a commonly used data property that defines a concatenated list of NUL character termi-
nated strings. The PROP_DATA element that refers to this structure carries an offset (within the MD data
block) to the start of the first string. The size field corresponds to a count of all the string bytes comprising
the compound string list.

In this format strings are concatenated one immediately after the next. Thus if p is a pointer to the first
string, then p+strlen(p)+1 is a pointer to the second. The overall size of this data field is used to determine
the last string in the list. Every string in the list must terminate with the NUL character. The string pointed
to by p is the last string in the array if p+strlen(p)+1 equals the address of the property data plus its length.
A string array of zero elements is not possible since the data length of a PROP_DATA element cannot be
zero. Consumers should interpret the absence of the property as indicating an array of zero elements.

For example; the string list “{ "data", "load", "store" }” would be encoded as a PROP_DATA pointing to
a 16 byte block of the data section of the MD with the byte values: 0x64 0x61 0x74 0x61 0x00
0x6c 0x6f 0x61 0x64 0x00 0x73 0x74 0x6f 0x72 0x65 0x00.

8.12. How to use a machine description

A machine description (MD) contains both explicit information about resources within a machine - detailed
by specific nodes within the MD, and implicit information about the relationship of those resources -
detailed by how nodes are interconnected into a relationship graph. We detail the relationship properties
later in this section.

8.12.1. Using the MD as a list

For the simplest of sun4v guest operating environments, details of memory system hierarchy or even
cache sizes are of little to no importance. Rather, basic information such as available memory regions and
numbers of virtual CPUs are sufficient for the environment to function.

Therefore the MD is designed to enable the extraction of basic information without the need to parse any
of the inter-relational information also provided.

For example, a simple guest may wish to simply determine the number of CPUs available in the machine.
Within the MD each CPU is represented by a node of type “cpu” (please see Section 8.19.3, “cpu node”
for the definition of node types).

A guest may then, starting at the first node in the MD, simply linearly walk the list of nodes from one to
the next in the list looking for nodes of a specific type. As each specific node is found properties may then
be read from within that node. Pseudo code for this is illustrated below.

Machine description

44

int
find_node_idx(uint_t *bufferp, char *namep)
{
 struct md_header *hdrp;
 struct md_element *nodep;
 int i, nelems;
 char *strp;

 hdrp = (void *)bufferp;
 nodep = (void *)(bufferp + 16);
 nelems = hdrp->node_blk_sz / 16;
 strp = buffer + 16 + hdrp->node_blk_sz;
 for (i = 0; i < nelems; i = nodep[i].d.val) {
 char *sp;
 if (strcmp(strp + node[i].name_offset,
 namep) == 0)
 return (i);
 }
 return (-1); /* failed */
}

8.13. Accelerating string lookups

To search for specific nodes or properties within a node, list element names need to be matched against
known strings. The name for each list element is indirectly referenced in the name block of the machine
description.

The basic method of searching for nodes or properties implies that for each tagged element in the machine
description list, the name string must be found (using the offset in the element) and then the string compared
against the desired string value.

While providing correct results these numerous string compares slow searching of the machine description.

The string match process may be short circuited due to the property of uniqueness of strings in the name
block. The name block is constructed to guarantee that each string appears only once in the name block
regardless of the number of times it is referenced by different elements. Since a desired string (e.g. “cpu”)
can appear at most once in the name block, the index to that string in the name block becomes as unique
as the string itself.

With this knowledge a more trivial method of searching the MD, is to first find the strings of interest in the
name block— thus identifying the unique index for each string name. Then the MD itself can be searched
by trivially matching the first 64 bytes of each element.

For example, suppose we wish to count the number of CPUs represented in the MD. We first identify
the string “cpu” in the name block; for our example it might appear at index 0x123. Thus any element
uniquely identify the start of a cpu node will have the tag value 'N', name length of 4 (3 plus the NUL
string terminator) and name offset of 0x123. So then in the binary image of our example MD the first 64
bits of any “cpu” node element will have the unique value of 0x4e0300000123.

A trivial linear search of the MD for this pattern enables nodes of type “cpu” to be counted;

Similarly, sought elements within a node can be matched using the same method of testing the first 64
bits of the element structure.

Machine description

45

Elements describing the start of a node have the specific property that the value field (elem_ptr-
>d.val) holds the index of the element for the next node in the machine description. So when searching
specifically for node elements, other elements in the MD are trivially skipped thus speeding the search.

It is recommended that guests using the MD initially search and cache the indices of desired strings from
the MD name block to avoid even the cost of finding the matching string index for each new MD search.

It should noted however, that the name block is unique to a particular MD. If the guest requests a new copy
of a MD from the hypervisor, there is no guarantee that strings will have the same indices in the name
block of the new MD as they have in the name block of the old MD.

8.14. Directed Acyclic Graph

The intrinsic Machine Description (MD) is a collection of directed acyclic graphs (DAGs) of nodes de-
scribing resources or information available within a machine. This information is provided upon request
to a guest operating system via the machine description request API.

8.14.1. Graph nodes

The DAG nodes are defined by the NODE element within the element list, and contain all the properties
and arcs described until the subsequent NODE_END element. DAG node names form a well defined name
space such that a particular name describes the type of a well defined entity. A different type of entity
must be described by a node of a different name. For example, a CPU may be described by of type “cpu”,
while a cache is described by a node of type “cache”.

Each node is a specific instance of the entity it describes. Properties or named values held within that node
provide relevant details of the corresponding entity. For example, a cache node will hold a list of properties
describing attributes of that cache.

As a node is defined by a specific NODE element within the element list, then for a specific MD, we can
uniquely refer to that node by the index of its starting node element withing the element list. Thus if a “cpu”
node starts at list element number 27, then a unique reference to that “cpu” node is the index value 27.

Using these index values for node start list elements, we can now provide pointers or “arcs” to point to
other nodes. In the construction of the MD element list, we define the 64-bit data payload of a NODE
element to contain the index to the next NODE element in the element list. Thus a simple linear list of nodes
is formed within the MD element list that enables searching for nodes of specific types without having to
scan every list element looking for NODE and NODE_END tags.

Similarly, using the PROP_ARC, type we can build a link or arc from one node to another. The value
field of a PROP_ARC element is the 64-bit element index of the NODE element pointed to. It is illegal
for a PROP_ARC element to point to anything other than a NODE element, or a NOOP element located
outside a node.

8.15. DAG construction

A DAG is constructed as described above by named arcs that link the nodes together. The interconnection
of these arcs explicitly defines the relationship between the nodes. For example, if node A has an arc to
node C and node B has an arc to node C then the relationship exposed is that within the graph both nodes
A and B share node C and any nodes that C arcs to. In the example illustration shown in the figure below
we can see an instruction cache that is shared by two cpu nodes. The sharing is indicated by the existence
of arcs from each cpu node to the same cache node.

The default DAG described within the MD is defined by arcs (element type PROP_ARC) with a name of
“fwd”. For convenience in walking this DAG, arcs named “back” are also provided that define the inverse

Machine description

46

DAG. Thus for every node A that has a “fwd” arc pointing to another node B, there is a corresponding
“back” arc for node B pointing back to A.

The use of named arcs enables other DAGs to be built and contained within the same MD, however none
other than the DAGs defined by the “fwd” and “back” arcs are currently defined.

8.16. Required nodes
The MD DAG will vary according to the resources available within a machine, and certain nodes may be
present in a machine on one machine architecture, but not on a different machine architecture.

The MD concept is designed to allow for certain nodes to be “optional”, however, to allow for the MD to
be usable at all certain nodes must be defined and present in the description. These are “required” nodes
and are guaranteed to be present if the resource they describe is present within the machine.

Nodes not defined in this specification must be ignored by system software.

8.17. The vanilla MD
Normally a MD is a full description of the resources available to specific logical domain. However, it
is a requirement for any sun4v guest operating system that it be able to handle any machine description
capable of being defined by this document and its subsequent revisions. To this end, a Guest operating
system must be able to ignore/skip over nodes whose type and definitions the OS has never seen before,
and most importantly that same Guest must follow some default fall-back behavior when information is
not available.

To test the requirement for a default fall-back behavior, we define a “vanilla” description that contains only
the core and required nodes for a given platform. This guarantees that a Guest OS is given no information
about the platform upon which it is running, and to test that it continues to boot and execute— though
optimal performance is no longer required.

The nodes in the vanilla MD are therefore required and sufficient to describe a guest environment for a
basic sun4v compatible Operating System.

8.18. Formation and meaning of a DAG
As mentioned above a machine description currently contains only one DAG, and this is defined by all
arcs with the name “fwd”. As a courtesy, in order to speed certain searches, the MD also contains the
inverse of this DAG built using arcs of name “back”. Clearly the “back” DAG could be built by a guest
from the “fwd” DAG, however the basic MD contains both to help lower the burden on the Guest.

Future revisions of this spec. may include new nodes, and importantly new DAGs within the same MD.
Current software should be designed to ignore arcs with names other than “fwd” and “back” in order to
remain future proof. Future MD will be implemented so as not to have conflicts with the vanilla fwd and
back DAGs.

To understand how to use the DAGs in a MD consider the DAG built using the “fwd” arcs.

The root of the “fwd” DAG is a node of type “root”. This is by definition the very first node in the MD. It can
be found very simply by scanning the MD element list for the first NODE definition (though unfortunately,
due to the existence of NOOP elements, this need not be at element index 0).

From the root node, “fwd” arcs lead to nodes describing the various components within the logical domain
a guest is using.

The root node in turn contains “fwd” arcs to collective nodes for CPUs, memory and various forms of I/
O, as well as nodes targeted to specific consumers such as OpenBoot.

Machine description

47

8.19. Generic nodes

8.19.1. Root node

Name: root

Required subordinates: cpus (Section 8.19.2, “Cpus node”), memory (Section 8.19.4,
“Memory node”), platform (Section 8.19.6, “Platform node”),
variables (Section 8.21, “Variables”)

Optional subordinates: channel-endpoints (Section 8.23.6, “Channel endpoints
node”), domain-services (Section 8.19.7, “Domain services
node”), ioaliases (Section 8.25.7, “I/O device path aliases col-
lection node”), keystore (Section 8.22, “Keystore”), phys_io
(Section 8.25.1, “Physical Device Collection node”), virtu-
al-devices (Section 8.23.2, “Virtual devices node”)

8.19.1.1. Description

A node of this type must always be the first node in a machine description.

Only one node in the machine description may be named “root”.

This root node must be the first node defined in the node block of the machine description.

All other nodes in the forward graph can be reached starting at the root node.

8.19.1.2. Properties

Name Tag Required Description

content-version PROP_STR yes Version string for the content of this
machine description. The currently
defined version is “1”.

md-generation# PROP_VAL no A 64-bit unsigned integer that
monotonically increases if the ma-
chine description is updated while
the domain remains bound, that is,
configured within the Hypervisor. A
value of zero is to be assumed if this
property is absent.

8.19.1.3. Programming note

The purpose of the md-generation# number is assist guests that attempt to respond to dynamic updates
of their machine descriptions. With the number monotonically increasing a guest is easily able to resolve
the temporal ordering of multiple updates of its machine description.

The md-generation# values will not to be re-used during the lifetime of the guest domain

8.19.2. Cpus node

Name: cpus

Category: required by root

Required subordinates:

Optional subordinates: cpu (Section 8.19.3, “cpu node”)

Machine description

48

8.19.2.1. Description

This construction node leads directly to all the virtual CPUs supported within this virtual machine. The
number of CPUs is expected to be derived by counting the number of subordinate cpu nodes.

8.19.2.2. Properties

None defined.

8.19.3. cpu node

Name: cpu

Category: resource required

Required subordinates:

Optional subordinates: exec-unit (Section 8.20.2, “Exec-unit node”), cache (Sec-
tion 8.20.1, “Cache node”), tlb (Section 8.20.3, “TLB node”), memo-
ry-latency-group (Section 8.24.2, “Memory latency group node”),
pio-latency-group (Section 8.24.3, “Programmed I/O latency
group”), interrupt-latency-group (Section 8.24.5, “I/O Inter-
rupt latency group node”)

8.19.3.1. Properties

Name Tag Required Description

clock-frequency PROP_VAL yes A 64-bit unsigned integer giving the
frequency of the sun4v virtual CPU in
Hertz and thereby the frequency of the
processor's %tick register

compatible PROP_DATA* yes String array of CPU types this virtual
CPU is compatible with. The most spe-
cific CPU type must be placed first in the
list, finishing with the least specific.

id PRO_VAL yes A unique 64-bit unsigned integer identi-
fier for the virtual CPU. This identifier
is the one to use for all hypervisor CPU
services for the CPU represented by this
node.

isalist PROP_DATA* yes List of the instruction set architectures
supported by this virtual CPU.

mmu-#context-bits PROP_VAL no A 64-bit unsigned integer giving the
number of bits forming a valid context
for use in a sun4v TTE and the MMU
context registers for this virtual CPU.
sun4v defines the minimum default val-
ue to be 13 if this property is not speci-
fied in a cpu node.

mmu-#ra-bits PROP_VAL no A 64-bit unsigned integer giving the
number of real address bits supported by
this virtual CPU. If not present, no de-
fault value is assumed and the max RA

Machine description

49

Name Tag Required Description

value can be inferred from the mblock
nodes.

mmu-#shared-contexts PROP_VAL no A 64-bit unsigned integer giving the
number of primary and secondary shared
context registers supported by this virtu-
al CPU's MMU. If not present the default
value is assumed to be 0.

mm-#va-bits PROP_VAL no A 64-bit unsigned integer giving the
number of virtual address bits supported
by this virtual CPU. If not present a de-
fault value of 64 is assumed. Note: It is
legal for there to be fewer VA bits than
real address bits.

mmu-compatible PROP_DATA* no String array listing alternate mmu-type
values that this virtual CPU's MMU in-
terface is compatible with.

mmu-max-#tsbs PROP_VAL no A 64-bit unsigned integer giving the
maximum number of TSBs this virtu-
al CPU can simultaneously support. If
not present the default value is assumed
to be 1. Note: sun4v Solaris assumes at
least 2 are available.

mmu-page-size-list PROP_VAL no A 64-bit unsigned integer treated as a bit
field describing the page sizes that may
be used on this virtual CPU. Page size
encodings are defined according to the
sun4v TTE format (see Section 14.3.2,
“TSB entry data word”). A bit N in this
field, if set, indicates that sun4v de-
fined page size with encoding N is avail-
able for use. For example bit 0 corre-
sponds to the availability of 8K pages.
If not present, a default value of 0x9 is
assumed, indicating the sun4v default
availability of 8K and 4M pages.

mmu-type PROP_STR yes Name for the kind of MMU in use by
this cpu. Currently defined names are:
“sun4v”.

nwins PROP_VAL yes A 64-bit unsigned integer giving the
number of SPARCv9 register windows
available on this virtual CPU.

q-cpu-mondo-#bits PROP_VAL yes A 64-bit unsigned integer the maximum
size (in bits) of the cpu mondo queue
head and tail registers.

q-dev-mondo-#bits PROP_VAL yes A 64-bit unsigned integer giving the
maximum size (in bits) of the device
mondo queue head and tail registers.

Machine description

50

Name Tag Required Description

q-resumable-#bits PROP_VAL yes A 64-bit unsigned integer giving the
maximum size (in bits) of the resumable
error queue head and tail registers

q-nonresumable-#bits PROP_VAL yes A 64-bit unsigned integer giving the
maximum size (in bits) of the non-re-
sumable queue head and tail registers

hwcap-list PROP_DATA no A list of strings identifying which ISA
extensions are implemented in this pro-
cessor. The currently defined values
for constructing an hwcap-list are:
“ima”, “fjfmau”, “trans”, “random”,
“hpc”, “vis3”, “fmau”, “fmaf”, “ASI-
BlkInit”, “vis2”, “vis”, “popc”, “v8plus”,
“fsmuld”, “div32”, “mul32”.

memory-model-list PROP_DATA no A list of strings identifying which
memory models are supported, as per
[ua2009] (or future revisions of same)
Appendix D (Formal Specification of the
Memory Models). Currently defined val-
ues are: “tso”, “rmo” and “wc”. These
are, respectively, “Total Store Order”,
“Relaxed Memory Order”, and “Weak
Consistency”.

Note

The “compatible” will have “SUNW,sun4v” as the last element for systems of the sun4v machine
class.

Note

Currently defined ISAs for constructing an “isalist” are: “sparcv9”, “sparcv8plus”, “sparcv8”,
“sparcv8-fsmuld”, “sparcv7”, “sparc”.

Note

Details on the list of currently defined extensions to the SPARC ISA are given in the UltraSPARC
Architecture specification [ua2007].

8.19.4. Memory node

Name: memory

Category: required by root

Required subordinates:

Optional subordinates: mblock (Section 8.19.5, “Mblock node”)

8.19.4.1. Description

This construction node leads directly to all the blocks of real address space backed by memory within
this virtual machine.

Machine description

51

8.19.4.2. Properties

None defined.

8.19.5. Mblock node

Name: mblock

Category: required

Required subordinates:

Optional subordinates:

8.19.5.1. Description

This node represents a single contiguous range of a virtual machine's real address space that is associated
with real memory.

8.19.5.2. Properties

Name Tag Required Description

base PROP_VAL yes A 64-bit unsigned integer giving
the base real address of the memory
block represented by this node

size PROP_VAL yes A 64-bit unsigned integer giving the
size in bytes of the memory block
represented by this node

address-congru-
ence-offset

PROP_VAL no A 64-bit unsigned integer such
that; address-congruence-offset
= (PA_base - RA_base) mod M.
Where M is a power of 2 strict-
ly greater than all values of ad-
dress-mask and index-mask
for all the cache and latency
group nodes in the MD. See Sec-
tion 8.24.2.3, “Programming note
on RA and physical address congru-
ence”.

8.19.6. Platform node

Name: platform

Category: core

Required subordinates:

Optional subordinates: latency-groups (Section 8.24.6, “Latency groups node”)

8.19.6.1. Description

This node holds general properties describing the platform a guest operating system is running on.

Machine description

52

8.19.6.2. Properties

Name Tag Required Description

banner-name PROP_STR yes The banner name of the system.

hostid PROP_VAL no A 64-bit unsigned integer in which
the lower 32 bits hold the host id as-
signed to the virtual machine. The
upper 32 bits must be zero.

mac-address PROP_VAL no A 64-bit unsigned integer in which
the lower 48 bits holds the mac ad-
dress assigned to the virtual ma-
chine. The upper 16 bits must be ze-
ro.

name PROP_STR yes The platform binding name of the
system. May not contain white space
characters.

serial# PROP_VAL no A 64-bit unsigned integer in which
the lower 32 bits hold the serial
number assigned to the virtual ma-
chine. The upper 32 bits must be ze-
ro.

stick-frequency PROP_VAL yes A 64-bit unsigned integer giving the
frequency in Hertz of the system
(%stick) clock for the virtual ma-
chine.

uuid PROP_STR no A string that indicates the UUID of
the domain. The format of the string
is defined by uuid_unparse(3uuid).

watchdog-resolu-
tion

PROP_VAL no The resolution, in milliseconds,
of the watchdog API service. This
property is present if the watchdog
timer is service is available, but is
otherwise not required.

watchdog-max-time-
out

PROP_VAL no The largest number of milliseconds
that is valid as a parameter to the
watchdog timer service API. This
property is present if the watchdog
timer is service is available, but is
otherwise not required.

cons-read-buffer-size PROP_VAL no Provides a hint as to the size of
the console device's internal in-
put buffering - suitable for the
cons_read API call.

cons-write-buffer-
size

PROP_VAL no Provides a hint as to the size of
the console device's internal out-
put buffering - suitable for the
cons_write API call.

max-cpus PROP_VAL no The theoretical maximum number
of virtual CPUs a guest OS may be

Machine description

53

Name Tag Required Description

assigned. If present, the guest soft-
ware can assume that it will not see
more virtual CPUs than specified by
this property. If not present, there is
no theoretical limit to the number of
virtual CPUs the guest may be as-
signed. Consequently the guest will
have to make a determination for it-
self as to how many and which of its
virtual CPUs it activates. The value
is an unsigned 64-bit integer.

inter-cpu-latency PROP_VAL no This property defines the maximum
number of nanoseconds of delay the
guest might encounter when two
processors attempt to rendezvous
(inter-processor communication us-
ing interrupts, shared memory, etc.).
The value is an unsigned 64-bit inte-
ger.

domaining-enabled PROP_VAL no A 64-bit value indicating the avail-
ability of domaining on this plat-
form. Valid values are 0 or 1.

8.19.6.3. Programming notes

Note: A platform's banner-name is cosmetic only, typically of the form “Sun Fire T100”, but the name
is part of the platform binding, typically of the form “SUNW,Sun-Fire-T100”.

Note: The presence of the max-cpus property does not place any requirement on the guest to support
the number of virtual CPUs specified. The guest is always free to further constrain the number of virtual
CPUs that it will support.

Note: The inter-cpu-latency property is intended to bound the amount of time privileged software
should consider when calculating timeouts to be used for detecting non-responsive virtual CPUs. This
value does not account for additional time required due to the implementation of the privileged code itself,
such as executing for prolonged periods with interrupts disabled (pstate.ie==0). The total amount of time
imposed by the system added to the amount of time imposed by the guest should be used as the basis for
calculating timeout values. More specific latency information may be provided via latency groups in the
same machine description see Section 8.24, “Latency nodes”

Note: Platform node properties may be added, removed, or changed at any time, with notification provided
by the MD update domain service. Guest software is expected to take notice and accommodate changes
when they occur.

Note: The absence of the domaining-enabled flag indicates that the platform firmware is not capable
of supporting multiple domains. The domaining-enabled flag, if present and set to 0, indicates that
the platform firmware is capable of multiple domains, however the domain manager has not been used
to configure the platform. The domaining-enabled flag, if present and set to 1, indicates that the
platform firmware is capable of multiple domains and the domain manager may have configured multiple
domains on this platform.

Machine description

54

8.19.7. Domain services node

Name: domain-services

Category: optional, under root

Required subordinates:

Optional subordinates: domain-services-port

8.19.7.1. Description

This construction node leads directly to all the domain services ports supported within this virtual machine.
There is only one domain-services node per virtual machine.

8.19.8. Domain services port node

Name: domain-services-port

Category: optionally required by domain-services or openboot

Required subordinates:

Optional subordinates: channel-endpoint

8.19.8.1. Description

This node uniquely represents an instance of a domain services port. The domain-services node
or openboot node will have zero or more domain-services-port nodes. A domain-ser-
vices-port under an openboot node is intended exclusively for use by OpenBoot firmware.

8.19.8.2. Properties

Name Tag Required Description

id PROP_VAL yes A 64-bit unsigned integer uniquely
identifying this domain service port
within the domain-services
node or openboot node.

md-generation# PROP_VAL no A 64-bit unsigned integer that
monotonically increases if the ma-
chine description is updated while
the domain remains bound, that is,
configured within the Hypervisor. A
value of zero is to be assumed if this
property is absent.

8.20. Memory hierarchy nodes

The following nodes are used to convey information about the host memory system hierarchy to a guest.

8.20.1. Cache node

Name: cache

Category: optional

Required subordinates:

Optional subordinates: cache (Section 8.20.1, “Cache node”)

Machine description

55

8.20.1.1. Description

This node describes a cache in the memory system hierarchy.

8.20.1.2. Properties

Name Tag Required Description

associativity PROP_VAL yes A 64-bit unsigned integer giving the
associativity of the cache (number of
ways in each set). A value of 0 indi-
cates fully associative, a value of 1
indicates direct-mapped, a value of 2
indicates 2-way and so on.

compatible-type PROP_DATA no Holds a string array of “type” field
values. In the event that a precise
type match cannot be made using
the “type” property this property
may be searched for compatible
types.

level PROP_VAL yes A 64-bit unsigned integer giving the
notional level of this cache in the
memory hierarchy.

line-size PROP_VAL yes A 64-bit unsigned integer giving
the number of bytes comprising a
single cache line. This is the size
of the caches allocation unit that is
matched by a single cache tag.

sub-block-size PROP_VAL no A 64-bit unsigned integer giving the
number of bytes comprising a sin-
gle cache sub-block. This is the size
of the cache's coherence unit size
that is matched by a single state en-
try. This property may be omitted if
it would have the same value as the
line-size property.

size PROP_VAL yes A 64-bit unsigned integer giving the
capacity (size) in bytes of the cache.

type PROP_DATA yes String array listing what may be
held in this cache. Generic types are
“instruction” and “data”.

index-mask PROP_VAL no A 64-bit unsigned integer. A bit in
index-mask is set if that bit in a PA
influences the cache index at which
a memory is stored when cache resi-
dent. This property is discussed later
with regard to page coloring in Sec-
tion 8.24.2.4, “Page coloring”.

8.20.2. Exec-unit node

Name: exec-unit

Machine description

56

Category: optional

Required subordinates:

Optional subordinates: cache (Section 8.20.1, “Cache node”), tlb (Section 8.20.3, “TLB
node”)

8.20.2.1. Description

This node is describes an execution unit associated with a virtual CPU. Each execution unit may perform
multiple functions/operations, and properties are defined appropriate not just to the whole execution unit,
but also to individual function capabilities.

8.20.2.2. Properties

Name Tag Required Description

compatible-type PROP_DATA no If defined holds a string array of
“type” field values. In the event that
a precise type match cannot be made
using the “type” property this prop-
erty may be searched for compatible
types.

type PROP_DATA yes String array listing functional capa-
bilities of this execution unit. Gener-
ic types are:

“ifetch” - instruction fetcher
“integer” - integer instruction execu-
tion
“fp” - floating point instruction exe-
cution
“vis” - VIS instruction execution
“integer-load” - integer load opera-
tions
“integer-store” - integer store opera-
tions
“fp-load” - floating point load opera-
tions
“fp-store” - floating point store oper-
ations
Niagara specific types are:

“n1-crypto” - Niagara 1.0 crypto
unit
Niagara-2 and Victoria-Falls specif-
ic types are:

“rng” - Random number generator

8.20.2.3. Programming Note

Some very early releases of Sun firmware included nodes erroneously named “exec_unit” (note underscore
instead of dash). Software should ignore these nodes and their contents as in a few cases the information
provided was in fact incorrect. Software correctly written to this specification should automatically ignore
these false nodes anyway since they are not named “exec-unit”.

Machine description

57

8.20.3. TLB node

Name: tlb

Category: optional

Required subordinates:

Optional subordinates: tlb (Section 8.20.3, “TLB node”)

8.20.3.1. Description

A TLB node describes a Translation Look-aside Buffer (MMU translation cache) in the memory system
hierarchy.

8.20.3.2. Properties

Name Tag Required Description

associativity PROP_VAL yes A 64-bit unsigned integer giving the
associativity of the TLB (number of
ways in each set). A value of 0 indi-
cates fully associative, a value of 1
indicates direct-mapped, a value of 2
indicates 2-way and so on.

compatible-type PROP_DATA no If defined holds a string array of
“type” field values. In the event that
a precise type match cannot be made
using the “type” property this prop-
erty may be searched for compatible
types.

entries PROP_VAL yes A 64-bit unsigned integer giving the
number of translation entries.

level PROP_VAL yes A 64-bit unsigned integer giving
the notional level of this translation
buffer in the overall page translation
hierarchy.

page-size-list PROP_VAL yes A 64-bit unsigned integer treated as
a bit field describing the page sizes
that may be used in this TLB. Page
size encodings are defined according
to the sun4v Architecture Specifica-
tion. A bit N in this field, if set , in-
dicates that sun4v defined page size
with encoding N is available for use.
For example bit 0 corresponds to the
availability of 8K pages.

type PROP_DATA yes String array listing functional capa-
bilities of this execution unit. Cur-
rently defined types are:

"instruction" translate in-
struction
fetches

Machine description

58

Name Tag Required Description

"data" translates data
accesses

8.21. Variables

Name: variables

Category: required by root

Required subordinates:

Optional subordinates:

8.21.1. Description

This machine description node is used to supply variable values to the guest operating system of the virtual
machine. These variables are part of the operating environment of the virtual machine and being present
in the machine description may be preserved across reboots and power-cycles of the virtual machine and
overall system.

Each property in the node constitutes a variable and its value. Variables can be retrieved by name or by
retrieving each of the properties of the variables node.

8.21.1.1. Properties

Name Tag Required Description

"variable name" PROP_STR yes The variable's value. A NUL-termi-
nated string.

8.22. Keystore

Name: keystore

Category: optionally required by root

Required subordinates:

Optional subordinates:

8.22.1. Description

This node contains a list of security keys used for WAN Boot support. See Section 30.13, “Security key
domain service version 1.0”. The node consists of a list of security keys formatted as name and value string
pairs. The key names are chosen by the user.

8.22.1.1. Properties

Name Tag Required Description

key name PROP_STR yes The security key's value. A NUL-ter-
minated string.

The key name can be up to 64 characters long and the value for each key can be up to 32 characters long.

The key name represents the name of the security key.

Machine description

59

8.23. Virtual Devices

Virtual devices implemented as part of the Virtual IO (VIO) infrastructure are represented in the guest's
machine description as nodes together with their properties. This section provides description of these
virtual device nodes, the device hierarchy and their properties.

8.23.1. Descriptions for virtual devices

All virtual devices are represented as a node in the guest MD along with its sub-nodes as children of the
virtual-devices node. All virtual devices nodes are of type virtual-device. The name and compatible
properties identify the the specific device and the driver associated with the device. There are two types
of virtual device nodes and these are grouped into two separate classes. The first class of device nodes
are ones that do not use Logical Domain Channels (LDC) like console, and the existing platform service
nodes. These appear as children of the virtual-devices node in the MD. All virtual-device
nodes that use LDCs belong to a class called channel devices and are grouped under a node called chan-
nel-devices.

>An example node hierarchy for virtual device MD nodes is illustrated above using the “fwd” DAG.

Figure 8.2. Virtual Device hierarchy

virtual-device

virtual-device

virtual-device-port
0

virtual-device-port
1

virtual-device

virtual-device-port
0

channel-endpoint
0

channel-endpoint
1

channel-endpoint
2

root

virtual-devices channel-endpoints

channel-devices

The channel-devices node is a child of the the virtual-devices node. Some of the virtu-
al-device nodes under the channel-devices node have one or more child port nodes of type
virtual-device-port. A port for a virtual device represents a communication path to and/or from
that virtual device and can be comprised of one or more logical domain channels. Each virtual-de-
vice-port node can point to one or more channel-endpoint nodes corresponding to the logical
domain channels within that port.

8.23.2. Virtual devices node

Name: virtual-devices

Category: optionally required by root

Required subordinates:

Machine description

60

Optional subordinates: virtual-device (Section 8.23.4, “Virtual device node”) and chan-
nel-devices (Section 8.23.3, “Channel devices node”)

8.23.2.1. Description

This construction node leads directly to all the virtual devices supported within this virtual machine. The
number of instances for each device can be derived by counting the number of nodes for each device.

8.23.2.2. Properties

Name Tag Required Description

name PROP_STR yes A string name for this node. This
value is currently defined as “virtu-
al-devices”.

device_type PROP_STR yes A string type for this node. This val-
ue is currently defined as “virtu-
al-devices”.

compatible PROP_DATA yes An array of string names for this
node. This value is currently defined
as “SUNW,sun4v-virtual-devices”.

cfg-handle PROP_VAL yes A 64-bit unsigned integer identify-
ing this device uniquely.

8.23.3. Channel devices node

Name: channel-devices

Category: optionally required by virtual-devices

Required subordinates:

Optional subordinates: virtual-device (Section 8.23.4, “Virtual device node”)

8.23.3.1. Description

This construction node leads directly to all the channel based virtual devices supported within this virtual
machine. The number of instances for each device can be derived by counting the number of nodes for
each device.

8.23.3.2. Properties

Name Tag Required Description

name PROP_STR yes A string name for this node. This
value is currently defined as “chan-
nel-devices”.

device-type PROP_STR yes A string type for this node. This val-
ue is currently defined as “chan-
nel-devices”.

compatible PROP_DATA yes An array of string names for this
node. This value is currently defined
as “SUNW,sun4v-channel-devices”.

cfg-handle PROP_VAL yes A 64-bit unsigned integer identify-
ing this device uniquely.

Machine description

61

8.23.4. Virtual device node

Name: virtual-device

Category: optionally required by virtual-devices and channel-devices

Required subordinates:

Optional subordinates: virtual-device-port (Section 8.23.5, “Virtual device port node”)

8.23.4.1. Description

This node uniquely represents an instance of a virtual device. The properties listed here applicable to all
virtual devices. Each of the virtual devices may specify additional properties that are device class specific.

8.23.4.2. Common properties

Name Tag Required Description

name PROP_STR yes Standard property name defining the
type of device. See virtual-device
class table below.

type PROP_STR yes Standard property type for this node.
See virtual-device class table
below.

cfg-handle PROP_VAL yes A 64-bit unsigned integer identify-
ing this device uniquely.

compatible PROP_DATA yes An array of strings containing com-
patible device names for this node.
See virtual-device class table
below.

8.23.4.3. Virtual device classes

Table 8.4. Virtual device classes

Service
Group

Class Compatible Name de-
vice-type

name

Console Client SUNW,sun4v-console serial console

Channel Devices

Network Client SUNW,sun4v-network net-
work

network

Network Server SUNW,sun4v-network-switch vsw virtual-network-switch

Block Client SUNW,sun4v-disk block disk

Block Server SUNW,sun4v-disk-server vds virtual-disk-server

Console Server SUNW,sun4v-console-concen-
trator

vcc virtual-console-concentrator

Serial Server SUNW,sun4v-channel serial virtual-channel

Serial Client SUNW,sun4v-channel serial virtual-channel-client

Serial Server SUNW,sun4v-data-plane-
channel

serial virtual-data-plane-channel

Machine description

62

Service
Group

Class Compatible Name de-
vice-type

name

Serial Client SUNW,sun4v-data-plane-
channel

serial virtual-data-plane-chan-
nel-client

Serial Server SUNW,sun4v-domain-service serial virtual-domain-service

8.23.4.4. Device class specific properties

Name Tag Re-
quired

Description

vsw-phys-dev PROP_DATA no An array of string names identifying the phys-
ical network devices available locally for use
by a virtual switch device

vsw-switch-mode PROP_DATA no An array of string names identifying the or-
der of the preferred switching mode(s) for
this switch device. Current valid values are
“switched”, “promiscuous”, and “routed”.

local-mac-address PROP_VAL no A 64-bit unsigned integer in which the lower
48 bits hold the mac address assigned to a vir-
tual network or switch device. The upper 16
bits must be zero.

default-vlan-id PROP_VAL no A 64-bit unsigned integer, where the lower
12 bits hold the vlan-id used to designate un-
tagged Ethernet frames set or received by a
virtual network or switch device. The upper
52 bits must be zero.

port-vlan-id PROP_VAL no A 64-bit unsigned integer, where the lower 12
bits hold the implicit port vlan-id assigned to
this virtual network or switch device. The up-
per 52 bits must be zero.

vlan-id PROP_DATA no An array of 64-bit unsigned integers, where
the lower 12 bits of each element holds the
vlan-id(s) assigned to this virtual network or
switch device. The upper 52 bits of each ele-
ment must be zero.

priority-ether-
types

PROP_DATA no An array of 64-bit unsigned integers, where
the lower 16 bits of each element holds a high
priority Ethernet type. The upper 48 bits of
each element must be zero. The Ethernet type
corresponds to the Type field in a Ethernet
frame as defined by the Ethernet v2/DIX stan-
dard. The virtual network and switch devices
should prioritize frames with these types over
all other frames, and ensure that these frames
are not dropped under congestion.

mtu PROP_VAL no A 64-bit unsigned integer in which the low-
er 16 bits hold the size of maximum trans-
mission unit (MTU) of a virtual network or a
switch device. The upper 48 bits must be zero.

Machine description

63

Name Tag Re-
quired

Description

linkprop PROP_VAL no A 64-bit unsigned integer in which the low-
er 1 bit holds the information on whether the
virtual network or the switch device should
attempt to obtain physical link state updates.
For a virtual network device, a value of 1 for
this bit indicates that it should negotiate for
physical link state updates; a value of 0 for
this bit indicates that it should not negoti-
ate for physical link state updates. For virtu-
al switch device which is itself configured as
an interface, a value of 1 for this bit indicates
that it should track physical link state changes
and a value of 0 for this bit indicates that it
should not track physical link state changes.

vcc-min-tcp-port PROP_VAL no A 64-bit unsigned integer identifying the
smallest TCP port assignable to a console
group in a SUNW,sun4v-console-con-
centrator device.

vcc-max-tcp-port PROP_VAL no A 64-bit unsigned integer identifying the
largest TCP port assignable to a console group
in a SUNW,sun4v-console-concen-
trator device.

vlds-domain-handle PROP_VAL no A 64-bit unsigned integer that unique-
ly identifies the domain containing the
SUNW,sun4v-domain-service device.

vlds-domain-name PROP_STR no A string that indicates the domain name of the
domain containing the SUNW,sun4v-do-
main-service device.

8.23.5. Virtual device port node

Name: virtual-device-port

Category: optionally required by virtual-device node (Section 8.23.4, “Virtu-
al device node”)

Required subordinates:

Optional subordinates: channel-endpoint (Section 8.23.7, “Description”)

8.23.5.1. Description

This node uniquely represents an instance of a virtual device port. All virtual-device channels con-
nected to the same client are grouped under a single port device. Every virtual-device has zero or
more virtual-device-port nodes.

8.23.5.2. Common properties

Name Tag Required Description

name PROP_STR yes A string name for the device. See
virtual-device-port class table.

Machine description

64

Name Tag Required Description

id PROP_VAL yes A 64-bit unsigned integer identify-
ing this port uniquely within the vir-
tual-device.

8.23.5.3. Device class-specific port properties

Name Tag Required Description

vds-block-device PROP_STR no A string name identifying the
block device used by a port in a
SUNW,sun4v-disk-server device.

vds-block-de-
vice-opts

PROP_DATA no An array of string names identify-
ing the options for the device used
by a vds-port in SUNW,sun4v-
disk-server device. Current
valid options are:

"ro" The device is
used and export-
ed by vds as a
read-only device.

"slice" The device is ex-
ported by vds as a
disk slice.

"exclusive" The device is
opened for exclu-
sive use by this
vds instance only.
The device can-
not be used by
another client or
vds instance on
the guest.

"shared" The device is ex-
ported by the vir-
tual disk server
instance to one or
more clients con-
nected to it.

vds-block-de-
vice-name

PROP_STR no A string name identifying the
canonical name assigned to the
block device used by a port in
SUNW,sun4v-disk-server de-
vice.

vds-mpgroup-name PROP_STR no A string name identifying the mul-
tipath group a port belongs to in a
SUNW,sun4v-disk-server de-
vice.

Machine description

65

Name Tag Required Description

vdc-timeout PROP_VAL no A 64-bit integer identifying a block
device's connection timeout. The
value specified in seconds deter-
mines the period after which a
SUNW,sun4v-disk device will time-
out submitting requests if it cannot
establish a connection with the vir-
tual disk server. If the property is
either not specified or set to 0, the
block device will wait indefinitely to
establish a connection with the virtu-
al disk server.

vcc-tcp-port PROP_VAL no A 64-bit unsigned integer identify-
ing the TCP port assigned to a con-
sole group. Provided to the vnts dae-
mon via the vcc driver.

vcc-group-name PROP_STR no A string name identifying the con-
sole group for a domain. Provided to
the vnts daemon via the vcc driver.

remote-mac-address PROP_DATA no Array of 64-bit unsigned integers
where the lower 48-bits of each ele-
ment holds the mac address assigned
to the virtual network or switch de-
vice. The upper 16-bits of each el-
ement must be zero. This array is a
list of mac addresses that are known
to be accessible via this port. This is
not a complete and comprehensive
list.

remote-port-vlan-
id

PROP_VAL no A 64-bit unsigned integer, where the
lower 12-bits holds the implicit port
vlan-id assigned to the peer virtual
network or switch device. The upper
52-bits must be zero.

remote-vlan-id PROP_DATA no An array of 64-bit unsigned integers,
where the lower 12-bits of each el-
ement holds the vlan-id(s) assigned
to the peer virtual network or switch
device. The upper 52-bits of each el-
ement must be zero.

maxbw PROP_VAL no A 64-bit unsigned integer identify-
ing the bandwidth limit for this port.
The value is specified in bps (bits
per second).

switch-port PROP_VAL no Identifies this port as being associ-
ated with a SUNW,network-switch
device. Property value must be zero.
Other values are reserved. Program-
ming note: When using a distributed

Machine description

66

Name Tag Required Description

switch model, this property assists a
simple guest in finding a switch port
rather than querying every port di-
rectly.

vldc-svc-name PROP_STR no A string name identifying the ser-
vice a SUNW,sun4v channel device
is providing over this port.

vdpc-svc-name PROP_STR no A string name specifying the service
a SUNW,sun4v-data-plane-channel
device is providing over this port.

vlds-remote-do-
main-handle

PROP_VAL no A 64-bit unsigned integer that
uniquely identifies the domain to
which a vlds-port node is asso-
ciated.

vlds-remote-do-
main-name

PROP_STR no A string that indicates the domain
name of the domain to which a
vlds-port node is associated.

8.23.5.4. Virtual-device-port class table

Table 8.5. Virtual-device-port classes

Service Group Class name name of parent vir-
tual-device node

Network Client vnet-port network

Network Server vsw-port virtual-network-switch

Block Client vdc-port disk

Block Server vds-port virtual-disk-server

Console Client vcc-port virtual-console-concentra-
tor

Serial Server vldc-port virtual-channel

Serial Client vldc-port virtual-channel-client

Serial Server vdpc-port virtual-data-plane-channel

Serial Client vdpc-port virtual-data-plane-chan-
nel-client

Serial Server vlds-port virtual-domain-service

8.23.6. Channel endpoints node

Name: channel-endpoints

Category: optionally required by root

Required subordinates:

Optional subordinates: channel-endpoint (Section 8.23.7, “Description”)

Machine description

67

8.23.7. Description

This node uniquely represents a collection of channel endpoint nodes being used by this guest. There
should be only one channel-endpoints node. The single channel-endpoints node will have
zero or more channel-endpoint nodes as subordinates.

8.23.8. Channel endpoint node

Name: channel-endpoint

Category: optionally required by channel-endpoints node (Section 8.23.6,
“Channel endpoints node”) and optionally required by virtual-de-
vice-port nodes (Section 8.23.5, “Virtual device port node”)

Required subordinates:

Optional subordinates:

8.23.8.1. Description

This node uniquely represents an instance of a channel endpoint available to this guest. Every virtu-
al-device-port node will have zero or more channel-endpoint nodes.

8.23.8.2. Properties

Name Tag Required Description

id PROP_VAL yes A 64-bit unsigned integer identify-
ing this endpoint uniquely within the
virtual machine.

tx-ino PROP_VAL yes A 64-bit unsigned integer identify-
ing the interrupt number assigned to
the transmit interrupt for this end-
point.

rx-ino PROP_VAL yes A 64-bit unsigned integer identify-
ing the interrupt number assigned
to the receive interrupt for this end-
point.

8.23.9. RNG virtual-device node

The RNG hardware support on the UltraSPARC-T2 chip is represented as a single virtual device and is
represented in the Machine Description (MD) a virtual-device node.

8.23.9.1. Properties

Name Tag Required Description

name PROP_STR yes "random-number-generator"

cfg-handle PROP_VAL yes A 64-bit unsigned integer identify-
ing this device uniquely.

compatible PROP_DATA yes An array of string names for this
node. This value is currently de-

Machine description

68

Name Tag Required Description

fined as one of "SUNW,n2-rng", or
"SUNW,vf-rng".

rng-#units PROP_VAL yes A 64-bit unsigned integer indicating
the number of available RNG de-
vices in the system.

8.23.10. Crypto virtual-device node

The crypto hardware support on the Niagara chip is represented as a single virtual device and is represented
in the Machine Description (MD) graph for a Guest as a virtual-device node with the following
properties:

8.23.10.1. Properties

Name Tag Required Description

name PROP_STR yes The string name for this node is de-
fined as “ncp” or “crypto” for Ul-
traSPARC-T1, as “n2cp” for Ultra-
SPARC-T2.

device-type PROP_STR yes A string type for this node. The val-
ue is currently defined as “crypto”,
as “n2cp” for UltraSPARC-T2.

device-type PROP_STR yes A string type for this node. The val-
ue is currently defined as “crypto”,
as “n2cp” for UltraSPARC-T2.

intr PROP_DATA yes List of interrupt numbers. One num-
ber per core per type of crypto unit.

ino PROP_VAL yes List of virtual inos generated.

cfg-handle PROP_VAL yes A 64-bit unsigned integer identify-
ing this device uniquely.

compatible PROP_DATA no An array of string names for this
node. This value is currently defined
as one of "SUNW,sun4v-ncp", or
"SUNW,n2-cwq".

8.23.11. MAC-addresses node

Name: mac-addresses

Category: optional

Required subordinates:

Optional subordinates: mac-address (Section 8.23.12, “MAC-address node”)

8.23.11.1. Description

This node is used to identify fixed mac address resources available to a guest virtual machine. There will
be a single mac-addresses node that describes all MAC address to device path mappings that a guest
OpenBoot can use to allocate MAC address resources. Each forward link of this node will correspond to

Machine description

69

a mac-address MD node that contains a single device tree pathname and an array of MAC addresses
that have been allocated to that device. Each of these mac-address nodes may also be a child of any
iodevice, this allows I/O partitioning by associating an MAC addresses with a particular I/O sub-tree.

8.23.11.2. Properties

This node has no properties but contains forward links to nodes that describe an instance of an MAC
address resource in the guest.

8.23.12. MAC-address node

Name: mac-address

Category: optional

Required subordinates:

Optional subordinates:

8.23.12.1. Description

This node contains a device tree path and an array of MAC addresses that have been allocated to that
device. See mac-addresses node (Section 8.23.11, “MAC-addresses node”)

8.23.12.2. Properties

Name Tag Required Description

dev PROP_STR yes A string that describes the pathname
of a device tree node. This device is
being allocated MAC addresses as
described by the mac-addresses
property.

mac-addresses PROP_DATA yes A consecutive array of six byte ele-
ments, each six byte element spec-
ifies an 48-bit IEEE 802.3-style
MAC address.

8.24. Latency nodes

The following nodes are used to convey latency information to a guest. Latency information may be used
by a guest operating system to perform various optimizations within the virtual machine. For example, a
guest might optimize the allocation of memory so as to minimize the average access latency for programs
running on a particular virtual CPU.

Latency information is provided in the form of latency groups. A latency group node defines the relation-
ship between the MD nodes that lead to it and/or that it leads to.

Four types of latency are defined by this specification:

1. The latency between a virtual CPU and a memory block for load and store operations,

2. The latency between a virtual CPU and a I/O device for load and store operations,

3. The latency between an I/O device and memory for DMA operations, and

Machine description

70

4. The latency between an I/O device and a virtual CPU for interrupt delivery.

Physical latency information is provided in each latency group node (defined below) with the latency
property. Each latency property value is specified in picoseconds (ps). The actual latency observed in each
circumstance may be moderated by the effects of caches and other system components.

Latency group nodes are optional in a machine description. However, for any given type the latency re-
lationships must be full and complete. Thus, if a latency group node describing the load/store latency be-
tween one virtual cpu and a memory block exists, then all such latency relationships between all cpus and
all memory blocks must be present.

It is recommended, for robustness, that in the event of only partial latency information for a given type
being available, a guest should behave as if no latency information of that type is available.

8.24.1. Programming notes and accuracy

Latency information for the types defined above is optional and is not necessarily provided by every virtual
platform.

In the event that one of the above types of latency node information is not present in a machine description,
a guest operating system must assume a default policy of uniform latency.

A dynamic update to a machine description may add or remove some or all of the latency information.
This behavior is to be expected by the guest, which in turn must assume a default uniform latency policy
in the event that latency information is not present.

For short transitory periods latency group information presented in a machine description may not reflect
the actual relationships of components available to a virtual machine. This can happen, for example, as
a result of lag between the reconfiguration of virtual resources and the subsequent machine description
update. For this reason, latency group information should only be used for performance optimizations,
where inaccuracies may result in sub-optimal performance, but not incorrect behavior.

8.24.2. Memory latency group node

Name: memory-latency-group

Category: optional

Required subordinates: mblock (Section 8.19.5, “Mblock node”)

Optional subordinates:

8.24.2.1. Description

This node describes the load and store latency relationship between a virtual CPU and a region of memory.
The memory-latency-group node is defined to be a optional subordinate of a cpu node, and in turn
a mblock node is defined to be a subordinate of the memory-latency-group node.

Thus a search of the “fwd” DAG - starting from a “cpu” node will reveal all the memory-laten-
cy-group nodes representing that cpu. A search “fwd” from each memory-latency-group node
will in turn reveal each mblock with the described memory latency. So, for example, in the machine
description illustrated below we see that CPU 1 can observe mblock A with a latency of 100ns, and can
observe mblock B with a latency of 150ns.

It is common in microprocessor memory system designs to support striped memory addressing, where a
number of address bits are used to selected a particular memory bank or chip. Each of these stripes may
present a different latency of access for a specific CPU. Often the size of each stripe unit may be quite

Machine description

71

small, therefore it is not practicable to provide a mblock for each small stripe so as to connect each to a
distinct memory lgroup node.

To resolve the memory striping problem, each memory latency group node holds two additional proper-
ties, an address mask (“address-mask”), and an address match (“address-match”) value to be used in con-
junction with the real address ranges of the mblocks the latency group nodes connect to.

So, for example, if bit 22 is used to select between two memory banks for a specific cpu - providing
a latency strip of 4 M bytes - then two memory-latency-group nodes may connect the cpu node to the
appropriate mblock node. Both memory-latency-group nodes will have a address-mask property with value
0x400000, with one memory-latency-group node having a address-match property value of 0, and the other
memory-latency-group node having a address-match property of 0x400000. Thus the latency information
applies to a mblock only for those real addresses where the equation ((address + address-congruence-offset)
& address- mask) == address-match holds true. The value address-congruence-offset is a property specified
in the mblock corresponding to the specified address, and transforms the address into pseudo address
suitable for the mask and match combination.

If address-mask and address-match properties are not present in a memory-latency-group node, then no
address striping is in effect, and the described memory latency applies between all mblocks and cpus
connected to this memory-latency-group node. The address-mask and address-match properties, while
optional, must be provided together. If one property is present without the other a guest must treat the
memory-latency- group node as erroneous and ignore it altogether.

8.24.2.2. Properties

Name Tag Required Description

latency PROP_VAL yes A 64-bit unsigned integer giving the
approximate latency of access in pi-
coseconds.

address-mask PROP_VAL no A 64-bit unsigned integer providing
a mask value for a memory stripe.

address-match PROP_VAL no A 64-bit unsigned integer providing
a match value for a memory stripe.

8.24.2.3. Programming note on RA and physical address congru-
ence

The real address space used within a virtual machine is a remapping of portions of a system's underlying
physical memory. A guest running within a virtual machine is not provided the physical addresses of its
memory blocks. This abstraction of memory addresses enables guests to be moved in memory without
changing their real address space layout.

However, to support NUMA and page-coloring algorithms for a guest operating system further informa-
tion is required that describes the congruency relationship between a real address and the underlying phys-
ical address to which it is mapped. To do this, the optional property address-congruence-offset may be
optionally added to each mblock node. The property is computed such that:

address-congruence-offset = (PA_base - RA_base) mod M

Where; M is a power of 2 strictly greater than all values of address-mask and index-mask in the MD. A
guest operating system must add address-congruence-offset to any real address before applying masks to
determine a latency group match, such as address-mask and index-mask.

Machine description

72

If this property is not present in the mblock, then its value must be assumed 0. This property is typical-
ly provided when the congruency between the real and underlying physical address of a mblock is less
than the size needed for lgroup or page color masking. For example; Consider a NUMA machine where
memory is striped on 1GB boundaries between 4 different memory controllers. Each cpu may see dif-
ferent access latencies to each of the memory controllers-- each latency is represented by a lgroup node
described above. Now consider a 1GB memory segment that starts at real address 0x400000000 and is
bound to physical address 0x10000000. To identify 4 different memory controllers with a 1GB stripe the
address-mask property of one of the lgroups might have the value 0xc0000000. In this legitimate scenario
to correctly apply the lgroup information, the guest OS needs enough correctly congruent bits from the
actual physical address to be able to meaningfully apply the lgroup address mask. So for our example,
real address 0x400000000 corresponds to physical address 0x10000000, and real address 0x430000000
corresponds to physical address 0x40000000. If we apply the lgroup mask to 0x10000000 we get 0x0. If
we apply the lgroup mask to 0x40000000 we get 0x40000000 as the result. Therefore we see that these
different address pages reside on different memory controllers with different access latencies. Note: if we
had applied the lgroup mask to the corresponding real addresses the result is always 0x0 implying the same
memory controller— which would be incorrect.

Thus a means to recover the relevant bits of the physical address are required so that the address mask can
be correctly applied. The address-congruence-offset property in an mblock provides this information. As
described above the property is derived from the difference between real and their corresponding physical
addresses for a mblock. However, to retain ambiguity for actual physical address bindings, this property
is not the actual difference, but simply enough bits from the RA/PA difference that an addr mask can
be correctly applied. This ambiguity is strictly enforced to prevent guest operating systems being able to
bind themselves to specific physical addresses for anti-social activites such as denial of service attacks on
specific memory banks or memory controllers on a shared domain platform.

Thus the value provided for address-congruence-offset is sufficient that the equality:

(RA + address-congruence-offset) & address-mask == address-match

holds correctly for all the provided address-mask and address-match values within the MD in order to
correctly match lgroups.

If the address-mask 0xc0000000 is the largest mask provided, then the address-congruence-offset for ex-
ample above would be:

(0x10000000 - 0x400000000) & 0xffffffff = 0x10000000

The address matches for the real addresses above will be,

(0x400000000 + 0x10000000) & 0xc0000000 = 0x0

(0x430000000 + 0x10000000) & 0xc0000000 = 0x40000000

As defined above the address-congruence-offset is an optional property in an mblock node. If not present,
a value of 0 can be assumed, thus the equality for matching lgroups reduces to:

RA & address-mask == address-match

8.24.2.4. Page coloring

Page coloring for large caches exhibits a similar set of problems to identifying lgroups.

Machine description

73

To assist, a cache node is extended with an optional property index-mask to compute a matching set within
the corresponding cache.

The actual cache index employed by hardware is a function of multiple bits from the physical address of
the memory reference. To compute a page coloring value the index-mask field identifies the relevant bits
from a physical address. Thus the index-bits for page coloring can be derived as:

index-bits = (RA + address-congruence-offset) & index-mask

Where the address-congruence-offset is the property from the mblock (corresponding to the given RA)
as described above.

Similarly to lgroup matching, if the address-congruence-offset property is not provided for a mblock its
value can be assumed as zero reducing the equation to:

index-bits = RA & index-mask

8.24.3. Programmed I/O latency group

Name: pio-latency-group

Category: optional

Required subordinates:

Optional subordinates:

8.24.3.1. Description

This node describes the access latency of load or store instructions from one or more cpu nodes to one or
more i/o devices. This node requires at least one subordinate node whose type represents an I/O device,
the valid types of these subordinates are listed above in the optional subordinate section.

The pio-latency-group node is defined to be a optional subordinate of a cpu node, and in turn each I/O
device node is defined to be a subordinate of the pio-latency-group node.

The latency information defined by this node may be used to better schedule guest OS functions such as
interrupt handlers to virtual cpus with lower latency access to the target devices.

8.24.3.2. Properties

Name Tag Required Description

latency PROP_VAL yes A 64-bit unsigned integer giving the
approximate latency of access in pi-
coseconds.

8.24.4. I/O DMA latency group

Name: dma-latency-group

Category: optional

Required subordinates: mblock (Section 8.19.5, “Mblock node”)

Optional subordinates:

Machine description

74

8.24.4.1. Description

This node describes the access latency of DMA operations from one or more I/O device nodes to one
or more mblocks. This latency information may be used to better allocate memory local to I/O devices
where latency of access may be important-- for example in the allocation of device descriptor rings or
lookup tables.

The properties describing memory latency and striping are defined as per the memory-latency-group node
(see Section 8.24.2, “Memory latency group node”).

8.24.4.2. Properties

Name Tag Required Description

latency PROP_VAL yes A 64-bit unsigned integer giving the
approximate latency of access in pi-
coseconds.

content-version PROP_STR yes Version string for the content of this
machine description. The currently
defined version is “1”.

md-generation# PROP_VAL no A 64-bit unsigned integer that
monotonically increases if the ma-
chine description is updated while
the domain remains bound, that is,
configured within the Hypervisor. A
value of zero is to be assumed if this
property is absent.

address-mask PROP_VAL no A 64-bit unsigned integer providing
a mask value for a memory stripe.

address-match PROP_VAL no A 64-bit unsigned integer providing
a match value for a memory stripe.

8.24.5. I/O Interrupt latency group node

Name: interrupt-latency-group

Category: optional

Required subordinates:

Optional subordinates:

8.24.5.1. Description

This node describes the latency of interrupt delivery from one or more I/O device nodes to one or more
cpu nodes. This latency information may be used to better assign virtual cpus to interrupt sources in such
cases where low interrupt latency is required. This node is subordinate to cpu nodes and to I/O nodes
such as vpci-bus nodes.

8.24.5.2. Properties

Name Tag Required Description

latency PRP_VAL yes A 64-bit unsigned integer giving the
approximate latency of access in pi-
coseconds.

Machine description

75

8.24.6. Latency groups node

Name: latency-groups

Category: optional

Required subordinates:

Optional subordinates: memory-latency-group (Section 8.24.2, “Memory latency group
node”), pio-latency-group (Section 8.24.3, “Programmed I/O la-
tency group”), dma-latency-group (Section 8.24.4, “I/O DMA la-
tency group”), interrupt-latency-group (Section 8.24.5, “I/O
Interrupt latency group node”)

8.24.6.1. Description

This collective node leads to all of the latency group nodes in a guest MD. If any of the memory, PIO,
DMA, or IRQ latency group nodes exist in a machine description, then the latency-groups node must
exist with each of the individual latency group nodes as its subbordinates.

8.24.6.2. Properties

None

8.25. I/O device nodes

These MD nodes describe the static I/O device topology to the OpenBoot guest running in a domain. This
allows OpenBoot to extract hardware-specific device information (MAC addresses, interrupt-maps, etc.)
from the MD, thereby making the guest hardware agnostic.

The MD iodevice tree is not meant to replace ASR database functionality. If a device is disabled in the
ASR database, its node will still appear in the MD, which means that OpenBoot will still have to check
if a device is disabled before probing it.

8.25.1. Physical Device Collection node

Name: phys_io

Category: optionally required by root

Required subordinates: iodevice (Section 8.25.2, “I/O device node”)

Optional subordinates:

8.25.1.1. Description

This node is a collection node referring to the physical devices in the machine description.

8.25.2. I/O device node

Name: iodevice

Category: optional

Required subordinates:

Optional subordinates: iodevice (Section 8.25.2, “I/O device node”), interrupt-map-
entry (Section 8.25.4, “Interrupt mapping node”), slot-name (Sec-
tion 8.25.5, “Slot name node”), devalias (Section 8.25.6, “Device

Machine description

76

name alias node”), interrupt-latency-group (Section 8.24.5,
“I/O Interrupt latency group node”), dma-latency-group (Sec-
tion 8.24.4, “I/O DMA latency group”) xaui-mac (Section 8.25.3, “Ul-
traSPARC-T2 NIU network device node”)

8.25.2.1. Description

This node describes properties necessary to create an I/O device node in the OpenBoot device tree.

8.25.2.2. Properties

Name Tag Required Description

device-type PROP_STR yes A string type for this node. The re-
maining properties in the MD node
for this device will vary depending
on the value of this string. For each
specific device-type allowed,
the remaining properties are shown
below. The allowed device-type
values are:

pciex
This value indicates a sun4v
root nexus PCI Express device
(Fire ports A and B, N2 PIU,
etc.)

pci-switch-upstream
This value indicates the node is
an upstream port of a PCI Ex-
press switch

pci-switch-downstream
This value indicates the node is
a downstream port of a PCI Ex-
press switch

pcie-pci-bridge
This value indicates the node is
a PCI Express to PCI bridge

pcix-pcix-bridge
This value indicates the node is
a PCI-X to PCI-X bridge

pci-network
This value indicates the node
is a PCI-Express or PCI-X net-
work device

pci-scsi
This value indicates the node is
a PCI-Express or PCI-X SCSI
adapter

Machine description

77

Name Tag Required Description

pci-generic
This value indicates the node is
a PCI-Express or PCI-X device

sun4v
This value indicates the node is
a generic sun4v device

8.25.2.2.1. Sun4v to PCI Express root nexus device

The following properties are allowed for device-types that have the value “pciex”.

Name Tag Required Description

name PROP_STR yes A string with the value “pci”.
This value is converted to the
OpenBoot device tree name
property.

compatible PROP_STR yes A string with the value
“SUNW,sun4v-pci”. This value
is converted to the OpenBoot de-
vice tree compatible proper-
ty.

cfg-handle PROP_VAL yes A 64-bit value that is unique to
this device on the sun4v bus.

address-ranges PROP_DATA deprecated, see
ranges

An array of 64-bit value pairs
which specifies the address
ranges available to this device.
Each pair contains a base and
range value. The first pair of the
array specifies the PCI IO space
addresses, the second pair spec-
ifies the PCI 32-bit memory ad-
dresses, and the final pair speci-
fies the PCI 64-bit prefetchable
memory addresses.

ranges PROP_DATA yes An array of 7 groups of 64-bit
values which specify an entry
in the sun4v bus child device's
ranges property. The first three
values represent the child-
phys address, the second two
values represent the par-
ent-phys address, and the last
two values represent the size.

virtual-dma PROP_DATA yes A pair of 64-bit values which
specify the virtual DMA region
for this device. This property
is converted to the OpenBoot
device node's virtual-dma
property.

Machine description

78

Name Tag Required Description

msi-ad-
dress-ranges

PROP_DATA yes An MSI property as specified in
[msiprops].

#msi PROP_VAL yes An MSI property as specified in
[msiprops].

msi-data-mask PROP_VAL yes An MSI property as specified in
[msiprops].

msi-ranges PROP_DATA yes An MSI property as specified in
[msiprops].

msi-eq-size PROP_VAL yes An MSI property as specified in
[msiprops].

msix-data-width PROP_VAL yes An MSI property as specified in
[msiprops].

#msi-eqs PROP_VAL yes An MSI property as specified in
[msiprops].

msi-eq-to-devino PROP_DATA yes An MSI property as specified in
[msiprops].

bus-ranges PROP_DATA yes A range of PCI bus numbers that
this root nexus device can allo-
cate to child PCI devices.

level1-hot-
plug-slot-count

PROP_VAL no An integer which will be convert-
ed into an OpenBoot encoded in-
teger property of the same name.

level2-hot-
plug-slot-count

PROP_VAL no An integer which will be convert-
ed into an OpenBoot encoded in-
teger property of the same name.

8.25.2.2.2. Generic PCI device properties

The following properties are allowed for device-types that have the values: “pcie-switch-upstream”, “pcie-
switch-downstream”, “pcie-pcix-bridge”, “pcix-pcix-bridge”, “pci-network”, “pci-scsi”, “pci-generic”.

Name Tag Required Description

device-number PROP_VAL yes The PCI device number for this PCI
device

function-number PROP_VAL yes The PCI function number for this
PCI device

8.25.2.2.3. PCI bridge device properties

The following properties are allowed for device-types that have the values: “pcie-switch-upstream”, “pcie-
switch-downstream”, “pcie-pcix-bridge”, “pcix-pcix-bridge”.

Name Tag Required Description

#interrupt-cells PROP_VAL no This value will be converted into the
OpenBoot #interrupt-cells
property. The value is the number
of 32-bit integers required for the

Machine description

79

Name Tag Required Description

representation of a single interrupt
specifier for this node. A more com-
plete description of this property can
be found in [ofintrmap].

interrupt-map-mask PROP_DATA no This array of integers will specify
the interrupt-map-mask prop-
erty that OpenBoot needs to cre-
ate in this PCI device node. A more
complete description of this property
can be found in [ofintrmap].

8.25.2.2.4. PCI slot device properties

The following properties are allowed for device-types that have the values: “pcie-switch-downstream”,
“pcie-pcix-bridge”, “pcix-pcix-bridge”.

Name Tag Required Description

slot-present PROP_VAL no The presence of this property means
that a PCI slot is present at this de-
vice/function number.

hotplug-supported PROP_VAL no The presence of this property means
that the slot supports PCI hotplug.

8.25.2.2.5. PCI network device properties

The following properties are allowed for device-types that have the values: “pci-network”.

Name Tag Required Description

phy-type PROP_STR no This property will contain a string
that specifies the type of exter-
nal physical layer transceiver is
connected to the network device.
The following are the allowed
values: “xgc” for 10Gb copper,
“xgf” for 10Gb fiber, “mif” for
1G/100M/10M copper, “pcs” for
1Gb fiber.

mac-addresses PROP_DATA no An array of MAC addresses allocat-
ed to this network device.

8.25.2.2.6. PCI SCSI device properties

The following properties are allowed for device-types that have the values: “pci-scsi”.

Name Tag Required Description

sas-wwid PROP_VAL no An array of 8 byte SAS WWIDs for
this SCSI adapter.

8.25.2.2.7. NIU device properties

The following properties are allowed for UltraSPARC-T2 NIU devices.

Machine description

80

Name Tag Required Description

device-type PROP_STR yes A string type for this this node.
This value is currently defined as
“sun4v”.

compatible PROP_DATA yes An array of string names for this
node. This value is currently defined
as “SUNW,niumx”.

cfg-handle PROP_VAL yes

8.25.3. UltraSPARC-T2 NIU network device node

Name: xaui-mac

Category: optional, under iodevice

Required subordinates:

Optional subordinates:

8.25.3.1. Description

This node describes the NIU device properties, and the transveiver properties of the external PHY that is
connected to the XAUI bus on an NIU port.

8.25.3.2. Properties

Name Tag Required Description

device-type PROP_STR yes A string type for this node. The val-
ue is currently defined as “network”.

compatible PROP_DATA yes An array of string names for this
node. The value is currently defined
as “SUNW,niusl”.

port PROP_VAL yes A 64-bit unsigned integer identify-
ing this device uniquely.

phy-type PROP_STR yes This property contains a string that
specifies the type of the external
physical layer transceiver that con-
nected to the XAUI bus of this NIU
port. The currently defined values
are:

“xgf”
10Gbps fibre (optical)

“xgc”
10Gpbs copper

mac-addresses PROP_DATA yes An array of MAC addresses allocat-
ed to this network device.

tx-dma-channels PROP_DATA yes An array of pairs of integers (must
contain a multiple of two integers).
The first integer of each pair spec-
ifies a base transmit DMA channel

Machine description

81

Name Tag Required Description

number, the second integer of the
pair specifies then number of trans-
mit DMA channels (beginning at
base) that the device node has been
allocated.

rx-dma-channels PROP_DATA yes An array of pairs of integers (must
contain a multiple of two integers).
The first integer of each pair spec-
ifies a base receive DMA channel
number, the second integer of the
pair specifies then number of receive
DMA channels (beginning at base)
that the device node has been allo-
cated.

interrupts PROP_DATA yes An array of system interrupts allo-
cated for this NIU device.

8.25.4. Interrupt mapping node

Name: interrupt-map-entry

Category: optional

Required subordinates:

Optional subordinates:

8.25.4.1. Description

This node describes a hardware interrupt mapping from a child device interrupt domain to a parent device
interrupt domain. I/O device nodes may have forward links to these interrupt mapping nodes. Each node
will correspond to a line in the device tree interrupt-map property. For more information about the
interrupt-map related properties, please refer to [ofintrmap].

As stated in the description of parent-device-path below, if OpenBoot cannot find the parent inter-
rupt device in the device tree, OpenBoot must eliminate the device tree node corresponding to the iode-
vice node which has the forward arc to the associated interrupt-map-entry node. The reason for
this is that interrupt mappings cannot span accross multiple domains, so a child interrupt domain must be
within the same logical domain as the parent interrupt domain. To avoid forcing restrictions on the device
probing order, we will have to overlay interrupt map properties after all devices have been probed.

8.25.4.2. Properties

Name Tag Required Description

parent-interrupt PROP_DATA yes An array of integers that describes
the interrupt number in the parent
interrupt domain.

child-interrupt PROP_DATA yes An array of integers that describes
the interrupt number in the child in-
terrupt domain.

child-unit-address PROP_DATA yes The unit address of the device that
generates the interrupt in the child

Machine description

82

Name Tag Required Description

interrupt domain. There number of
integers in this array will be equal
to the #address-cells for the
child device.

parent-device-path PROP_STR yes The textual device path of the device
tree node that serves as the parent
domain of the interrupt mapping. If
the parent device that is specified by
the parent-device-path prop-
erty is not present in the device tree,
OpenBoot will eliminate the child
device node from the device tree.

8.25.5. Slot name node

Name: slot-name

Category: optional

Required subordinates:

Optional subordinates:

8.25.5.1. Description

One of possibly multiple slot names for this node. The properties in this node will become an entry in the
OpenBoot slot-names device tree property. Note that this is an optional node, since not all platforms
have implemented the slot-names properties for their PCI slots.

8.25.5.2. Properties

Name Tag Required Description

slot-name PROP_STR yes A slot-name entry for the PCI
slot MD iodevice node which points
to this slot name MD node.

device# PROP_VAL yes The device number that is associat-
ed with the slot-name property of
this node.

8.25.6. Device name alias node

Name: devalias

Category: optional

Required subordinates:

Optional subordinates:

8.25.6.1. Description

One of possibly multiple devaliases associated with this node. The properties in this node will become a
devalias in OpenBoot.

Machine description

83

8.25.6.2. Properties

Name Tag Required Description

devalias PROP_STR yes A device alias for the device path
described by the path property of
this node.

path PROP_STR yes The device path which will be
aliased to the devalias property
of this node.

8.25.7. I/O device path aliases collection node

Name: ioaliases

Category: optional

Required subordinates:

Optional subordinates: ioalias (Section 8.25.8, “I/O device path alias node”)

8.25.7.1. Description

This collection node provides forward pointers to all system ioalias nodes

8.25.8. I/O device path alias node

Name: ioalias

Category: optional

Required subordinates:

Optional subordinates:

8.25.8.1. Description

This node provides the current path to a PCIe switch's upstream port and a list of all possible paths to the
same PCIe switch upstream port.

8.25.8.2. Properties

Name Tag Required Description

current PROP_STR yes A string containing the path to a
PCIe switch upstream port.

aliases PROP_STR yes A list of space separated strings con-
taining all the possible paths to a
PCI root nexus.

84

Chapter 9. Logical domain variables
9.1. Overview

LDom variables control and provide information to the guest's environment. These variables are known
as an environmental variables or NVRAM variables on legacy platforms.

These variables are created and consumed by guest software such as OpenBoot. These variables can be
modified by guest software CLIs and by LDom manager CLIs. The guest software can create these vari-
ables in any data types it chooses. The data types are private to the guest SW itself. Thus, in case of Open-
Boot, the formats of the variables are determined by OpenBoot.

The sun4v architecture currently has no predefined variables or values. However OpenBoot software (used
by most guest operating environments as their boot loader) does provide a number of environmental vari-
able values.

Rather then push OpenBoot's variable definitions up-stream into the sun4v architecture, OpenBoot (as a
layered piece of software) provides default values for these variables itself.

Only when a default value needs to be over-ridden, then the administrator can set a LDom variable of the
same name to override the OpenBoot default value.

9.2. LDom variable store
All LDom variables with non-default settings are stored in the LDom variable store and are available to
its consumer through machine description (MD). The variable store is managed directly by the LDom
manager, and/or indirectly from each guest virtual machine via the variable domain service described in
Section 30.12, “Variable Configuration version 1.0”.

If a variable is changed to its non-default value then such change is communicated to LDom manager
or to service processor software. The change is reflected in the guest specific machine description (MD).
Since only non-default settings are stored in the LDom store, only non-default settings are available in the
machine description. All variables not in the machine description are assumed to be set to their default
values. The list full list of variables defined by a client and their default values are only known to the client
which defines the variables. Typically this client is the OpenBoot firmware.

If the format of the LDom variable in the machine description is not known to its consumer such as Open-
Boot then a default value for that variable should be assumed. For example, if OpenBoot does not recog-
nize the value for a variable then the variable will be restored to its default setting.

The non-default settings of all of the LDom variables is communicated using name value string pairs
encoded as properties in the variables machine description node.

Even though the values are stored and communicated as name value string pairs, the creators of these
variables can create them in any format desired. It is then the responsibility of the consumer of these
variables to convert to and from a string encoding for the variable store. For example, if an integer variable
is set to 0x0abb0823 then it could be stored in a string format as, “0abb0823”. When the consumer
reads the value from the machine description, it should convert the string value back to an integer format.
Boolean variables should be converted to either “TRUE” or “FALSE” strings, so that the strings will look
exactly the same as user might type at the keyboard. (Though this is convention only and not enforced).

9.3. LDom variables and automatic reboot
Historically there were two ways by which OpenBoot would automatically boot a guest OS. One of the
way is by setting the LDom variable auto-boot? to TRUE. The second way was valid settings in the

Logical domain variables

85

in-memory reboot buffer. For security reasons in LDoms, the concept of the reboot buffer was removed.
Three new variables are defined in its place for use with OpenBoot.

OpenBoot's decision to automatic boot a logical domain will be made by first looking at the re-
boot-command variable and then by looking at the auto-boot? variable. If the reboot-command
contains a valid boot string then OpenBoot will execute that boot string command. If the string is null or
non-existent then OpenBoot will look for the auto-boot? variable. If auto-boot? is set to TRUE
then OpenBoot will boot the guest OS using the boot device specified by boot-related LDom variables
(these are boot-device and boot-file).

Note: The diag-device and diag-file variables do not exist on sun4v class platforms.

The following three variables are introduced to support automatic reboot of a guest domain. These variables
replace the legacy reboot parameter buffer on non-sun4v platforms.

reboot-line-number
This is an optional variable used by Frame buffer console. The value is a 32-bit integer value describing
line number. The default value is 0.

reboot-column-number
This is an optional variable used by Frame buffer console. The value is a 32-bit integer value describing
column number. The default value is 0.

reboot-command
This is a required NUL-terminated string variable which describes reboot string which includes the
boot command, “boot”, optional device path or a device alias and optional file arguments. A null
string indicates that the reboot string is not valid. The maximum string length of this variable is 256
characters. The default value of this variable is null. See below for details on the format.

The string in reboot-command is interpreted by OpenBoot as is. The contents of this variable are
valid only for one reset. The reboot-command string is invalidated by setting it to the null string
after OpenBoot has read the variable. If the user wants to set a permanent reboot path and arguments
then auto-boot? should be set to TRUE together with boot-path and boot-file being set
to the proper device path and boot arguments respectively.

Implementation Note

This variable can be set by using OpenBoot CLIs, guest OS CLIs and also by LDom manager
CLIs. It will be updated by the SW responsible for a guest reboot. If OpenBoot is responsible for
a guest reboot then it will set the reboot-command variable with an appropriate boot string.
On legacy platforms, the boot string is stored in a reboot parameters buffer which is part of
NVRAM device. If Solaris is responsible for guest reboot then Solaris is responsible for updating
this variable directly. In either cases, OpenBoot is the sole consumer of this variable.

9.3.1. Format of reboot-command variable

The format of the string in the reboot-command consists of the following parameters:

boot_command
optional device path or an alias
optional boot arguments
NUL

Here, boot_command is the string “boot”, device path is the OpenBoot device tree path to the boot
device. An alias is an alias to the boot path. Boot arguments are arguments passed to the boot
command. A NUL character terminates the string.

Logical domain variables

86

Each of the three parameters above are delineated by one or more space characters (ASCII value 0x20). If
the second parameter is neither a device path (string which starts with “/”, ASCII value 0x2f) or a device
alias then the second parameter is the boot argument. The device path can not contain any spaces but boot
arguments can have one or more spaces. The end of the boot argument string is the NUL character.

Note

If the device path or an alias are not specified then OpenBoot will use the “boot-device” variable
value as the boot device. Similarly, if boot arguments are not specified then OpenBoot will use
the “boot-file” variable value as boot arguments.

The maximum length of the “reboot-command” variable string is 256 characters. A string consisting of
just a NUL character (ASCII value 0) is considered as an invalid boot string.

9.3.2. Guest OS management of LDom variables

A guest OS obtains the list of variables defined by OpenBoot from the options device node in the device
tree created by OpenBoot. For each such variable, OpenBoot creates properties in the options device
node. The property contains the name and value for each of the LDom variable. This behavior is the same
on all systems that use OpenBoot.

However, guest Operating Systems that retire OpenBoot after booting must manage LDom variables di-
rectly if changes are to be stored. Thus the list of LDom variables OpenBoot has defined should be re-
trieved from the options device node. A Guest OS will be able to set any of these variables following the
string name/value pair format described above using the variable domain service (Section 30.12, “Variable
Configuration version 1.0”).

87

Chapter 10. Security keys
Most sun4v SPARC platforms provide the ability via their OpenBoot firmware boot code to boot a veri-
fiable operating system image across a wide area network (WAN) such as the Internet.

To guard against a “man-in-the-middle” attack where a false boot image is provided in place of a legitimate
one for booting, verification and security for boot images is performed using security keys to attest to the
correctness of the image being downloaded. OpenBoot documentation provides a more in-depth discussion
of this mechanism.

In support of this WAN Boot capability a domain service is provided to be able to store and retrieve
these security keys by a LDom on its platform. These keys themselves are typically manipulated via CLIs
provided by OpenBoot and operating systems like Solaris.

The WAN Boot key values need to be persisted across reboot. This is achieved in a sun4v virtual machine
by presenting the keys in the guest Machine Description (MD) node called “keystore”. Setting and deleting
the keys is achieved via a domain service described in this section.

The MD node definitions are given in section Section 8.22, “Keystore”.

The mechanism to store and access the Security Key values is identical to the variable store and access
and is described in Section 30.13, “Security key domain service version 1.0”. The only difference is the
MD node and the domain services used to access the keys. The keystore format is also identical to LDom
variables. The reason for the differentiation is that security keys are not LDom variables and should not
be manipulable via the normal variable management CLIs.

88

Chapter 11. API versioning
This section describes the API versioning interface available to all privileged code.

11.1. API calls

11.1.1. api_set_version

trap# CORE_TRAP

function# API_SET_VERSION

arg0 api_group

arg1 major_number

arg2 req_minor_number

ret0 status

ret1 actual_minor_number

The API service enables a guest to request and check for a version of the Hypervisor APIs with which it
may be compatible. It uses its own trap number to ensure consistency between future versions of the virtual
machine environment. API services are grouped into sets that are specified by the argument api_group
in the table below). For the specified group the guest's requested API major version number is given
by the argument major_number and a requested API minor version number is given by the argument
req_minor_number.

If the major_number is supported, the actual minor version implemented by the Hypervisor is re-
turned in ret1 (actual_minor_number). Note that the actual minor version number may be less
than, equal to, or greater than the requested minor version number. (See Notes, below). If the returned
act_minor_number is greater than the req_minor_number then the APIs enabled by the Hyper-
visor for api_group will be compatible with req_minor_number.

If the major_number is not supported, the Hypervisor returns an error code in ret0, and ret1 is
undefined. (See Errors, below.)

If the major_number requested is zero, the version of the api_group selected is requested to return
to the initial un-set (disabled) state. If the call succeeds it will return with EOK in status, and zero in
act_minor_number.

The version number of a specified API group may be set at any time with this API service, however;

1. The act of selecting an API version for an api_group, or requesting that the group return to being un-
set (major_number=0), does not reset any previous state associated with services within a group—
unless specified explicitly for that group associated state after a api_set_version call is undefined.

2. Any API calls belonging to the same api_group being made concurrently with this
api_set_version service will have undefined results.

3. Calls to APIs made concurrently with api_set_version that are not in api_group proceed as
normally defined.

4. Simultaneous calls to api_set_version using the same api_group, may succeed but leave the
api_group in an undefined state.

5. Simultaneous calls to api_set_version and api_get_version using the same api_group
have undefined results for api_get_version.

API versioning

89

6. api_set_version does not affect the CORE_TRAP API calls - these remain unaffected and may
be called at any time.

The API groups are defined in Appendix A, Number Registry together with the approved version numbers
for each of the API services defined in this specification.

Programming note

Each API group is treated independently of the others from a versioning perspective, so one group
can have its version negotiated while APIs from other groups are actively being used. Howev-
er, a guest operating system should take care to ensure that while a api_set_version is in
progress, no APIs from the same API group are used, and no other calls to api_set_version
or api_get_version are made using the same API group.

11.1.1.1. Errors

EINVAL The api_group field is unknown to this hypervisor. This error takes prece-
dence over ENOTSUPPORTED.

ENOTSUPPORTED If major number for that api_group is not supported

EOK If api_group and major_number match, or major_number is zero

EWOULDBLOCK Operation would block

EBUSY The api_group is currently in use, and the requested version would leave
the virtual machine in an illegal state

11.1.1.2. Usage Notes

This API uses its own trap number, not for performance reasons, but to ensure its constancy even in the
face of new API major versions.

Regardless of version number, the Hypervisor core APIs (CORE_TRAP) defined above enables any guest
to print a message and cleanly exit its virtual machine environment in the event it is unsuccessful in nego-
tiating an API version with which to communicate with other hypervisor functions.

The following informative text is provided as a guide to assist the reader in understanding the hypervisor
versioning API.

API functions and returned data structures are categorized into specific groups. Each group represents
an area of hypervisor functionality that may change independently of the others, and therefore may be
versioned independently.

For each API group there is a major and a minor version number. Differences in the major version number
indicate incompatible changes. Differences in the minor number indicate compatible changes, such that a
higher version number espoused by the hypervisor will be compatible with a lower minor number requested
by a guest. If the api_group is not supported the api_set_version function will return EINVAL.
If the major version number for a valid api_group is not supported the api_set_version function
will return ENOTSUPPORTED.

The handling of an unsupported API version is purely guest policy, however a guest may freely attempt a
different major version if it is capable of driving that alternate interface. The suggested minimal behavior
is to print a warning message and exit the virtual machine.

By way of example, consider a guest that requests minor version Requested, and this API may return minor
version Actual for a given major_number and api_group.

API versioning

90

If Requested == Actual, then the requested minor version is available.

If Actual < Requested, the guest must be able to determine if the interface with minor version Actual offers
the required services and proceed accordingly. This is a guest policy issue.

If Actual > Requested, then the guest may assume it can operate compatibly with version Requested. Minor
version number increments are defined to be compatible with the preceding version, so in general the guest
may accept Actual when Actual > Requested. In this case, the guest may want to print a warning, but that
is up to the policy of the guest.

Alternatively in the event that Actual > Requested, the hypervisor may elect to emulate version Requested,
thus returning Requested.

For situations such as the co-residence of OBP with Solaris, or multiple Solaris modules using the same
API group, a layered software approach must be taken for version negotiation.

For example, it is recommended that OpenBoot initially negotiate to the lowest version number supported
for the firmware consolidation for api groups it intends to use. A subsequent guest operating system may
then negotiate versions up for each api group by calling though OpenBoot's CIF interface. Using the CIF
interface means OpenBoot will be aware of the version negotiation and can adapt itself accordingly to
new api versions, or simply veto requested versions it cannot compatibly upgrade to. If a guest negotiates
versions directly with the hypervisor bypassing the CIF, the guest is responsible for retiring OpenBoot
and providing OpenBoot services for itself.

11.1.2. api_get_version

trap# CORE_TRAP

function# API_GET_VERSION

arg0 api_group

ret0 status

ret1 major_number

ret2 minor_number

This service is used to determine the major and minor number of the most recently successfully set API
version for the specified group (see Section 11.1.1, “api_set_version”). In the event that no API version
has been successfully set the call returns the error code EINVAL and ret1 and ret2 are set to 0.

11.1.2.1. Errors

EINVAL No API version yet successfully set

91

Chapter 12. Core services
The following services enable privileged software to request information about or to affect the entire virtual
machine domain.

12.1. API calls

12.1.1. mach_exit

trap# FAST_TRAP

function# MACH_EXIT

arg0 exit_code

This service stops all CPUs in the virtual machine domain and places them into the stopped state. The
64-bit exit_code may be passed to a service entity as the domain's exit status. On systems without a
service entity, the domain will undergo a reset, and the boot firmware will be reloaded.

This function will never return to the guest that invokes it.

Note

Note: by convention a exit_code of zero denotes successful exit by the guest code. A non-
zero exit_code denotes a guest-specific error indication.

12.1.1.1. Errors

This service does not return.

12.1.2. mach_desc

trap# FAST_TRAP

function# MACH_DESC

arg0 buffer

arg1 length

ret0 status

ret1 length

This service copies the most current machine description into the buffer indicated by the real address in
arg0. The buffer provided must be 16-byte aligned. Upon success or EINVAL this service returns the
actual size of the machine description is provided in the ret1 (length) return value.

Note

Note: A method of determining the appropriate buffer size for the machine description is to first
call this service with a buffer length of 0 bytes and use the value returned in ret1.

12.1.2.1. Errors

EBADALIGN Buffer is badly aligned

EINVAL Buffer length is too small for complete machine description.

Core services

92

ENORADDR Buffer is to an illegal real address

12.1.3. mach_sir

trap# FAST_TRAP

function# MACH_SIR

This service provides a software initiated reset of a virtual machine domain. All CPUs are captured as
soon as possible, all hardware devices are returned to the entry default state, and the domain is restarted
at the SIR (trap type 0x4) real trap table (rtba) entry point on one of the CPUs. The single CPU restarted
is selected as determined by platform specific policy. Memory is preserved across this operation.

12.1.3.1. Errors

This service does not return.

12.1.4. mach_set_watchdog

trap# FAST_TRAP

function# MACH_SET_WATCHDOG

arg0 timeout

ret0 status

ret1 time_remaining

This API service provides a basic watchdog timer service.

A guest uses this API to set a watchdog timer. Once the guest has set the timer, it must call the timer service
again either to disable or re-set the expiration. If the timer expires before being re-set or disabled, then
the hypervisor takes a platform specific action leading to guest termination within a bounded time period.
The platform action may include recovery actions such as reporting the expiration to a Service Processor,
and/or automatically restarting the guest.

If the timeout argument is zero, the watchdog timer is disabled.

If the timeout argument is not zero, the watchdog timer is set to expire after a minimum of timeout
milliseconds.

The implemented timeout granularity is given by the watchdog-resolution property in the plat-
form node of the guest's machine description (see Section 8.19.6, “Platform node”. The specified timeout
is rounded up to the nearest integer multiple of watchdog-resolution milliseconds.

The largest timeout value allowed is specified by the watchdog-max-timeout property of the plat-
form node. If the timeout value exceeds the value of the watchdog-max-timeout property, the hy-
pervisor leaves the watchdog timer state unchanged, and returns a status of EINVAL.

The time_remaining return value is valid regardless of whether the return status is EOK or EINVAL.
A non-zero return value indicates the number of milliseconds that were remaining until the timer was to
expire. The time remaining will be rounded up to the nearest millisecond of watchdog-resolution available.

Programming note

If the hypervisor cannot support the exact timeout value requested, but can support a larger time-
out value, the hypervisor may round the actual timeout to a value larger than the requested timeout,

Core services

93

consequently the time_remaining return value may be larger than the previously requested
timeout value.

Programming note

Any guest OS debugger should be aware that the watchdog service may be in use. Consequently,
it is recommended that the watchdog service is disabled upon debugger entry (e.g. reaching a
breakpoint), and then re-enabled upon returning to normal execution. The API has been designed
with this in mind, and the time_remaining result of the disable call may be used directly as
the timeout argument of the re-enable call.

12.1.4.1. Errors

EINVAL timeout too large

12.1.5. mach_suspend

trap# FAST_TRAP

function# MACH_SUSPEND

ret0 status

This call suspends the current virtual machine. The function will return upon the resume. A suspended
virtual machine can only be resumed by the domain manager.

All resources that were available to the domain prior to suspension will still be available after resumption,
but additional resources may be available. After resumption, a suspended domain's tick/stick may have
changed by either a positive or negative offset.

On success, the call returns a status of EOK. Otherwise, it returns one of the following errors.

12.1.5.1. Errors

ENOTSUPPORTED The requested operation cannot be performed on this domain

EWOULDBLOCK The requested operation cannot be performed at this time

12.1.6. mach_pri

trap# FAST_TRAP

function# MACH_PRI

arg0 buffer

arg1 length

ret0 status

ret1 length

This service copies the most current physical resource index (PRI) into the buffer indicated by the real
address in arg0. The buffer provided must be 16-byte aligned. Upon success or EINVAL this service
returns the actual size of the machine description is provided in the ret1 (length) return value.

Core services

94

Note

Note: A method of determining the appropriate buffer size for the machine description is to first
call this service with a buffer length of 0 bytes and use the value returned in ret1.

12.1.6.1. Errors

EBADALIGN Buffer is badly aligned

EINVAL Buffer length is too small for complete machine description.

ENORADDR Buffer is to an illegal real address

ENOACCESS Access to the PRI is not permitted

ENOTSUPPORTED The PRI is not accessible using this API

12.1.7. mach_vars

trap# FAST_TRAP

function# MACH_VARS

arg0 buffer

arg1 length

ret0 status

ret1 length

This service copies the most current Variable Updates Machine Description into the buffer indicated by
the real address in arg0. The buffer provided must be 16-byte aligned. Upon success or EINVAL this
service returns the actual size of the machine description is provided in the ret1 (length) return value.

Note

A method of determining the appropriate buffer size for the machine description is to first call
this service with a buffer length of 0 bytes and use the value returned in ret1.

Note

The Updates MD delivered to OBP is simply a data structure in the machine description format
with a single root node containing string properties named after NVRAM variables and containing
their non-default values. The Updates MD is also delivered to the LDom Manager on the mdstore
domain service so that it can merge the updates into its own version of the control domain guest
MD. When an LDoms configuration is subsequently saved to the SP, the variables in the SP
variable store are flushed since they are now represented in the running control domain guest MD
and in the stored LDoms configuration.

If the SP is faulted when the host is powered on, when the control domain OBP boots it will fail to
register the var-config-backup domain service with VBSC. Any non-default NVRAM variables
will be present in the guest MD on this first boot after power-on since hostconfig is able to include
the latest non-default variables from the backing store in the guest MD it creates. Moreover, if
OBP setenv command is used to update a variable, it will fail due to the missing variable domain
service, and so there will be no new non-default settings to persist after the SP is faulted.

If any non-default variables are present in the variable backing store but not in the guest MD,
they are only retrievable via the Updates MD. This happens if OBP setenv is used and then the

Core services

95

control domain is soft reset with reset-all. This also happens if Solaris eeprom(1M) is used while
the LDom Manager is not running and the control domain is rebooted. There are additional use-
cases that can result in this condition. If the SP is faulted while in this condition, absent some
recovery, the user will see the OBP variables revert to either a historical value still present in the
guest MD or back to the default value.

It is proposed that if the SP is faulted OBP will retrieve the Updates MD via a an hypervisor API
call. The Updates MD will be stored in the host flash and kept up-to-date by VBSC. Hypervisor
will retrieve the Updates MD from the flash and make it available to the control domain OBP.
The layout of the flash and the Updates MD in it is described in the host flash section.

The control domain OBP will continue to use the variable domain service when the SP is present.
Non-control domain OBP will continue to only use the variable domain service provided by the
LDom Manager. The control domain OBP will only fallback to using the hypervisor API when
the var-config-backup domain service fails to register. This might happen for three reasons: 1) the
SP is faulted; 2) host is doing parallel boot and VBSC on the SP is not yet running; 3) a hardware
or firmware bug causes the ldc/ds transport for the variable service to fail.

While the hypervisor API is necessary for the case where the SP is faulted, it also provides an ideal
recovery when the SP is not faulted but still booting. This might happen during a cold power-on
boot of host and SP (parallel boot), or it might happen if the host and control domain are rebooted
in parallel (parallel reboot).

12.1.7.1. Errors

EBADALIGN Buffer is badly aligned

EINVAL Buffer length is too small for complete machine description.

ENORADDR Buffer is to an illegal real address

12.1.8. mach_reboot_data_set

trap# FAST_TRAP

function# MACH_REBOOT_DATA_SET

arg0 buffer

arg1 length

ret0 status

This service stores data across a domain reset. The stored data will persist across a MACH_SIR. Initially
the stored data will be cleared and the stored data length will be reset to the value zero.

The argument length is the size of the data in the buffer to be saved. If length is zero, the argument
buffer is ignored, and any previously saved data is destroyed and the saved data length is set to zero. If
the argument length is non-zero, the argument buffer is the real address of a data buffer. The buffer
provided must be 16-byte aligned.

If this function returns successfully, the saved data and length have been updated. If the argument length
is non-zero, length bytes of data from the data buffer defined by the argument buffer have been saved.
The saved data and data length may be retrieved via the mach_reboot_data_get API.

If this function returns an error, the saved data and data length are unchanged.

The minimum supported size of the internal data buffer shall be 512 bytes and the actual maximum may
be higher.

Core services

96

It is the guest's responsibility to clear the reboot data after it has been retrieved. The data may be cleared
by calling this API with a length of 0.

Note

In SP degraded mode, if a domain is rebooted, Solaris would not be able to save the reboot
parameters on the SP. Alternately, if the SP goes down after reboot parameters are saved on the
SP but before OBP is able to retrieve the parameters, OBP would not be able to boot Solaris using
the specified parameters.

In order to support a guest domain reboot in SP-degraded mode, these APIs are defined. Solaris
would use these APIs to save the reboot parameters for the guest. When OBP is ready to boot it
would use these APIs to retrieve the reboot parameters and initiate the boot.

Both Solaris and OBP need to negotiate the “Reboot Data Services” API group. If the API group
is successfully negotiated they should use only these APIs for reboot command parameters. If the
API group is not negotiated they should continue to use the existing method of storing/retrieving
the reboot parameters.

12.1.8.1. Errors

EBADALIGN Buffer is badly aligned

ENORADDR Buffer is to an illegal real address

EINVAL The requested length is larger than the maximum size

12.1.9. mach_reboot_data_get

trap# FAST_TRAP

function# MACH_REBOOT_DATA_GET

arg0 buffer

arg1 length

ret0 status

ret0 actual-length

This service returns a copy of the currently saved reboot data. The saved reboot data may be set via the
mach_reboot_data_set API.

If the argument length is non-zero, the argument buffer is the real address of a length-sized data
buffer. The buffer provided must be 16-byte aligned. This API copies up to length bytes of stored data
into the data buffer defined by the buf argument.

If the argument length is zero, the argument buffer is ignored.

In all cases, the actual length of the stored data is returned in actual_length. If actual_length is
zero, no data has been copied to the buffer defined by the buffer argument, and there is no stored data.

If the argument length is non-zero, and less than the size of the stored data, the error code EINVAL
is returned and no data is copied.

If the argument len is non-zero and greater than or equal to the size of the stored data, the stored data is
copied to the buffer defined by the buffer argument.

Core services

97

If length is larger than actual_length, the contents of the buffer beyond actual_length is
undefined.

Note

The client can easily determine the size of the stored data by calling this service with the len
argument set to the value 0.

12.1.9.1. Errors

EBADALIGN Buffer is badly aligned

ENORADDR Buffer is to an illegal real address

EINVAL The requested length is larger than the maximum size

98

Chapter 13. CPU services
CPUs represent devices that can execute software threads. A single chip that contains multiple cores or
strands is represented as multiple CPUs with unique CPU identifiers. CPUs are exported to OBP via the
machine description (and to Solaris via the device tree). CPUs are always in one of three states: stopped,
running, or error.

13.1. CPU id and CPU list

A CPU id is a pre-assigned 16-bit value that uniquely identifies a CPU within a logical domain.

Operations that are to be be performed on multiple CPUs specify them via a CPU list. A CPU list is an
array in real memory, of which each 16-bit word is a CPU id.

CPU lists are passed through the API as two arguments: the first is the number of entries (16-bit words)
in the CPU list, and the second is the (real address) pointer to the CPU id list.

A valid CPU list must have one or more CPU id entries.

13.2. API calls

13.2.1. cpu_start

trap# FAST_TRAP

function# CPU_START

arg0 cpuid

arg1 pc

arg2 rtba

arg3 target_arg0

ret0 status

Start CPU with id cpuid with pc in %pc and with a real trap base address value of rtba. The indicated
CPU must be in the stopped state. The supplied rtba must be aligned on a 256 byte boundary. On success-
ful completion, the specified CPU will be in the running state and will be supplied with target_arg0
in %o0 and rtba in %tba.

13.2.1.1. Errors

ENOCPU Invalid cpuid

EINVAL Target cpuid is not in the stopped state

ENORADDR Invalid pc or rtba real address

EBADALIGN Unaligned pc or unaligned rtba

EWOULDBLOCK if starting resource is not available

13.2.2. cpu_stop

trap# FAST_TRAP

function# CPU_STOP

arg0 cpuid

CPU services

99

ret0 status

Stop CPU cpuid. The indicated CPU must be in the running state. On completion, it will be in the stopped
state. It is not legal to stop the current CPU.

Note

As this service cannot be used to stop the current CPU, this service may not be used to stop the last
running CPU in a domain. To stop and exit a running domain a guest must use the mach_exit
service.

13.2.2.1. Errors

ENOCPU Invalid cpuid

EINVAL target cpuid is the current CPU

EINVAL target cpuid is not in the running state

EWOULDBLOCK if starting resource is not available

ENOTSUPPORTED if not supported on the platform

13.2.3. cpu_set_rtba

trap# FAST_TRAP

function# CPU_SET_RTBA

arg0 rtba

ret0 status

ret1 previous_rtba

Set the real trap base address of the local CPU to the value of rtba. The supplied rtba must be aligned
on a 256 byte boundary. Upon success the previous value of rtba is returned in ret1.

Note

The real trap table is described in the sun4v architecture specification.

Note

This service does not affect %tba.

13.2.3.1. Errors

ENORADDR Invalid rtba real address

EBADALIGN rtba is incorrectly aligned for a trap table

13.2.4. cpu_get_rtba

trap# FAST_TRAP

function# CPU_GET_RTBA

ret0 status

ret1 rtba

CPU services

100

Returns the current value of rtba in ret1.

13.2.4.1. Errors

No possible error.

13.2.5. cpu_yield

trap# FAST_TRAP

function# CPU_YIELD

ret0 status

Suspend execution on the current CPU. Execution may resume for any reason but is guaranteed to resume
for any event that would generate a disrupting trap if pstate.ie == 1.

Programming note

This API may be used to save power and prevent contention on some CPUs by disabling hardware
strands.

The guest is responsible for handling any race conditions that may occur when calling this service
with pstate.ie == 1.

Interrupts which are blocked by some mechanism other than pstate.ie (for example %pil)
are not guaranteed to cause a return from this service.

13.2.5.1. Errors

No possible error.

13.2.6. cpu_qconf

trap# FAST_TRAP

function# CPU_QCONF

arg0 queue

arg1 base_raddr

arg2 nentries

ret0 status

Configure queue queue to be placed at real address base_raddr, and of nentries entries. nen-
tries must be a power of two. base_raddr must be aligned exactly to match the queue size. Each
queue entry is 64 bytes long, so for example, a 32 entry queue must be aligned on a 2048 byte real address
boundary.

The specified queue is unconfigured if nentries is 0.

For the current version of this API service the argument queue is defined as follows:

Queue Description

0x3c cpu mondo queue

0x3d device mondo queue

CPU services

101

Queue Description

0x3e resumeable error queue

0x3f non-resumable error queue

Programming note

The maximum number of entries for each queue for a specific CPU may be determined from the
machine description.

13.2.6.1. Errors

EINVAL Invalid queue

EINVAL nentries not a power of two

EINVAL nentries is less than two or too large

ENORADDR Invalid base_raddr real address

EBADALIGN base_raddr is incorrectly aligned

13.2.7. cpu_qinfo

trap# FAST_TRAP

function# CPU_QINFO

arg0 queue

ret0 status

ret1 base_raddr

ret2 nentries

Return the configuration info for queue queue. The base_raddr is the currently defined read address
base of the defined queue, and nentries is the size of the queue in terms of number of entries.

For the current version of this API service the argument queue is defined as follows:

Queue Description

0x3c cpu mondo queue

0x3d device mondo queue

0x3e resumeable error queue

0x3f non-resumable error queue

If the specified queue is a valid queue number, but no queue has been defined this service will return
success, but with nentries set to 0 and base_raddr will have an undefined value.

13.2.7.1. Errors

EINVAL Invalid queue

13.2.8. cpu_mondo_send

trap# FAST_TRAP

function# CPU_MONDO_SEND

CPU services

102

arg0/arg1 cpulist

arg2 data

ret0 status

Send a mondo interrupt to CPU list cpulist with 64 bytes of data pointed to by data. data must be a
64 byte aligned real address. The mondo data will be delivered to the cpu_mondo queues of the recipient
CPUs.

In all cases, (error or no), the CPUs in cpulist to which the mondo has been successfully delivered will
be indicated by having their entry in cpulist updated with the value 0xffff.

13.2.8.1. Errors

ENOCPU Invalid CPU in cpus

ENORADDR Invalid data mondo real address or invalid CPU list address

EBADALIGN Mondo data is not 64-byte aligned or cpulist is not 2-byte aligned

EWOULDBLOCK Some or all of the listed CPUs did not receive the mondo

EINVAL cpulist includes caller's cpuid

13.2.9. cpu_myid

trap# FAST_TRAP

function# CPU_MYID

ret0 status

ret1 cpuid

Return the hypervisor ID handle for the current CPU. Used by a virtual CPU to discover its own identity.

13.2.9.1. Errors

No errors defined

13.2.10. cpu_state

trap# FAST_TRAP

function# CPU_STATE

arg0 cpuid

ret0 status

ret1 state

Retrieve the current state of CPU cpuid. The states are:

CPU_STATE_STOPPED 0x1 CPU is in the stopped state

CPU_STATE_RUNNING 0x2 CPU is in the running state

CPU_STATE_ERROR 0x3 CPU is in the error state

13.2.10.1. Errors

ENOCPU Invalid cpuid

CPU services

103

13.2.11. cpu_tick_npt

trap# FAST_TRAP

function# CPU_TICK_NPT

arg0 enabled

ret0 status

This call enables (arg0 == 1) or disables (arg0 == 0) the tick.npt bit on the calling CPU.

On success, the call returns a status of EOK. Otherwise, it returns one of the following errors.

13.2.11.1. Errors

EINVAL Invalid argument

13.2.12. cpu_stick_npt

trap# FAST_TRAP

function# CPU_STICK_NPT

arg0 enabled

ret0 status

This call enables (arg0 == 1) or disables (arg0 == 0) the stick.npt bit on the calling CPU.

On success, the call returns a status of EOK. Otherwise, it returns one of the following errors.

13.2.12.1. Errors

EINVAL Invalid argument

104

Chapter 14. MMU services
These hypervisor services control the behavior of address translations handled by the hypervisor.

A basic sun4v guest operating system, need not use any of these services at all. The default/initial operating
environment for a guest is with virtual address translation disabled. In this mode all instructions and data
references are made with real addresses.

If a guest operating system enables MMU translations, then virtual to real mappings may be specified
in one of three different ways; either as permanent mappings, or as mappings that may be evicted and
reloaded into system TLBs directly via MMU service functions, or indirectly via Translation Storage
Buffers (TSBs). Moreover, with translations enabled, a guest Operating System must declare a Fault Status
area for the hypervisor to provide information in the event of a translation fault.

14.1. Translation Storage Buffer (TSB) specification

The TSB functions control two sets of TSBs, one for when the virtual address context is zero, and one for
when it is not zero. The demap functions remove translations from hardware TLBs.

A TSB description is a memory data structure that defines a single TSB:

Table 14.1. TSB descriptor layout

Offset Size Contents

0 2 page size to use for index shift in TSB

2 2 associativity of TSB

4 4 size of TSB in TTEs (16 bytes)

8 4 context_index

12 4 page size bitmask

16 8 real address of TSB base

24 8 reserved

The maximum TSB associativity supported is indicated in the guest machine description (see Sec-
tion 8.19.3, “cpu node”).

14.1.1. Page sizes

The sun4v architecture defines value encodings of page size for translation table entries (TTEs). The page
size bitmask indicates which of these encodings may be specified for TTEs within a given TSB. For each
bit in the page size bitmask, if set, the sun4v page size may be specified. For example, bit 0 corresponds
to an 8KByte page size, bit 1 to a 64K page size, and so on in multiples of 8 of the page size for each
bit in the field:

Bit Page Size

0 8K

1 64K

2 512K

3 4MB

4 32MB

MMU services

105

Bit Page Size

5 256MB

6 2GB

7 16GB

Bits 8 through 15 are reserved and must be set to zero.

The index shift page size indicates the page size to use for computing the TSB index for TTE retrieval.
This value is the same as the page size value that may be specified in an individual sun4v TTE:

Bit Page Size assumed for index computation

0 8K

1 64K

2 512K

3 4MB

4 32MB

5 256MB

6 2GB

7 16GB

Values 8 though 15 are reserved. The index shift value must correspond to the smallest page size specified
in the page size bit mask.

14.1.2. Context index

This TSB description field enables TSBs to be defined where the context value for a page translation is
supplied within each entry of the TSB, or where a single value applies to the whole TSB. The latter enables
a single TSB to be used for multiple context values (the context field within each TSB entry (TTE) is
required to be zero). The context index field within a TSB description selects which of these two modes
the TSB is defined to use.

If a context index field value of -1 (0xffffffff) is given in the TSB description, the TSB is defined
to use the context field within each TTE.

If a context index field contains a value between 0 and mmu-#shared-contexts, the context val-
ue used for every entry in the TSB (TTE) will be taken from sun4v context register identified by the
context index field at the time the TTE is used. For example, a translation required for (express or im-
plied) ASI_PRIMARY and matched by a TTE in the TSB, will take its context value from the register
PRIMARY_CONTEXT1 if the context index field of the TSB description is 1.

Any other value supplied in the context index field is invalid.

The value of mmu-#shared-contexts is provided in the cpu node (Section 8.19.3, “cpu node”) of
the machine description for each virtual CPU.

14.2. MMU flags

The MMU APIs are designed to function for both instruction and data address translations. Therefore,
many of these interfaces take an MMU “flags” argument in order to specify whether the operation is
relevant to instruction or data mappings, or both. To ensure consistency between the MMU services this
flags argument is defined here, and as follows.

MMU services

106

The flags argument applies the API operation to instruction translations if bit 1 is set, and in addition
applies the API operation to data translation entries if bit 0 is set. For every API service requiring a flags
argument, at least one of bit 0 and/or bit 1 must be set.

It is a programming error to request an instruction mapping (using the mapping flags) whose TTE's X
bit is zero.

Implementation note

For hardware implementations with unified instruction and data functions (for example; TLBs);
Mapping an instruction translation entry may also cause an identical data translation entry to be
mapped, and vice-versa even if not explicitly requests by the flags argument. Similarly, demap-
ping an instruction translation entry may also cause the data translation entry to be demapped,
and vice-versa even if not explicitly requested by the flags setting.

14.3. Translation table entries

A TTE in a TSB describes virtual addresses to real address mappings.

Figure 14.1. Translation Table Entry (TTE) format

TSB tag word:
 6 4 4 4 4
 3 8 7 2 1 0
+------------------+------------+-------------------------------+
| Context | reserved | VA[63:22] |
+------------------+------------+-------------------------------+

TSB data word:
 6 6 6 5 5 1 1 1 1
 3 2 1 6 5 3 2 1 0 9 8 7 6 5 4 3 0
+-+---+----+---------------------------+--+-+--+--+-+-+-+---+---+
|V|NFO| SW | RA[NN:13] |IE|E|CP|CV|P|X|W|SW |SZ |
+-+---+----+---------------------------+--+-+--+--+-+-+-+---+---+

Sun4v specifies a TSB entry format with featured as described in the following sections.

14.3.1. TSB entry tag word

The 64-bit TSB entry tag word has a 16-bit context field, and a 42 bit VA field.

All 16-bits of the context field are significant. However, platforms are not required to support the full range
(0 through 65535) of possible context values, thus certain context values are reserved and should not be
used in the context field of the TSB entry tag. Use of a reserved context value results in a TSB entry miss.
The guaranteed minimum range of supported context values is 0 through 8191. The availability of values
between 8192 and 65535 is platform dependent. The maximum context value supported on a specific CPU
is given in the machine description provided to a guest operating system.

The reserved field must be written as 0. Any non-zero values in this field will result in a TSB miss.

The VA field holds the upper 42 bits of the virtual address to be matched for this TSB entry. All bits of
this field are significant. For page sizes larger than 4MB, the appropriate lower VA address bits must be
zero, or a TSB entry miss results.

MMU services

107

Platforms are not required to support the full range of 64-bit virtual addresses, however for platforms
supporting fewer than 64 VA bits the highest order bit is sign-extended through bit 63 and compared with
the entire VA field of the TTE entry tag word. This sign extension of virtual addresses results in a “hole”
in the supported virtual address spaces. TSB entries whose VA tag fields fall within the hole will result
in a TSB miss for that entry.

The range of virtual address bits supported for a specific CPU is given in the machine description provided
to a guest operating system.

14.3.2. TSB entry data word

The sun4v TTE's range of the real address space is 56 bits.

The UltraSPARC-1 TTE's lock bit has been removed from sun4v. Non faulting translation entries can be
specified by privileged code via. a hypervisor API call.

The sun4v TTE data bit fields are as follows:

Bit Field Mnemonic Meaning

63 V Valid. =1 if TTE is a valid entry.

62 NFO Non Faulting Only. If set to 1 this TTE is intended to match only loads
using the non-faulting ASIs

61-56 SW Software usable bits

55-13 RA Real address bits 55 to 13. For page sizes larger than 8KB, the low order
address bits below the page size are ignored.

12 IE Invert endianness

11 E Side effect. If the side-effect bit it set, speculative loads will trap for ad-
dresses within the page, non-cacheable memory addresses other than block
loads and stores are strongly ordered against other E-bit accesses and non-
cacheable stores are not merged. This bit should be set for pages that map I/
O devices having side-effects. Note: the E bit does not prevent normal in-
struction prefetching. The E bit has no effect for instruction fetches. Note:
The E bit does not force non-cacheable access. It is expected, but not re-
quired that the CP and CV bits are cleared to 0 with the E bit. If both CP
and CV are set to 1 along with the E bit, the result is undefined Note: The
E bit and the NFO bit are mutually exclusive: both bits should never be
set in any TTE.

10-9 CP-CV Cacheable Physical & Cacheable Virtual. These two bits are passed to the
cache memory sub-system on any access and determine the cacheability of
that access as follows: If CP is set to 1 then the mapped data or instructions
may be cached in any physically indexed cache. If CP and CV are both set
to 1 then the mapped data or instructions may be cached in any physically or
virtually index cache. If CP is cleared to 0 then the contents of the mapped
page are non-cacheable.

8 P Privileged. If P is set to 1 then this mapping will only match in the TLB if
the processor i s in privileged mode (PSTATE.priv = 1)

7 X eXecute. If the X bits is set to 1 instructions may be fetched and executed
from this page.

6 W Writable. If the W bit is set to 1, data mapped by this page may be written to.

5-4 SW Software usable bits

MMU services

108

Bit Field Mnemonic Meaning

3-0 SZ Size: page size 0 = 8KB, 1=64KB, 2=512KB, 3=4MB, 4=32MB,
5=256MB, 6=2GB, 7=16GB, Sizes 8 through 15 are reserved.

The size field of the sun4v TSB entry format is four bits wide. Page size values 0 through 7 are defined,
while values 8 through 15 are reserved and should not be used. Attempts to specify page sizes in the range 8
through 15 result in an instruction_access_exception or data_access_exception indicating an invalid page
size.

14.4. Translation storage buffer (TSB) configuration
TSBs are configured by privilege mode code via a hypervisor API call.

Each TSB can be configured in one of two different modes; context-match or context-ignore. The mode
determines how a TSB entry is matched when the TSB is searched:

In context-match mode the context field of the TTE tag is matched against one of the nucleus, primary or
secondary context registers (as specified by the actual or implied access ASI). This mode enables a TSB
to be used for caching translation entries belonging to different contexts. Matching with the context field
allows only those translations belonging to the current contexts to loaded into the TLB.

In context-ignore mode the context field of a TSB entry is ignored when the TSB is searched. A TSB
configured in this mode must have the context field of each translation entry set to 0. When a valid TSB
entry is matched it is loaded into the TLB with a context value provided from one of the primary or
secondary context registers. The choice of primary or secondary is determined by the actual or implied
access ASI, the index of the context register is specified as part of the TSB configuration. Context-ignore
mode enables TSB entries to be used with more than one context.

Note: please refer to the section above on context registers, and in particular the possibility of multi-match-
ing TLB entries.

14.5. Permanent and non-permanent mappings
It is an error to attempt to create overlapping permanent mappings. It is an error to create non-permanent
mappings that conflict with permanent mappings. These errors are not necessarily detected, but may result
in undefined behavior.

14.6. MMU Fault status area
MMU related faults have their status and fault address information placed into a memory region made
available by privileged code. Like the TSBs above, the fault status area for each virtual processor is de-
clared to the hypervisor via a hypervisor API call.

It is possible for MMU related faults to be delivered either by the hypervisor or directly by processor hard-
ware if so implemented. For this reason, the MMU fault area is arranged on an aligned address boundary
with instruction and data fault fields arranged into distinct 64-byte blocks.

The layout of the MMU fault status area is described in the table below:

Table 14.2. MMU Fault Status Area Layout

Offset Size Contents

0x00 0x8 Instruction Fault Type (IFT)

0x08 0x8 Instruction Fault Address (IFA)

0x10 0x8 Instruction Fault Context (IFC)

MMU services

109

Offset Size Contents

0x18 0x28 reserved

0x40 0x8 Data Fault Type (DFT)

0x48 0x8 Data Fault Address (DFA)

0x50 0x8 Data Fault Context (DFC)

0x58 0x28 reserved

The reserved fields must not be used. Their contents are undefined, and are not guaranteed preserved if
written.

The definition of the values of the instruction and data fault type fields is as follows:

Table 14.3. MMU Fault Type values

Code Fault Type

1 fast MMU miss

2 fast protection fault

3 MMU miss

4 invalid RA

5 privilege violation

6 protection violation

7 NFO access

8 so page / NFO side effect

9 invalid VA

10 invalid ASI

11 NC atomic

12 privileged action

13 reserved

14 unaligned access

15 invalid page size

16 to -2 reserved

-1 (0xffff.ffff.ffff.ffff) multiple errors

For each MMU-related trap, the fault status area is updated as follows; (a blank entry for IFT, IFA, IFC,
DFT, DFA, or DFC indicates the field is not updated for the particular condition and is therefore undefined,
and a bullet (“•”) indicates the field is updated with the relevant fault type, address or context information
for the trap).

Table 14.4. MMU Fault Type values

sun4v trap type Fault Type IFT IFA IFC DFTDFADFC Comments

invalid RA (0x4) • • instruction fetch to
real address out of
range

instruction_access_exception

privilege violation (0x5) • • • non-privileged in-
struction access

MMU services

110

sun4v trap type Fault Type IFT IFA IFC DFTDFADFC Comments

to privileged page
(TTE.p=1)

NFO access (0x7) • • • instruction access
to non-faulty load
page (TTE.nfo=1)

invalid VA (0x9) • • • instruction virtual
access out of range

invalid TSB entry (0x10) • • • Hardware table
walk found an in-
valid RA in a TTE
loaded from a TSB

protection vi-
olation (0x6)

• • • Instruction access
to page without ex-
ecute permission

multiple error (-1) • Hardware encoun-
tered multiple er-
rors

instruction_access_MMU_miss MMU miss (0x3) • • • instruction fetch to
real address out of
range

invalid RA (0x4) • • • real address out of
range

privilege violation (0x5) • • • Non-privileged data
access to privileged
page (TTE.p=1)

NFO access (0x7) • • • Data access to
non-faulting page
(TTE.nfo=1) with
ASI other than a
non-faulting ASI

SO page / NFO
side effect (0x8)

 • • • Non-faulting ASI
data access to
side-effect page
(TTE.e=1)

invalid VA (0x9) • • • Data or branch vir-
tual access out of
range

invalid ASI (0xa) • • • Invalid ASI for in-
struction

NC atomic (0xb) • • • Atomic access to
non-cacheable page
(TTE.cp=0)

data_access_exception

privileged action (0xc) • • • Data access by non-
privileged software
using a privileged
or hyper-privileged
ASI

MMU services

111

sun4v trap type Fault Type IFT IFA IFC DFTDFADFC Comments

invalid page size (0xf) • Invalid page size in
TTE

Multiple errors (-1) • Hardware encoun-
tered multiple er-
rors

data_access_MMU_miss MMU miss (0x3) • • • TSB miss

data_access_protection protection vi-
olation (0x6)

 • • • store to non-
writable mapping

mem_address_not_aligned,
LDDF_mem_address_not_aligned,
STDF_mem_address_not_aligned,
LDQF_mem_address_not_aligned,
STQF_mem_address_not_aligned

unaligned access (0xe) • • Data access is not
properly aligned

fast_instruction_access_MMU_miss fast miss (0x1) • • TLB miss

fast_data_access_MMU_miss fast miss (0x1) • • TLB miss

fast_data_access_protection fast protection (0x2) • • Store data access to
page without write
protection

privileged_action privileged action (0xc) • • Use of privi-
leged ASI when
pstate.priv=0

14.7. Global MMU Operations

The Global MMU services allow for broadcast demap operations.

When the guest requests one of the global demap services, the API will return a status for that operation.
This status will fall into one of the following categories:

Successful operation The global demap has completed successfully. The status EOK is re-
turned.

Failed operation The global demap has failed and will never be completed. A status indi-
cating failure is returned. For example, EINVAL, EBUSY, or ENOAC-
CESS has been returned.

Incomplete operation The global demap operation is still in progress and has not yet either com-
pleted successfully or failed permanently. A status of EPENDING is re-
turned.

A guest must not issue a new global demap request while a previous request is in the incomplete state.

A global demap operation is only considered to have completed when a status other than EPENDING is re-
turned. If a global demap operation returns EPENDING, the global demap status service (Section 14.8.18,
“mmu_global_demap_status”), must be used to complete the demap operation.

The demap is not globally visible across all processors until the operation has successfully completed.

If the demap completes with any failure status then mappings may still exist in one or more CPUs.

MMU services

112

If a status of EBUSY is returned for a demap request, a previous demap operation has not been completed.
The guest must use the global demap status service (Section 14.8.18, “mmu_global_demap_status”) to
complete the previous demap operation before attempting to initiate a new demap operation.

14.8. API calls

14.8.1. mmu_tsb_ctx0

trap# FAST_TRAP

function# MMU_TSB_CTX0

arg0 ntsbs

arg1 tsbdptr

ret0 status

Configures the TSBs for the current CPU for virtual addresses with context zero. tsbdptr is a pointer
to an array of ntsbs TSB descriptions.

Note: the maximum number of TSBs available to a virtual CPU is given by the mmu-max-#tsbs property
of the CPU's corresponding cpu node in the machine description.

14.8.1.1. Errors

EINVAL Invalid ntsbs, or invalid context index in a TSB descriptor, or index page
size not equal to smallest page size in page size bitmask field.

ENORADDR Invalid tsbdptr or TSB base in a TSB descriptor

EBADALIGN tsbdptr is not aligned to an 8-byte boundary or TSB base in a descriptor is
not aligned for a TSB size

EBADPGSZ Invalid page size in a TSB descriptor

EBADTSB Invalid associativity or size in a TSB descriptor

14.8.2. mmu_tsb_ctxnon0

trap# FAST_TRAP

function# MMU_TSB_CTXNON0

arg0 ntsb

arg1 tsbdptr

ret0 status

Configures the TSBs for the current CPU for virtual addresses with non-zero contexts. tsbdptr is a
pointer to an array of ntsbs TSB descriptions.

A maximum of 16 TSBs may be specified in the TSB description list.

14.8.2.1. Errors

EINVAL Invalid ntsbs, or invalid context index in a TSB descriptor, or index page
size not equal to smallest page size in page size bitmask field.

ENORADDR Invalid tsbdptr or TSB base in a TSB descriptor

EBADALIGN tsbdptr is not aligned to an 8-byte boundary or TSB base in a descriptor is
not aligned for a TSB size

MMU services

113

EBADPGSZ Invalid page size in a TSB descriptor

EBADTSB Invalid associativity or size in a TSB descriptor

14.8.3. mmu_demap_page

trap# FAST_TRAP

function# MMU_DEMAP_PAGE

arg0 reserved

arg1 reserved

arg2 vaddr

arg3 context

arg4 flags

ret0 status

Demaps any page mapping of virtual address vaddr in context context for the current virtual CPU.
Any virtual tagged caches are guaranteed to be kept consistent. The flags argument is defined according
to Section 14.2, “MMU flags”.

Arguments arg0 and arg1 are reserved and must be set zero.

14.8.3.1. Errors

The implementation of this function is not required to check for all possible errors, and may return the
following error codes:

EINVAL Invalid vaddr, context, or flags value

ENOTSUPPORTED arg0 or arg1 is non-zero

14.8.4. mmu_demap_ctx

trap# FAST_TRAP

function# MMU_DEMAP_CTX

arg0 reserved

arg1 reserved

arg2 context

arg3 flags

ret0 status

Demaps all non-permanent virtual page mappings previously specified for context context for the cur-
rent virtual CPU. Any virtual tagged caches are guaranteed to be kept consistent.

The flags argument is defined according to Section 14.2, “MMU flags”.

Arguments arg0 and arg1 are reserved and must be set zero.

14.8.4.1. Errors

The implementation of this function is not required to check for all possible errors, and may return the
following error codes:

MMU services

114

EINVAL Invalid context or flags value

ENOTSUPPORTED arg0 or arg1 is non-zero

14.8.5. mmu_demap_all

trap# FAST_TRAP

function# MMU_DEMAP_ALL

arg0 reserved

arg1 reserved

arg2 flags

ret0 status

Demaps all non-permanent virtual page mappings previously specified for the current virtual CPU. Any
virtual tagged caches are guaranteed to be kept consistent.

The flags argument is defined according to Section 14.2, “MMU flags”.

Arguments arg0 and arg1 are reserved and must be set zero.

14.8.5.1. Errors

The implementation of this function is not required to check for all possible errors, and may return the
following error codes:

EINVAL Invalid flags value

ENOTSUPPORTED arg0 or arg1 is non-zero

14.8.6. mmu_map_addr

trap# MMU_MAP_ADDR

arg0 vaddr

arg1 context

arg2 TTE

arg3 flags

ret0 status

This API service creates a non-permanent mapping using the TTE to virtual address vaddr for context
for the calling virtual CPU. The flags argument is defined according to Section 14.2, “MMU flags”.

Given a TTE specified with the valid bit clear, this service will have undefined behavior.

Note: This API call is for privileged code to specify temporary translation mappings without the need to
create and manage a TSB.

14.8.6.1. Errors

The implementation of this function is not required to check for all possible errors, and may return the
following error codes:

EINVAL Invalid vaddr, context, or flags value

MMU services

115

EBADPGSZ Invalid page size value

ENORADDR Invalid real address in TTE

14.8.7. mmu_map_perm_addr

trap# FAST_TRAP

function# MMU_MAP_PERM_ADDR

arg0 vaddr

arg1 context

arg2 TTE

arg3 flags

ret0 status

This API service creates a permanent mapping using the TTE to virtual address vaddr for the calling
virtual CPU for context 0. The reserved field must be specified as zero.

A maximum of 8 such permanent mappings may be specified by privileged code. Mappings may be re-
moved with mmu_unmap_perm_addr below.

This service guarantees an automatic demap of any conflicting non-permanent mappings.

It is an error to attempt to create overlapping permanent mappings. It is an error to create non-permanent
mappings that conflict with existing permanent mappings.

The flags argument is defined according to Section 14.2, “MMU flags”.

Given a TTE specified with the valid bit clear, this service will have undefined behavior.

Programming Note: This API call is used to specify address space mappings for which privileged code
does not expect to receive misses. For example, this mechanism can be used to map kernel nucleus code
and data.

Programming Note: To effect automatic demap, this service may demap all non-permanent mappings.

14.8.7.1. Errors

EINVAL Invalid vaddr or flags value

EBADPGSZ Invalid page size value

ENORADDR Invalid real address in TTE

ETOOMANY Too many mapping (maximum of 8 reached)

14.8.8. mmu_unmap_addr

trap# MMU_UNMAP_ADDR

arg0 vaddr

arg1 context

arg2 flags

ret0 status

MMU services

116

Demaps virtual address vaddr in context context on this CPU. This function is intended to be used
to demap pages mapped with mmu_map_addr.

The flags argument is defined according to Section 14.2, “MMU flags”.

Attempting to perform an unmap operation for a previously defined permanent mapping will have unde-
fined results.

14.8.8.1. Errors

The implementation of this function is not required to check for all possible errors, and may return the
following error codes:

EINVAL Invalid vaddr, context, or flags value

14.8.9. mmu_unmap_perm_addr

trap# FAST_TRAP

function# MMU_UNMAP_PERM_ADDR

arg0 vaddr

arg1 reserved

arg2 flags

ret0 status

Demaps any permanent page mapping (established via mmu_map_perm_addr) of virtual address vad-
dr for context 0 for the current virtual CPU. Any virtual tagged caches are guaranteed to be kept consistent.

The flags argument is defined according to Section 14.2, “MMU flags”.

14.8.9.1. Errors

EINVAL Invalid vaddr or flags value

ENOMAP Specified mapping was not found

14.8.10. mmu_fault_area_conf

trap# FAST_TRAP

function# MMU_FAULT_AREA_CONF

arg0 raddr

ret0 status

ret1 previous mmu fault area raddr

Configure the MMU fault status area for the calling CPU. A 64-byte aligned real address raddr specifies
where MMU fault status information is placed. The return value is the previously specified area, or 0 for
the first invocation. Specifying a fault area at real address 0 is not allowed.

14.8.10.1. Errors

ENORADDR Invalid real address

MMU services

117

EBADALIGN Invalid alignment of fault area

14.8.11. mmu_enable

trap# FAST_TRAP

function# MMU_ENABLE

arg0 enable_flag

arg1 return_target

ret0 status

This function either enables or disables virtual address translation for the calling CPU within the virtual
machine domain. If the enable_flag is zero, translation is disabled, any non-zero value will enable
translation.

When this function returns, the newly selected translation mode will be active. The argument
return_target is a virtual address if translation is being enabled, or return_target is a real ad-
dress in the event that translation is to be disabled.

Upon successful completion, this API service will return control to the return_target address with
the new operating mode. In the event of call failure, the previous operating mode remains, and the service
simply returns to the caller with the appropriate error code in ret0.

14.8.11.1. Errors

ENORADDR Invalid real address when disabling translation

EBADALIGN return_target is not aligned to an instruction

EINVAL enable_flag requests current operating mode (e.g., disable when already
disabled)

14.8.12. mmu_tsb_ctx0_info

trap# FAST_TRAP

function# MMU_TSB_CTX0_INFO

arg0 maxtsbs

arg1 bufferptr

ret0 status

ret1 ntsbs

This function returns the TSB configuration as previously defined by mmu_tsb_ctx0 into the buffer
provided by arg1. The size of the buffer is given in arg0 in terms of number of TSB description entries.

Upon return, ret1 always contains the number of TSB descriptions previously configured.

If zero TSBs were configured, then EOK is returned with ret1 containing 0.

14.8.12.1. Errors

ENORADDR Invalid real address for buffer at bufferptr

EBADALIGN bufferptr is badly aligned

MMU services

118

EINVAL supplied buffer size (maxtsbs) is too small

14.8.13. mmu_tsb_ctxnon0_info

trap# FAST_TRAP

function# MMU_TSB_CTXNON0_INFO

arg0 maxtsbs

arg1 bufferptr

ret0 status

ret1 ntsbs

This function returns the TSB configuration as previously defined by mmu_tsb_ctxnon0 into the buffer
provided by arg1. The size of the buffer is given in arg0 in terms of number of TSB description entries.

Upon return ret1 always contains the number of TSB descriptions previously configured.

If zero TSBs were configured, then EOK is returned with ret1 containing 0.

14.8.13.1. Errors

ENORADDR Invalid real address for buffer at bufferptr

EBADALIGN bufferptr is badly aligned

EINVAL supplied buffer size (maxtsbs) is too small

14.8.14. mmu_fault_area_info

trap# FAST_TRAP

function# MMU_FAULT_AREA_INFO

ret0 status

ret1 fa_ra

This API service returns the currently defined MMU fault status area for the current CPU. The real address
of the fault status area is returned in ret1, or 0 is returned in ret1 if no fault status area is defined.

Note: mmu_fault_area_conf may be called with the return value (ret1) from this service if there
is a need to save and restore the fault area for a cpu.

14.8.14.1. Errors

No errors are defined

14.8.15. mmu_global_demap_page

trap# FAST_TRAP

function# MMU_GLOBAL_DEMAP_PAGE

arg0 vaddr

arg1 ctx

arg2 flags

MMU services

119

ret0 status

ret1 cookie

This API service demaps any non-permanent page mapping of virtual address vaddr in context ctx
across all CPUs. The flags argument is defined according to Section 14.2, “MMU flags”.

14.8.15.1. Errors

EOK The global demap of the page has completed successfully.

EINVAL Invalid vaddr, ctx, or flags value.

EBUSY A new global demap operation cannot be initiated due to previous such oper-
ations not having completed.

ENOACCESS The global demap operations are unavailable.

EPENDING The newly-initiated global demap operation has been initiated but
not completed. The global demap status service (Section 14.8.18,
“mmu_global_demap_status”) must be used to determine when the operation
has completed.

14.8.16. mmu_global_demap_ctx

trap# FAST_TRAP

function# MMU_GLOBAL_DEMAP_CTX

arg0 ctx

arg1 flags

ret0 status

ret1 cookie

This API service demaps all non-permanent virtual page mappings with in context ctx across all CPUs.
The flags argument is defined according to Section 14.2, “MMU flags”.

14.8.16.1. Errors

EOK The global demap of the context has completed successfully.

EINVAL Invalid ctx or flags value.

EBUSY A new global demap operation cannot be initiated due to previous such oper-
ations not having completed.

ENOACCESS The global demap operations are unavailable.

EPENDING The newly-initiated global demap operation has been initiated but
not completed. The global demap status service (Section 14.8.18,
“mmu_global_demap_status”) must be used to determine when the operation
has completed.

14.8.17. mmu_global_demap_all

trap# FAST_TRAP

function# MMU_GLOBAL_DEMAP_ALL

arg0 flags

MMU services

120

ret0 status

ret1 cookie

This API service demaps all non-permanent virtual page mappings in all contexts across all CPUs. The
flags argument is defined according to Section 14.2, “MMU flags”.

14.8.17.1. Errors

EOK The global demap has completed successfully.

EINVAL Invalid flags value.

EBUSY A new global demap operation cannot be initiated due to previous such oper-
ations not having completed.

ENOACCESS The global demap operations are unavailable.

EPENDING The newly-initiated global demap operation has been initiated but
not completed. The global demap status service (Section 14.8.18,
“mmu_global_demap_status”) must be used to determine when the operation
has completed.

14.8.18. mmu_global_demap_status

trap# FAST_TRAP

function# MMU_GLOBAL_DEMAP_STATUS

arg0 cookie

ret0 status

If any of the global demap services return EPENDING, the demap operation has not yet completed across
all CPUs. In this case, this service must be invoked using the cookie value returned by the previous
global demap service. The call must be repeated until it returns success via the status value of EOK.

Only when success is returned is it guaranteed that the effects of the global demap are visible across all
processors. Failure to wait for completion may result in unpredictable behavior.

This service must be invoked on the same processor that invoked the original global demap service using
the cookie value returned by that service.

14.8.18.1. Errors

EOK The global demap corresponding to cookie has completed successfully.

EINVAL Invalid cookie value.

ENOACCESS The global demap operations are unavailable.

EPENDING The global demap operation corresponding to cookie has has not yet com-
pleted. Repeat this service.

121

Chapter 15. Cache and Memory
services

In general, caches and memory are not exposed to the supervisor, although they are described to it in the
machine description.

15.1. API calls

15.1.1. mem_scrub

trap# FAST_TRAP

function# MEM_SCRUB

arg0 raddr

arg1 length

ret0 status

ret1 length scrubbed

This service zeros the memory contents for the memory address range raddr to raddr+length-1. It also
creates a valid error-checking code for the memory address range raddr to raddr+length-1.

This service starts scrubbing at raddr, but may scrub less than length bytes of memory. On success the
actual length scrubbed is returned in ret1.

The arguments raddr and length must be aligned to an 8K page boundary or must contain the start address
and length from a sun4v error report.

Note: There are two uses for this function: The first use is to block clear and initialize memory and the
second is to scrub an uncorrectable error reported via a resumable or non-resumable trap. The second use
requires the arguments to be equal to the raddr and length provided in a sun4v memory error report.

15.1.1.1. Errors

EINVAL length is zero

ENORADDR Invalid real address

EBADALIGN Either the start address or the length are not correctly aligned

15.1.2. mem_sync

trap# FAST_TRAP

function# MEM_SYNC

arg0 raddr

arg1 length

ret0 status

ret1 length synced

For the memory address range raddr to raddr+length-1, this service forces the next access within that range
to be fetched from main system memory.

Cache and Memory services

122

This service starts syncing at raddr, but may sync less than length bytes of memory. On success the actual
length synced is returned in ret1.

The arguments raddr and length must be aligned to an 8K page boundary.

15.1.2.1. Errors

EINVAL length is zero

ENORADDR Invalid real address

EBADALIGN Either the start address or the length are not correctly aligned

123

Chapter 16. Device interrupt services
Device interrupts are allocated to system bus bridges by the hypervisor, and described to the boot firmware
in the machine description. OBP then describes them to Solaris via the device tree. The services described
here are the generic interrupt services only, it is expected that the system bus nexus drivers will have
additional APIs for functions that are specific to that bridge.

16.1. Definitions

These definitions apply to the following services:

cpuid A unique opaque value which represents a target cpu.

devhandle Device handle. The device handle uniquely identifies a sun4v device. It consists of the
the lower 28-bits of the hi-cell of the first entry of the sun4v device's "reg" property
as defined by the Sun4v Bus Binding to Open Firmware.

devino Device interrupt number. Specifies the relative interrupt number within the device.
The unique combination of devhandle and devino are used to identify a specific device
interrupt. Note: The devino value is the same as the values in the "interrupts" property
or "interrupt-map" property in the sun4v device.

sysino System Interrupt Number. A 64-bit unsigned integer representing a unique interrupt
within a virtual machine. Note: this argument is only valid for legacy interrupt inter-
faces and is considered deprecated. cookie A 64-bit value set by the guest operating
system for a specific devhandle, devino combination. Management of cookie values is
the responsibility of the guest operating system, and the hypervisor makes no attempt
to enforce uniqueness.

intr_state A flag representing the interrupt state for a given interrupt. The state values are defined
as:

Table 16.1. Interrupt states

Name Value Definition

INTR_IDLE 0 Nothing pending

INTR_RECEIVED 1 Interrupt received by hard-
ware

INTR_DELIVERED 2 Interrupt delivered to
queue

intr_enabled A flag representing the enabled state for a given interrupt. The state values are defined
as:

Table 16.2. Interrupt states

Name Value Definition

INTR_DISABLED 0 Interrupt not enabled

INTR_ENABLED 1 Interrupt enabled

Device interrupt services

124

16.2. API calls

16.2.1. vintr_getcookie

trap# FAST_TRAP

function# VINTR_GETCOOKIE

arg0 devhandle

arg1 devino

ret0 status

ret1 cookie_value

This API returns the cookie_value that will be delivered in word 0 of a dev_mondo packet to a guest.
In the event that no cookie has been set, a value of 0 is returned.

16.2.1.1. Errors

EINVAL Invalid devhandle or devino

ENOTSUPPORTED (Virtual) device does not support cookies

16.2.2. vintr_setcookie

trap# FAST_TRAP

function# VINTR_SETCOOKIE

arg0 devhandle

arg1 devino

arg2 cookie_value

ret0 status

Sets the cookie_value that will be delivered in word 0 of a dev_mondo packet to a guest. A call to
this API will overwrite any previous cookie values set via the same API. If cookie_value is 0 the
interrupt source is returned to the state of having no cookie assigned, and interrupts are explicitly disabled
for the device.

16.2.2.1. Errors

EINVAL Invalid devhandle or devino, or cookie_value is in range 1..2047

ENOTSUPPORTED (Virtual) device does not support cookies

EWOULDBLOCK Operation would block

16.2.3. vintr_getenabled

trap# FAST_TRAP

function# VINTR_GETENABLED

arg0 devhandle

arg1 devino

ret0 status

Device interrupt services

125

ret1 intr_enabled

Returns state in intr_enabled for the interrupt specified by devino. Return values are:
INTR_ENABLED or INTR_DISABLED.

16.2.3.1. Errors

EINVAL Invalid devhandle or devino

ENOTSUPPORTED (Virtual) device does not support the interface

16.2.4. vintr_setenabled

trap# FAST_TRAP

function# VINTR_SETENABLED

arg0 devhandle

arg1 devino

arg2 intr_enabled

ret0 status

Sets the enabled state of the interrupt devino. Legal values for intr_enabled are: INTR_ENABLED
or INTR_DISABLED.

16.2.4.1. Errors

EINVAL Invalid devhandle, devino, or intr_enabled value

ENOTSUPPORTED (Virtual) device does not support the interface

16.2.5. vintr_getstate

trap# FAST_TRAP

function# VINTR_GETSTATE

arg0 devhandle

arg1 devino

ret0 status

ret1 intr_state

Returns the current state of the interrupt given by the devino arguments.

16.2.5.1. Errors

EINVAL Invalid devhandle or devino

ENOTSUPPORTED (Virtual) device does not support the interface

16.2.6. vintr_setstate

trap# FAST_TRAP

function# VINTR_SETSTATE

arg0 devhandle

Device interrupt services

126

arg1 devino

arg2 intr_state

ret0 status

Sets the current state of the interrupt given by the devino argument to the value given in the argument
intr_state.

Programming note

Setting the state to INTR_IDLE clears any pending interrupt for devino.

16.2.6.1. Errors

EINVAL Invalid devhandle, devino, or intr_state value

ENOTSUPPORTED (Virtual) device does not support the interface

16.2.7. vintr_gettarget

trap# FAST_TRAP

function# VINTR_GETTARGET

arg0 devhandle

arg1 devino

ret0 status

ret1 cpuid

Returns the cpuid that is the current target of the interrupt given by the devino argument. The cpuid
value returned is undefined if the target has not been set via vintr_settarget.

16.2.7.1. Errors

EINVAL Invalid devhandle or devino

ENOTSUPPORTED (Virtual) device does not support the interface

16.2.8. vintr_settarget

trap# FAST_TRAP

function# VINTR_SETTARGET

arg0 devhandle

arg1 devino

arg2 cpuid

ret0 status

Set the target cpu for the interrupt defined by the argument devino to the target cpu value defined by
the argument cpuid.

16.2.8.1. Errors

EINVAL Invalid devhandle or devino

Device interrupt services

127

ENOCPU Invalid cpuid

ENOTSUPPORTED (Virtual) device does not support the interface

16.3. Deprecated API calls

The following API calls correspond to the legacy sysino interrupt interfaces discussed in Section 6.6,
“Sysinos and cookies”. These interfaces have now been deprecated. They are documented here (for the
time being) for completeness.

16.3.1. intr_devino_to_sysino

trap# FAST_TRAP

function# INTR_DEVINO2SYSINO

arg0 devhandle

arg1 devino

ret0 status

ret1 sysino

Converts a device specific interrupt number given by the arguments devhandle and devino into a
system-specific interrupt number (sysino).

16.3.1.1. Errors

EINVAL Invalid devhandle or devino

16.3.2. intr_getenabled

trap# FAST_TRAP

function# INTR_GETENABLED

arg0 sysino

ret0 status

ret1 intr_enabled

Returns state in intr_enabled for the interrupt defined by sysino. Return values are:
INTR_ENABLED or INTR_DISABLED.

16.3.2.1. Errors

EINVAL Invalid sysino

16.3.3. intr_setenabled

trap# FAST_TRAP

function# INTR_SETENABLED

arg0 sysino

arg2 intr_enabled

ret0 status

Device interrupt services

128

Sets the enabled state of the interrupt sysino legal values for intr_enabled are: INTR_ENABLED
or INTR_DISABLED.

16.3.3.1. Errors

EINVAL Invalid sysino or intr_enabled value

16.3.4. intr_getstate

trap# FAST_TRAP

function# INTR_GETSTATE

arg0 sysino

ret0 status

ret1 intr_state

Returns the current state of the interrupt given by the sysino argument.

16.3.4.1. Errors

EINVAL Invalid sysino

16.3.5. intr_setstate

trap# FAST_TRAP

function# INTR_SETSTATE

arg0 sysino

arg2 intr_state

ret0 status

Sets the current state of the interrupt given by the sysino argument to the value given in the argument
intr_state.

Programming note

Note: Setting the state to INTR_IDLE clears any pending interrupt for sysino.

16.3.5.1. Errors

EINVAL Invalid sysino or invalid intr_state

16.3.6. intr_gettarget

trap# FAST_TRAP

function# INTR_GETTARGET

arg0 sysino

ret0 status

ret1 cpuid

Device interrupt services

129

Returns the cpuid that is the current target of the interrupt given by the sysino argument. The cpuid
value returned is undefined if the target has not been set via intr_settarget.

16.3.6.1. Errors

EINVAL Invalid sysino

16.3.7. intr_settarget

trap# FAST_TRAP

function# INTR_SETTARGET

arg0 sysino

arg1 cpuid

ret0 status

Set the target cpu for the interrupt defined by the argument sysino to the target cpu value defined by
the argument cpuid.

16.3.7.1. Errors

EINVAL Invalid sysino

ENOCPU Invalid cpuid

16.4. Interrupt API version control

In introducing the interrupt cookie based interrupt API calls, the legacy interrupt interfaces needed to be
deprecated. This is achievable using the version negotiation APIs.

However the legacy sysino interfaces were grouped with the core hypervisor APIs (group 0x1).

To resolve this problem, all the interrupt interfaces are now moved to a new group (group 0x2). The legacy
(deprecated) API functions will be available to a guest when it negotiates version 1.0 in this group.

The list of APIs being migrated to group 0x2 are as follows:

intr_devino2sysino
intr_getenabled
intr_setenabled
intr_getstate
intr_setstate
intr_gettarget
intr_settarget

The behavior of these APIs will not change and they will continue to function as described. A guest has
to negotiate version 1.0 in group 0x2 prior to accessing these APIs. The new interrupt APIs specified
above allow a guest to specify a single 64-bit cookie that will be delivered in the first word (word 0) of a
dev_mondo packet. These APIs use the devhandle and devino to refer to the interrupt source instead
of the sysino provided by the Hypervisor via the intr_devino2sysino API.

The new interrupt API functions will be available to a guest when it negotiates version 2.0 in the interrupt
API group 0x2. When a guest negotiates version 2.0, all interrupt sources will only support using the cookie
interface, and any attempt to use the version 1.0 interrupt APIs numbered 0xa0 to 0xa6 will result in

Device interrupt services

130

the ENOTSUPPORTED error being returned. Interrupts from all sources are explicitly disabled until the
guest that negotiated v2.0 in group 0x2, sets a valid cookie value for the interrupt source.

A guest may upgrade to using the cookie based interrupt APIs, by negotiating version 2.0 in group 0x2,
even if it had previously negotiated version 1.0 in group 0x2. Subsequent accesses to v1.0 interrupt APIs
in group 0x2 will fail with ENOTSUPPORTED. Two different guests running in a system can negotiate
different versions in API group 0x2, but a single guest can negotiate either version 1.0 or 2.0 in group 0x2
and use the corresponding APIs.

131

Chapter 17. Time of day services
The time of day (TOD) is maintained by the hypervisor on a per-domain basis. Setting the TOD in one
domain does not affect any other domain.

Time is described by a single unsigned 64-bit word equivalent to a time_t for the POSIX time(2) system
call. The word contains the time since the Epoch (00:00:00 UTC, January 1, 1970), measured in seconds.

17.1. API calls

17.1.1. tod_get

trap# FAST_TRAP

function# TOD_GET

ret0 status

ret1 time-of-day

Returns the current time-of-day. May block if TOD access is temporarily not possible.

17.1.1.1. Errors

EWOULDBLOCK TOD resource is temporarily unavailable

ENOTSUPPORTED TOD resource not supported

17.1.2. tod_set

trap# FAST_TRAP

function# TOD_SET

arg0 time-of-day

ret0 status

The current time-of-day is set to the value specified in arg0. May block if TOD access is temporarily not
possible.

17.1.2.1. Errors

EWOULDBLOCK TOD resource is temporarily unavailable

ENOTSUPPORTED TOD resource not supported

132

Chapter 18. Console services
This section describes the API services provided for a guest console.

18.1. API calls

18.1.1. cons_getchar

trap# FAST_TRAP

function# CONS_GETCHAR

ret0 status

ret1 character

Returns a character from the console device. If no character is available then an EWOULDBLOCK error is
returned. If a character is available, then the returned status is EOK and the character value is in ret1.

A virtual BREAK is represented by the 64-bit value -1.

A virtual HUP signal is represented by the 64-bit value -2.

18.1.1.1. Errors

EWOULDBLOCK No character available

18.1.2. cons_putchar

trap# FAST_TRAP

function# CONS_PUTCHAR

arg0 character

ret0 status

This service sends a character to the console device. Only character values between 0 and 255 may be
used. Values outside this range are invalid except as follows: A virtual BREAK may be sent using the
64-bit value -1.

18.1.2.1. Errors

EINVAL Illegal character

EWOULDBLOCK Output buffer currently full, would block

18.1.3. cons_read

trap# FAST_TRAP

function# CONS_READ

arg0 raddr

arg1 size

ret0 status

ret1 retval

Console services

133

Reads up to size characters from the console device and places them in the buffer provided starting at
the real address raddr.

On success, status contains either a special value (as per cons_getchar) or the number of characters
placed into the supplied buffer. The number of characters returned may be less than or equal to the buffer
size specified. If ret0 is not EOK, then no characters (special or otherwise) have been read and retval
is invalid.

A virtual BREAK is represented by the 64-bit value -1 in retval.

A virtual HUP signal is represented by the 64-bit value -2 in retval.

18.1.3.1. Machine description properties

A optional property cons-read-buffer-size in the machine description's platform node provides a hint as
to the size of the console's internal input buffering. A guest OS may use this property in determining the
appropriate size of the read buffer to pass to this API call.

18.1.3.2. Errors

ENOADDR Invalid real address

EWOULDBLOCK Cannot complete operation without blocking

EIO I/O error

18.1.4. cons_write

trap# FAST_TRAP

function# CONS_WRITE

arg0 raddr

arg1 size

ret0 status

ret1 retval

Writes up to size characters to the console device from the buffer provided starting at the real address
raddr.

On success, retval contains the actual number of characters written to the console device, which may
be fewer than the requested number of characters.

If status is not EOK, then no characters have been written to the console device and retval is invalid.

18.1.4.1. Machine description properties

A optional property cons-write-buffer-size in the machine description's platform node provides a hint as
to the size of the console's internal output buffering. A guest OS may use this property in determining the
appropriate size of the write buffer to pass to this API call.

18.1.4.2. Errors

ENOADDR Invalid real address

EWOULDBLOCK Cannot complete operation without blocking

Console services

134

EIO I/O error

135

Chapter 19. Domain state services
This section describes the API services provided for a guest to report its operational state to an external
entity.

19.1. API calls

The following API services are provided to get and set the current domain state.

19.1.1. soft_state_set

trap# FAST_TRAP

function# SOFT_STATE_SET

arg0 software_state

arg1 software_description_ptr

ret0 status

This service enables the guest to report its soft state to the hypervisor. The soft state of the guest consists
of two primary components: The first identifies whether the guest software is running or not. The sec-
ond contains optional details specific to the software. The current soft state may be retrieved using the
soft_state_get API service.

The software_state argument is a 64-bit value used to indicate whether the guest software is oper-
ating normally or in a transitional state. The states “normal” and “in-transition” are defined in the Sun
Indicator Standard.

Table 19.1. Guest Software States

Name Value Definition

SIS_NORMAL 1 Guest software is operating normally

SIS_TRANSITION 2 Guest software is in transition

The argument software_description_ptr is a real address of a data buffer of size 32 bytes aligned
on a 32-byte boundary. This buffer provides additional details specific to the guest software its operating
state. The contents of this buffer are treated as a NUL-terminated and padded 7-bit ASCII string of up to
31 characters not including the NUL termination. This string is to be defined by the guest software— no
registry or convention is defined by this API, and guest software is free to use any appropriate string value.

Once the soft-state API group has been successfully negotiated the initial soft state is set to
SIS_TRANSITION with an empty string for the software description.

19.1.1.1. Errors

EINVAL software_state is not valid, or software_description is not NUL-
terminated

ENORADDR software_description is not a valid real address

EBADALIGN software_description is not correctly aligned

Domain state services

136

19.1.1.2. Programming Notes

This service enables a guest operating system, or boot loader, to indicate its state to an entity external to the
guest's virtual machine environment. Two simple states; “normal” or “transition” enable a guest to indicate
whether it is operating normally, or in a transitional state such as booting or shutting down. The ability
to provide a short message string enables the guest to supply additional human-readable information to
supplement the two basic states.

Examples of this human readable string could be:

“OpenBoot before boot”
“OpenBoot booting”
“Solaris booting”
“Solaris panicked”

This service is enabled by successfully negotiating a version of its API service group.

Before the group has been enabled a hypervisor may externally report the guest state as unavailable or as
SIS_NORMAL (with a default string such as “operating normally” depending upon implementation. The
current soft state is not visible to the guest itself until the service is enabled.

Once the soft state group has been enabled, the initial state is set to SIS_TRANSITION with an empty
string. The virtual machine soft state is initially set to SIS_TRANSITION in the expectation that the guest
operating environment will set the state to SIS_NORMAL once successfully started.

For example, while loading Solaris, OpenBoot may ignore, or set the state to transition several times
(updating the informational string to identify different steps in the boot process), once booted and running
Solaris may set the state to SIS_NORMAL indicating that it booted successfully. Similarly, when shutting
down or panicking, Solaris may set the state to SIS_TRANSITION.

The state strings used by a guest are to be defined within the context of that guest software, there are
no commonly defined strings to be used by all guests. The intended use of the soft state strings is as
presentation messages to human readers. Use of commonly defined strings is strongly discouraged so
as to prevent interpretation and use by external automated management software. External management
software should only ascribe meaning to the well defined software state values.

19.1.2. soft_state_get

trap# FAST_TRAP

function# SOFT_STATE_GET

arg0 software_description_ptr

ret0 status

ret1 software_state

This service retrieves the current value of the guest's software state.

The software_description_ptr argument is the real address of a guest provided 32 byte buffer
to be aligned on a 32-byte boundary. The API service will return the current value of the guest software
description in this buffer. The hypervisor is only guaranteed to return up to and including the first NUL
byte of the software description buffer contents (see soft_state_set).

19.1.2.1. Errors

ENORADDR software_description is not a valid real address

Domain state services

137

EBADALIGN software_description is not correctly aligned

138

Chapter 20. Core dump services
When privileged code in a domain crashes/panics it may provide a capability to dump its internal state
for later debugging. Such “core dumps” can be provided from the field to help diagnose field problems.
However the hypervisor virtualizes much of the platform hardware, thus obscuring information about the
physical resources that can be useful in diagnosing configuration related bugs.

Instead of adding a core dumping capability to the hypervisor, this API allows the domain's privileged
code to dump platform and hypervisor-specific information as part of its own core dumping procedure.
Privileged code allocates a section of its own memory space and informs the hypervisor that this may be
used as a “dump buffer” for the hypervisor to place hypervisor specific debug/dump information.

Once declared, a dump buffer can be used at any time by the hypervisor to record private debug informa-
tion, thus avoiding having such logs within the hypervisor itself. The required size of the dump buffer is
provided to the domain as part of the initial machine description.

During a core-dump operation, a guest requests that the hypervisor update any information in the dump
buffer in preparation to being dumped as part of the domain's memory image.

Dump buffer information is highly platform and hypervisor specific. The format and content of the buffer
are hypervisor private and should not be considered usable by sun4v code. Some platform hypervisors
may provide no dump buffer information for security reasons.

20.1. API calls

20.1.1. dump_buf_update

trap# FAST_TRAP

function# DUMP_BUF_UPDATE

arg0 raddr

arg1 size

ret0 status

ret1 minsize

This function declares a domain dump buffer to the hypervisor. The raddr supplies the real base address
of the dump-buffer and must be 64-byte aligned.

The size field specifies the size of the dump buffer allocated, and may be larger than the minimum size
specified in the machine description.

The hypervisor will fill the dump buffer with opaque data.

Note: a guest may elect to include dump buffer contents as part of a crash dump to assist with debugging.
This function may be called any number of times so that a guest may relocate a dump buffer, or create
“snapshots” of any dump-buffer information. Each call to dump_buf_update atomically declares the
new dump buffer to the hypervisor.

A specified size of 0 unconfigures the dump buffer.

If raddr is an illegal or badly aligned real address, then any currently active dump buffer is disabled
(equivalent to passing a size of 0) and an error is returned.

Core dump services

139

In the event that the call fails with EINVAL, ret1 contains the minimum size required by the hypervisor
for a valid dump buffer.

20.1.1.1. Errors

EINVAL size is non-zero but less than the minimum size required

ENORADDR raddr is not a valid real address

EBADALIGN raddr is not aligned on a 64-byte boundary

ENOTSUPPORTED not supported for the current logical domain

20.1.2. dump_buf_info

trap# FAST_TRAP

function# DUMP_BUF_INFO

ret0 status

ret1 raddr

ret2 size

This service returns the currently configured dump buffer description.

A returned size of 0 bytes indicates an undefined dump buffer. In this case the returned real address
(raddr) is undefined.

20.1.2.1. Errors

No errors defined.

140

Chapter 21. Trap trace services
The hypervisor provides a trap tracing capability for privileged code running on each virtual CPU. Priv-
ileged code provides a round-robin trap trace queue within which the hypervisor writes 64 byte entries
detailing hyperprivileged traps taken on behalf of privileged code. This is provided as a debugging capa-
bility for privileged code.

21.1. Trap trace buffer control structure

The trap trace control structure is 64 bytes long and placed at the start (offset 0) of the trap trace buffer.

The format of the control structure is as follows:

Table 21.1. Trap Trace Control Structure

Offset Size Contents

0x00 8 Head offset

0x08 8 Tail offset

0x10 48 Reserved

The head offset is the offset of the most recently completed entry in the trap-trace buffer.

The tail offset is the offset of the next entry to be written.

The control structure is owned and modified by the hypervisor. A guest may not modify the control struc-
ture contents. Attempts to do so will result in undefined behavior for the guest.

21.2. Trap trace buffer entry format

Trap trace entries all have the following format:

Table 21.2. Trap Trace Buffer Entry Structure

Offset Size Name Description

0x00 1 TTRACE_ENTRY_TYPE Indicates hypervisor or guest entry

0x01 1 TTRACE_ENTRY_HPSTATE Hyper-privileged state

0x02 1 TTRACE_ENTRY_TL Trap level

0x03 1 TTRACE_ENTRY_GL Globals level

0x04 2 TTRACE_ENTRY_TT Trap type

0x06 2 TTRACE_ENTRY_TAG Extended trap identifier

0x08 8 TTRACE_ENTRY_TSTATE Privileged trap state

0x10 8 TTRACE_ENTRY_TICK %tick

0x18 8 TTRACE_ENTRY_TPC Trap %pc

0x20 8 TTRACE_ENTRY_F1 Entry-specific

0x28 8 TTRACE_ENTRY_F2 Entry-specific state

0x30 8 TTRACE_ENTRY_F4 Entry-specific

0x38 8 TTRACE_ENTRY_F4 Entry-specific

Trap trace services

141

For each entry the TTRACE_ENTRY_TYPE field value is defined as follows:

Table 21.3. Trap Trace Entry Types

Value Name Description

0x00 TTRACE_TYPE_UNDEF Entry content undefined

0x01 TTRACE_TYPE_HV Hypervisor trap entry

0xff TTRACE_TYPE_GUEST Guest entry via ttrace_addentry service

21.3. API calls

21.3.1. ttrace_buf_conf

trap# FAST_TRAP

function# TTRACE_BUF_CONF

arg0 raddr

arg1 nentries

ret0 status

ret1 nentries

This function requests hypervisor trap tracing and declares a virtual CPU's trap trace buffer to the hyper-
visor. The raddr supplies the real base address of the trap trace queue and must be 64-byte aligned.

The nentries argument specifies the size in 64-byte entries of the buffer allocated. Specifying a value
of zero for nentries disables trap tracing for the calling virtual cpu. The buffer allocated must be sized
for a power of two number of 64 byte trap trace entries plus an initial 64 byte control structure.

This function may be called any number of times so that a virtual cpu may relocate a trap trace buffer,
or create “snapshots” of information.

If raddr is an illegal or badly aligned real address, then trap tracing is disabled (equivalent to passing a
nentries value of 0) and an error is returned.

Upon success ret1 is nentries.

Upon failure with EINVAL this service call returns in ret1 (nentries) the minimum number of buffer
entries required. Upon other failure ret1 is undefined.

21.3.1.1. Errors

EINVAL nentries is too small

ENORADDR raddr is not a valid real address

EBADALIGN raddr is not aligned on a 64-byte boundary

21.3.2. ttrace_buf_info

trap# FAST_TRAP

function# TTRACE_BUF_INFO

ret0 status

Trap trace services

142

ret1 raddr

ret2 nentries

This function returns the size and location of the previously declared trap-trace buffer. In the event that
no buffer was previously declared, or the buffer disabled (e.g. via a ttrace_bufconf call with a size
of zero), this call will return a size of zero (0) entries.

21.3.2.1. Errors

No errors defined.

21.3.3. ttrace_enable

trap# FAST_TRAP

function# TTRACE_ENABLE

arg0 enable

ret0 status

ret1 previous_enable

This function enables (or disables) trap tracing, returning the previously enabled state in ret1. Future
systems may define various flags for the enable argument (arg0), for the moment a guest should pass
(uint64_t)-1 to enable, and (uint64_t)0 to disable all tracing— which will ensure future compatibility.

21.3.3.1. Errors

EINVAL No buffer currently defined

21.3.4. ttrace_freeze

trap# FAST_TRAP

function# TTRACE_FREEZE

arg0 freeze

ret0 status

ret1 previous_state

This function freezes (or unfreezes) trap tracing, returning the previous freeze state in ret1. A
guest should pass a non-zero value to freeze and a zero value to unfreeze all tracing. The returned
previous_state is 0 for not frozen, and 1 for frozen.

21.3.4.1. Errors

EINVAL No buffer currently defined

21.3.5. ttrace_addentry

trap# TTRACE_ADDENTRY

arg0 tag (16-bits)

arg1 data word 0

arg2 data word 1

Trap trace services

143

arg3 data word 2

ret0 status

This function adds an entry to the trap trace buffer. Upon return only arg0/ret0 is modified - none of
the other registers holding arguments are volatile across this hypervisor service.

21.3.5.1. Errors

EINVAL No buffer currently defined

144

Chapter 22. Logical Domain Channel
services

The hypervisor provides communication channels to services and other domains. These channels are cre-
ated by the Logical Domain Manager, and manifest themselves within a domain as an endpoint. Two end-
points are connected together and traffic is transferred by the hypervisor thus forming a logical domain
channel (LDC).

22.1. Endpoints

Endpoints available within a domain are described within the Machine Description available via the
mach_desc hypervisor API call. This API specification makes no assumptions about the peer on the
other end of a LDC— the LDC APIs serve simply as a link communications layer with which higher level
protocols are used for communication in and out of a logical domain. The details of these higher level
protocols are usage specific and outside the scope of this link-layer specification.

Communication via an LDC occurs in the form of short fixed-length (64-byte) message packets. Logical
Domain Channels form bi-directional point-to-point links so all traffic sent to a local endpoint will arrive
only at the corresponding endpoint at the other end of the channel.

This fixed-length point-to-point nature means there is no address header or switching/routing operation
performed by the hypervisor as part of packet delivery.

LDCs are not guaranteed as reliable link-level communication channels. If a reliable or larger packet
communication mechanism is required it must be provided as a protocol on top of this basic link-level
communication mechanism.

22.2. LDC queues

LDC packets are delivered to an endpoint and deposited by the hypervisor into a queue provided by a guest
operating system from its real address space. Only one receive queue may be allocated for each endpoint,
and a channel direction is considered “down” while no receive queue is provided. Messages from a channel
are deposited by the hypervisor at the “tail” of a queue, and the receiving guest indicates receipt by moving
the corresponding “head” pointer for the queue.

A receive queue is defined to be consistent with other sun4v architecture queues, i.e. with the same re-
strictions as the cpu/device and error mondo queues. The guest identifies the queue to the hypervisor using
an API call (ldc_rxq_conf) that is consistent with other queue API calls (for example cpu_qconf).
The head and tail pointers for an endpoint's receive queue are held by the hypervisor. Both the head and
tail pointers are available via a hypervisor API call, but only the head pointer may be modified by a guest
— also using a hypervisor API call.

To send LDC messages a guest operating system uses a transmit queue allocated from its own real address
space. Only one transmit queue may be defined per-endpoint, undefined behavior for the sending guest
occurs if the same memory is used for two or more different endpoint transmit queues. Like the receive
queue, the transmit queue is defined to be consistent with other sun4v architecture queues such as the
device and cpu mondo queues.

The transmit queue's head and tail pointers are accessed via hypervisor API call.

To send a packet down an LDC, a guest deposits the packet into its transmit queue for the local endpoint,
and then uses a hypervisor API call to update the tail pointer for the transmit queue. If an LDC is “up”, then
from the point at which a transmit queue becomes non-empty (a guest updates the tail pointer for its transmit

Logical Domain Channel services

145

queue), LDC packets are transferred from the transmit queue to the receive queue of the corresponding
endpoint.

The assignment of a transmit queue does not affect whether an LDC is up or down.

22.3. LDC interrupts

To avoid the need for polling, LDC endpoints may be enabled to deliver interrupts to a guest domain
indicating a change of endpoint state. Interrupts appear as mondos on the device mondo queue, with the
mondo payload indicating the local LDC endpoint who's status has changed. The following endpoint states
may be enabled to cause an interrupt; LDC is down, LDC is up, receive queue is non-empty, receive queue
is full, transmit queue is empty, transmit queue is not-full.

22.4. API calls

The following API calls are provided for LDC usage.

22.4.1. ldc_tx_qconf

trap# FAST_TRAP

function# LDC_TX_QCONF

arg0 ldc_id

arg1 base_raddr

arg2 nentries

ret0 status

Configure transmit queue for LDC endpoint ldc_id to be placed at real address base, and of nentries
entries. nentries must be a power of two number of entries. base_raddr must be aligned exactly to
match the queue size. Each queue entry is 64 bytes long, so for example, a 32 entry queue must be aligned
on a 2048-byte real address boundary.

Upon configuration of a valid transmit queue the head and tail pointers are set to an hypervisor specific
identical value indicating that the queue initially is empty.

The endpoint's transmit queue is unconfigured if nentries is 0.

Programming note: The maximum number of entries for each queue for a specific cpu may be determined
from the machine description.

Programming note: A transmit queue may be specified even in the event that the LDC is down (peer
endpoint has no receive queue specified). Transmission will begin as soon as the peer endpoint defines
a receive queue.

Programming note: It is recommended that a guest wait for a transmit queue to empty prior to reconfiguring
it, or unconfiguring it. Reconfiguring or unconfiguring a non-empty transmit queue behaves exactly as
defined above, however it is undefined as to how many of the pending entries in the original queue will
be delivered prior to the reconfiguration taking effect. Furthermore, as the queue configuration causes a
reset of the head and tail pointers there is no way for a guest to determine how many entries have been
sent after the configuration operation.

22.4.1.1. Errors

EINVAL nentries not a power of two in number or, nentries is less than two or
too large.

Logical Domain Channel services

146

ENORADDR base_raddr is not a valid real address

EBADALIGN base_raddr is not correctly aligned for its size

ECHANNEL Invalid ldc_id

22.4.2. ldc_tx_qinfo

trap# FAST_TRAP

function# LDC_TX_QINFO

arg0 ldc_id

ret0 status

ret1 base_raddr

ret2 nentries

Return the configuration info for the transmit queue of LDC endpoint ldc_id. The base_raddr is the
currently defined real address base of the defined queue, and nentries is the size of the queue in terms
of number of entries.

If the specified ldc_id is a valid endpoint number, but no transmit queue has been defined this service
will return success, but with nentries set to 0 and base_raddr will have an undefined value.

22.4.2.1. Errors

ECHANNEL Invalid ldc_id

22.4.3. ldc_tx_get_state

trap# FAST_TRAP

function# LDC_TX_GETSTATE

arg0 ldc_id

ret0 status

ret1 head_offset

ret2 tail_offset

ret3 channel_state

Return the transmit state, and the head and tail queue pointers for the transmit queue of LDC endpoint
ldc_id. The head and tail values are the byte offset of the head and tail positions of the transmit queue
for the specified endpoint.

The channel_state has the following defined values:

LDC_CHANNEL_DOWN 0

LDC_CHANNEL_UP 1

22.4.3.1. Errors

EINVAL No transmit queue defined

ECHANNEL Invalid ldc_id

EWOULDBLOCK Operation would block

Logical Domain Channel services

147

22.4.4. ldc_tx_set_qtail

trap# FAST_TRAP

function# LDC_TX_SET_QTAIL

arg0 ldc_id

arg1 tail_offset

ret0 status

Update the tail pointer for the transmit queue associated with the LDC endpoint ldc_id.

The specified tail_offset must be aligned on a 64-byte boundary, and calculated so as to increase the
number of pending entries on the transmit queue. Any attempt to decrease the number of pending transmit
queue entries is considered an invalid tail offset and will result in an EINVAL error.

Programming note: Since the tail of the transmit queue may not be moved “backwards”, the transmit queue
may be “flushed” by configuring a new transmit queue, whereupon the hypervisor will configure the initial
transmit head and tail pointers to be equal (queue empty).

22.4.4.1. Errors

EINVAL No transmit queue defined, or invalid tail_offset value

EBADALIGN tail_offset is not correctly aligned

ECHANNEL Invalid ldc_id

EWOULDBLOCK Operation would block

22.4.5. ldc_rx_qconf

trap# FAST_TRAP

function# LDC_RX_QCONF

arg0 ldc_id

arg1 base_raddr

arg2 nentries

ret0 status

Configure receive queue for LDC endpoint ldc_id to be placed at real address base, and of nentries
entries. nentries must be a power of two number of entries. base_raddr must be aligned exactly to
match the queue size. Each queue entry is 64 bytes long, so for example, a 32 entry queue must be aligned
on a 2048-byte real address boundary.

The endpoint's receive queue is unconfigured if nentries is 0.

If a valid receive queue is specified for a local endpoint the LDC is in the up state for the purpose of
transmission to this endpoint.

Programming note: The maximum number of entries for each queue for a specific cpu may be determined
from the machine description.

Programming note: As receive queue configuration causes a reset of the queue's head and tail pointers
there is no way for a guest to determine how many entries may have been received between a preceding
ldc_get_rx_state API call and the completion of the configuration operation. It should be noted

Logical Domain Channel services

148

that datagram delivery is not guaranteed via domain channels anyway, and therefore any higher protocol
should be resilient to datagram loss if necessary. However, to overcome this specific race potential it is
recommended, for example, that a higher level protocol be employed to ensure either retransmission, or
to ensure that no datagrams are pending on the peer endpoint's transmit queue prior to the configuration
operation.

22.4.5.1. Errors

EINVAL nentries not a power of two in number or, nentries is less than two or
too large.

ENORADDR base_raddr is not a valid real address

EBADALIGN base_raddr is not correctly aligned for its size

ECHANNEL Invalid ldc_id

22.4.6. ldc_rx_qinfo

trap# FAST_TRAP

function# LDC_RX_QINFO

arg0 ldc_id

ret0 status

ret1 base_raddr

ret2 nentries

Return the configuration info for the receive queue of LDC endpoint ldc_id. The base_raddr is the
currently defined real address base of the defined queue, and nentries is the size of the queue in terms
of number of entries.

If the specified ldc_id is a valid endpoint number, but no receive queue has been defined this service
will return success, but with nentries set to 0 and base_raddr will have an undefined value.

22.4.6.1. Errors

ECHANNEL Invalid ldc_id

22.4.7. ldc_rx_get_state

trap# FAST_TRAP

function# LDC_RX_GET_STATE

arg0 ldc_id

ret0 status

ret1 head_offset

ret2 tail_offset

ret3 channel_state

Return the receive state and the head and tail queue pointers of the receive queue for LDC endpoint
ldc_id. The head and tail values are the byte offset of the head and tail positions of the receive queue
for the specified endpoint.

The channel_state has the following defined values:

Logical Domain Channel services

149

LDC_CHANNEL_DOWN 0

LDC_CHANNEL_UP 1

22.4.7.1. Errors

EINVAL No receive queue defined

ECHANNEL Invalid ldc_id

EWOULDBLOCK Operation would block

22.4.8. ldc_rx_set_qhead

trap# FAST_TRAP

function# LDC_RX_SET_QHEAD

arg0 ldc_id

arg1 head_offset

ret0 status

Update the head pointer for the receive queue associated with the LDC endpoint ldc_id.

The head_offset specified must be aligned on a 64-byte boundary, and calculated so as to decrease the
number of pending entries on the receive queue. Any attempt to increase the number of pending receive
queue entries is considered an invalid head offset and will result in an EINVAL error.

Programming note: The receive queue may be “flushed” by setting the head offset equal to the current
tail offset.

22.4.8.1. Errors

EINVAL No receive queue defined, or invalid head_offset value

EBADALIGN head_offset is not correctly aligned

ECHANNEL Invalid ldc_id

EWOULDBLOCK Operation would block

22.5. Shared Memory API calls

The ldc_set_map_table, ldc_get_map_table, and ldc_copy APIs are usable when version
1.0 of the API group is negotiated.

The ldc_mapin, ldc_unmap and ldc_revoke APIs are available in addition to the 1.0 APIs when
version 1.1 of the API group is negotiated.

22.5.1. ldc_set_map_table

trap# FAST_TRAP

function# LDC_SET_MAP_TABLE

arg0 channel

arg1 base_ra

arg2 nentries

Logical Domain Channel services

150

ret0 status

This API service enables a guest to declare an export map table and bind that map table to the specified
logical domain channel.

The map table must consist of a power of two number of entries specified by the nentries argument.
The minimum number of entries is 2. The export map table base real address is specified in base_ra and
must be aligned to the same boundary as the overall size of the table in bytes (nentries*8).

Specifying zero (0) for nentries unbinds any map table previously bound to the domain channel. If
nentries is zero, base_ra is ignored. Unbinding a map table does not automatically revoke exported
pages, any pages still in use by an importing domain may remain accessible by that domain for an inde-
terminate period of time, or until the exporting domain exits.

22.5.1.1. Errors

EINVAL nentries is invalid, or specified domain channel does not support a
shared memory interface

ENORADDR Invalid base_ra or real address range for the map table

EBADALIGN Map table base_ra is not correctly aligned for the size of the table

ECHANNEL Invalid domain channel

EWOULDBLOCK Operation would block

22.5.2. ldc_get_map_table

trap# FAST_TRAP

function# LDC_GET_MAP_TABLE

arg0 channel

ret0 status

ret1 base_ra

ret2 nentries

This API service retrieves the current map table configuration associated with the given domain channel.

If no map table is configured, both base_ra and nentries are returned as zero.

22.5.2.1. Errors

ECHANNEL Invalid domain channel

EWOULDBLOCK Operation would block

22.5.3. ldc_copy

trap# FAST_TRAP

function# LDC_COPY

arg0 channel

arg1 flags

arg2 cookie

Logical Domain Channel services

151

arg3 raddr

arg4 length

ret0 status

ret1 ret_length

This API service copies data into or out of a local memory region from or to the logical domain at the
other end of the specified domain channel.

The local memory buffer to be used is a contiguous real address buffer starting at raddr, and of size
length. Both raddr and length must be aligned to 8-byte boundaries. The exported page to be ac-
cessed by the copy operation is identified by cookie.

A copy-in or copy-out operation is specified by the flags argument, for which the following values apply:

LDC_COPY_IN 0 Copy from remote exporting domain into buffer of local domain

LDC_COPY_OUT 1 Copy from buffer of local domain into page exported by remote domain

All other values for flags are illegal.

In the event of success, the return status is EOK, and ret_length contains the actual number of
bytes copied. In this event 0 <= ret_length <= length.

22.5.3.1. Errors

ECHANNEL Invalid domain channel

EINVAL Invalid flags value

EBADALIGN Badly aligned raddr, length, or cookie.

ENORADDR Bad real address range for local buffer

ENOMAP cookie refers to an invalid map table entry on the exporting side

ENOACCESS Requested copy operation is not permitted by exporter's map table entry

EBADPGSZ Page size of cookie does not match page size specified in the map table entry

EWOULDBLOCK Operation would block

22.5.4. ldc_mapin

trap# FAST_TRAP

function# LDC_MAPIN

arg0 channel

arg1 cookie

ret0 status

ret1 raddr

ret2 perms

This API service attempts to map into the local guest's real address space the page identified by the shared
memory cookie. Upon success the service returns the real address the page was mapped at in raddr,
and the access permissions granted to that page by the exporter for cpu and IO access in perms. Bit 0
in the perms value corresponds to bit 4 in the export table entry — namely CPU read permission. Bit 1

Logical Domain Channel services

152

in perms corresponds to bit 5 in the export map table entry, and so on. Bits 5 through 63 of perms are
undefined and should be ignored.

22.5.4.1. Errors

ECHANNEL Invalid domain channel

EINVAL Invalid flags value

EBADALIGN Badly aligned cookie

ENOMAP cookie refers to an invalid map table entry on the exporting side

ENOACCESS Requested map operation is not permitted by exporter's map table entry

EBADPGSZ Page size of cookie does not match page size specified in the map table entry

ETOOMANY Too many mapins already exist

EWOULDBLOCK Operation would block

22.5.5. ldc_unmap

trap# FAST_TRAP

function# LDC_UNMAP

arg0 raddr

ret0 status

This API service attempts to unmap from the local guest's real address space the imported page mapped
at the real address raddr.

This API may fail if the guest has not already removed any virtual or IOMMU mappings associated with
this page.

22.5.5.1. Errors

ENORADDR Illegal raddr value

EBADALIGN Badly aligned raddr

ENOMAP raddr refers to a non-existent imported page

EWOULDBLOCK Operation would block

22.5.6. ldc_revoke

trap# FAST_TRAP

function# LDC_REVOKE

arg0 channel

arg1 cookie

arg2 revoke_cookie

ret0 status

This API service attempts to forcibly unmap from a remote guest's real address space a page previously
exported by the local guest. The remote guest is the peer on the other end of the LDC channel specified by
channel. The cookie is the cookie originally passed to that remote guest, the revoke_cookie is
the revocation cookie supplied by the hypervisor to assist with this API call. This unmapping mechanism

Logical Domain Channel services

153

also forcibly unmaps any virtual or IOMMU mappings that the remote guest may be using corresponding
to this exported page.

Note

As an optimization, in the event that this API fails with EWOULDBLOCK, the caller should
re-read the revocation cookie from the corresponding export table entry; in the event that the
revocation cookie has been set to zero, this API should no longer be necessary.

22.5.6.1. Errors

ECHANNEL Invalid domain channel

EINVAL Invalid revoke_cookie

EBADALIGN Badly aligned cookie

EWOULDBLOCK Operation would block

154

Chapter 23. PCI I/O Services
23.1. Introduction

This section details Hypervisor services in support of PCI, PCI-X and PCI_Express interfaces.

23.1.1. External documents

The following documents are either referenced in this section, or should be consulted in together with
this section:

• sun4v Bus Binding to Open Firmware [http://arc.opensolaris.org/caselog/FWARC/2005/111]
([sun4vbind])

• vPCI Bus Binding to Open Firmware

• PCI Express Base Specification 1.0a [http://www.pcisig.com/specifications/pciexpress/base/archive/]
([pcie2002])

23.2. IO Data Definitions

cpuid A unique opaque value which represents a target cpu.

devhandle Device handle. The device handle uniquely identifies a sun4v device. It consists of the the
lower 28-bits of the hi-cell of the first entry of the sun4v device's "reg" property as defined
by the Sun4v Bus Binding to Open Firmware.

devino Device Interrupt Number. An unsigned integer representing an interrupt within a specific
device.

sysino System Interrupt Number. A 64-bit unsigned integer representing a unique interrupt within
a “system”.

23.3. PCI IO Data Definitions

devhandle
Device handle. The device handle uniquely identifies a sun4v device. It consists of the the lower 28-
bits of the hi-cell of the first entry of the sun4v device's "reg" property as defined by the Sun4v Bus
Binding to Open Firmware.

tsbnum
TSB Number. Identifies which IOTSB is used. For this version of the spec, tsbnum must be zero.

tsbindex
TSB Index. Identifies which entry in the tsb is is used. The first entry is zero.

tsbid
A 64-bit aligned data structure which contains a tsbnum and a tsbindex. bits 63:32 contain the tsbnum.
bits 31:00 contain the tsbindex.

io_attributes
IO Attributes for IOMMU mappings. Attributes for IOMMU mappings. One or more of the following
attribute bits stored in a 64-bit unsigned int.

http://arc.opensolaris.org/caselog/FWARC/2005/111
http://arc.opensolaris.org/caselog/FWARC/2005/111
http://www.pcisig.com/specifications/pciexpress/base/archive/
http://www.pcisig.com/specifications/pciexpress/base/archive/

PCI I/O Services

155

 6
 3 8 7 0
+--+--------+
| 0000 |000000WR|
+--+--------+

PCI_MAP_ATTR_READ 0x01 Transfer direction is from memory

PCI_MAP_ATTR_WRITE 0x02 Transfer direction is to memory

Bits 63:2 are unused and must be set to zero for version 1.0 of the specification.

Version 1.1 io_attributes:

6 3 3 1 1
3 2 1 6 5 8 7 0
+----------------------------+-----------------+-------+--------+
| 0000 |BBBBBBBB DDDDDFFF| 0 |00PP0LWR|
+----------------------------+-----------------+-------+--------+

The additional IO attributes in version 1.1:

PCI_MAP_ATTR_
RELAXED_ORDERING

0x04 Requested DMA transaction can be relaxed ordered
within the root complex (RC).

PCI_MAP_ATTR_
PHANTOM_FUNCTION

bits
<5:4>

Value of PCI Express and PCI-X phantom function
configuration. Its encoding is identical t the “Phan-
tom Function Supported” field of the “Device Ca-
pabilities Register”, offset 0x4 in the “PCI Express
Capability Structure”. The structure is part of the
device's config space.

PCI_MAP_ATTR_BDF bits
<31:16>

Bus, device and function number of the device that
is going to issue DMA transactions. The BDF values
are used to guarantee the mapping is only accessed
by the specified device. If the BDF is set to all zeros,
BDF-based (Requester ID based) protection will be
disabled for the mapping.

Relaxed Ordering (L) is advisory. Not all hardware implements relaxed ordering. If the relaxed order-
ing attribute is not implemented in hardware, the implementation is permitted to ignore the Relaxed
Ordering attribute.

Version 1.0 Reserved io_attribute bits

For compatibility with future versions of this specification, the caller must set 63:2 to zero.

Version 1.1 Reserved io_attribute bits

For compatibility with future versions of this specification, the caller must set bits 3, 15:16,
and 63:32 to zero.

PCI I/O Services

156

Note

For compatibility with existing hardware and guest behavior, the R (Read) bit is implied
for all valid mappings. Future versions of this specification may change this behavior by
requiring the R bit to be set for any mapping intended to be readable by the device.

Note

Note: Some hardware implementations do not implement an R (Read) bit in the hardware. In
this case, the R attribute is implied by any valid IOMMU mapping, and it is not possible to cre-
ate a write-only mapping. In this case, and for legacy guest support, pci_iommu_getmap
may return the R io_attribute Set even if it wasn't Set when pci_iommu_map was called
to create that mapping.

r_addr
A 64-bit Real Address.

pci_device
A PCI device address. A PCI device address identifies a specific device on a specific PCI bus segment.
A PCI device address is a 32-bit unsigned integer with the following format:

 00000000.bbbbbbbb.dddddfff.00000000

Where:

 bbbbbbbb is the 8-bit pci bus number
 ddddd is the 5-bit pci device number
 fff is the 3-bit pci function number
 00000000 is the 8-bit literal zero.

pci_config_offset
Configuration Space offset. For conventional PCI, an unsigned integer in the range 0..255 representing
the offset of the field in PCI config space.

For PCI implementations with extended configuration space, an unsigned integer in the range 0..4095,
representing the offset of the field in configuration space. The conventional PCI config space is offset
0..255. Extended config space is offset 256..4095

Note: For PCI config space accesses, the offset must be 'size' aligned.

error_flag
Error flag

A return value specifies if the action succeeded or failed, where:

0 No error occurred while performing the service

non-zero An error occurred while performing the service

io_sync_direction
“direction” definition for pci_dma_sync.

PCI I/O Services

157

A value specifying the direction for a memory/io sync operation, The direction value is a flag, one or
both directions may be specified by the caller.

0x01 For device (device read from memory)

0x02 For CPU (device write to memory)

io_page_list
A list of io_page_addresses. Each io_page_address is an r_addr.

io_page_list_p
A pointer to an io_page_list. io_page_list_p is an r_addr.

“size-based byte swap”
Some functions do size-based byte swapping which allows software to access pointers and counters
in native form when the processor operates in a different endianness than the I/O bus. Size-based byte
swapping converts a multi-byte field between big-endian format and little-endian format as follows:

Size Original Value Swapped Value

2 0x0102 0x0201

4 0x01020304 0x04030201

8 0x01020304.05060708 0x08070605.04030201

23.4. API calls

The following APIs are provided for PCI services.

23.4.1. pci_iommu_map

trap# FAST_TRAP

function# PCI_IOMMU_MAP

arg0 devhandle

arg1 tsbid

arg2 #ttes

arg3 io_attributes

arg4 io_page_list_p

ret0 status

ret1 #ttes_mapped

Create IOMMU mappings in the sun4v device defined by the argument devhandle. The mappings are
created in the tsb defined by the tsbnum component of the tsbid argument. The first mapping is created
in the tsb index defined by the tsbindex component of the tsbid argument. The call creates up to #ttes
mappings, the first one at tsbnum,tsbindex, the second at tsbnum,tsbindex+1, etc.

All mappings are created with the attributes defined by the io_attributes argument.

The page mapping addresses are described in the io_page_list defined by the argument
io_page_list_p, which is a pointer to the io_page_list. The first entry in the io_page_list is the ad-
dress for the first IOTTE, the 2nd entry for the 2nd IOTTE, and so on.

Each io_page_address in the io_page_list must be appropriately aligned.

PCI I/O Services

158

#ttes must be greater than zero.

For this version of the spec, the tsbnum component of the tsbid argument must be zero.

Returns the actual number of mappings created, which may be less than or equal to the argument #ttes.
If the function returns a value which is less than the #ttes, the caller may continue to call the function
with an updated tsbid, #ttes, io_page_list_p arguments until all pages are mapped.

Note: This function does not imply an IOTTE cache flush. The guest must demap an entry before re-
mapping it.

23.4.1.1. Errors

EINVAL Invalid devhandle, tsbnum, tsbindex, io_attributes

EBADALIGN r_addr is not correctly aligned

ENORADDR io_page_list_p is not a valid real address or an entry in the io_page_list
is not a valid real address

23.4.2. pci_iommu_demap

trap# FAST_TRAP

function# PCI_IOMMU_DEMAP

arg0 devhandle

arg1 tsbid

arg2 #ttes

ret0 status

ret1 #ttes_demapped

Demap and flush IOMMU mappings in the device defined by the argument devhandle.

Demaps up to #ttes entries in the tsb defined by the tsbnum component of the tsbid argument, starting
at the tsb index defined by the tsbindex component of the tsbid argument.

For this version of the spec, the tsbnum component of the tsbid argument must be zero.

#ttes must be greater than zero.

Returns the actual number of ttes demapped in the return value #ttes_demapped, which may be less
than or equal to the argument #ttes. If #ttes_demapped is less than #ttes, the caller may continue
to call this function with updated tsbid and #ttes arguments until all pages are demapped.

Note: Entries do not have to be mapped to be demapped. A demap of an unmapped page will flush the
entry from the TTE cache.

23.4.2.1. Errors

EINVAL Invalid devhandle, tsbnum, tsbindex

23.4.3. pci_iommu_getmap

trap# FAST_TRAP

function# PCI_IOMMU_GETMAP

PCI I/O Services

159

arg0 devhandle

arg1 tsbid

ret0 status

ret1 io_attributes

ret2 r_addr

Read and return the mapping in the device given by the argument devhandle and tsbid. If successful,
the io_attributes shall be returned in ret1, the page address of the mapping shall be returned in
ret2.

For this version of the spec, the tsbnum component of tsbid must be zero.

23.4.3.1. Errors

EINVAL Invalid devhandle, tsbnum, tsbindex

ENOMAP Mapping is not valid, no translation exists

23.4.4. pci_iommu_getbypass

trap# FAST_TRAP

function# PCI_IOMMU_GETBYPASS

arg0 devhandle

arg1 r_addr

arg2 io_attributes

ret0 status

ret1 io_address

Create a “special” mapping in the device given by the argument devhandle for the arguments given by
r_addr and io_attributes. Return the io address in ret1 if successful.

Note: The error code ENOTSUPPORTED indicates that the function exists, but is not supported by the
implementation.

23.4.4.1. Errors

EINVAL Invalid devhandle, io_attributes

ENORADDR r_addr is not a valid real address

ENOTSUPPORTED Function is not supported in this implementation

23.4.5. pci_config_get

trap# FAST_TRAP

function# PCI_CONFIG_GET

arg0 devhandle

arg1 pci_device

arg2 pci_config_offset

arg3 size

PCI I/O Services

160

ret0 status

ret1 error_flag

ret2 data

Read PCI configuration space for the PCI adapter defined by the argument devhandle.

Read size (1, 2 or 4) bytes of data for the PCI device defined by the argument pci_device, from the
offset from the beginning of the configuration space defined by the argument pci_config_offset. If
there was no error during the read access, set ret1 (error_flag) to zero and set ret2 to the data read.
Insignificant bits in ret2 are not guaranteed to have any specific value and therefore must be ignored.

The data returned in ret2 is size-based byte-swapped.

If an error occurs during the read, set ret1 (error_flag) to a non-zero value.

pci_config_offset must be “size” aligned.

23.4.5.1. Errors

EINVAL Invalid devhandle, pci_device, offset, size

EBADALIGN pci_config_offset is not size-aligned

ENOACCESS Access to this offset is not permitted

EWOULDBLOCK io domain not ready for config space access (See Section 23.5.2.1,
“pci_iov_root_configured”

23.4.6. pci_config_put

trap# FAST_TRAP

function# PCI_CONFIG_PUT

arg0 devhandle

arg1 pci_device

arg2 pci_config_offset

arg3 size

arg4 data

ret0 status

ret1 error_flag

Write PCI config space for the PCI adapter defined by the argument devhandle.

Write size bytes of data in a single operation. The argument size must be 1, 2 or 4. The configuration
space address is described by the arguments pci_device and pci_config_offset.

pci_config_offset is the offset from the beginning of the configuration space given by the argument
pci_device. The argument data contains the data to be written to configuration space. Prior to writing
the data is size-based byte swapped.

If an error occurs during the write access, do not generate an error report, do set ret1 (error_flag)
to a non-zero value. Otherwise, set ret1 to zero.

pci_config_offset must be size-aligned.

PCI I/O Services

161

This function is permitted to read from offset zero in the configuration space described by the argument
pci_device if necessary to ensure that the write access to config space completes.

23.4.6.1. Errors

EINVAL Invalid devhandle, pci_device, offset, size

EBADALIGN pci_config_offset is not size-aligned

ENOACCESS Access to this offset is not permitted

EWOULDBLOCK io domain not ready for config space access (See Section 23.5.2.1,
“pci_iov_root_configured”

23.4.7. pci_peek

trap# FAST_TRAP

function# PCI_PEEK

arg0 devhandle

arg1 r_addr

arg2 size

ret0 status

ret1 error_flag

ret2 data

Attempt to read the io-address given by the arguments devhandle, r_addr and size. size must be
1, 2, 4 or 8. The read is performed as a single access operation using the given size. If an error occurs
when reading from the given location, do not generate an error report, but return a non-zero value in ret1
(error_flag). If the read was successful, return zero in ret1 (error_flag) and return the actual
data read in ret2 (data). The data returned in ret2 is size-based byte-swapped.

Non-significant bits in ret2 (data) are not guaranteed to have any specific value and therefore must be
ignored. If ret1 (error_flag) is returned as non-zero, the data value is not guaranteed to have any
specific value and should be ignored.

The caller must have permission to read from the given devhandle, r_addr, which must be an io
address. The argument r_addr must be a size-aligned address.

The hypervisor implementation of this function must block access to any io address that the guest does
not have explicit permission to access.

23.4.7.1. Errors

EINVAL Invalid devhandle or size

EBADALIGN r_addr is not correctly aligned

ENORADDR r_addr is not a valid real address

ENOACCESS Access to this offset is not permitted

23.4.8. pci_poke

trap# FAST_TRAP

PCI I/O Services

162

function# PCI_POKE

arg0 devhandle

arg1 r_addr

arg2 size

arg3 data

arg4 pci_device

ret0 status

ret1 error_flag

Attempt to write data to the io-address described by the arguments devhandle, r_addr.

The argument size defines the size of the 'write' in bytes and must be 1, 2 4 or 8.

The write is performed as a single operation using the given size. Prior to writing, the data is size-based
byte swapped.

If an error occurs when writing the data to the given location, do not generate an error report, but return
a non-zero value in ret1 (error_flag). If the write operation was successful, return the value zero
in ret1 (error_flag).

pci_device describes the configuration address of the device being written to. The implementation
may safely read from offset 0 with the configuration space of the device described by devhandle and
pci_device in order to guarantee that the write portion of the operation completes.

Any error that occurs due to the read shall be reported using the normal error reporting mechanisms—
the read error is not suppressed.

The caller must have permission to write to the given devhandle, r_addr, which must be an io address.
The argument r_addr must be a size-aligned address. The caller must have permission to read from the
given devhandle, pci_device configuration space offset 0.

The hypervisor implementation of this function must block access to any io address that the guest does
not have explicit permission to access.

23.4.8.1. Errors

EINVAL Invalid devhandle, pci_device, or size

EBADALIGN r_addr is not correctly aligned

ENORADDR r_addr is not a valid real address

ENOACCESS Access to this offset is not permitted

ENOTSUPPORTED Function is not supported in this implementation

23.4.9. pci_dma_sync

trap# FAST_TRAP

function# PCI_DMA_SYNC

arg0 devhandle

arg1 r_addr

arg2 size

PCI I/O Services

163

arg3 io_sync_direction

ret0 status

ret1 #synced

Synchronize a memory region described by the arguments r_addr, size for the device defined by
the argument devhandle using the direction(s) defined by the argument io_sync_direction. The
argument size is the size of the memory region in bytes.

Return the actual number of bytes synchronized in the return value #synced, which may be less than or
equal to the argument size. If the return value #synced is less than size, the caller must continue to call
this function with updated r_addr and size arguments until the entire memory region is synchronized.

23.4.9.1. Errors

EINVAL Invalid devhandle or io_sync_direction

ENORADDR r_addr is not a valid real address

23.5. Static Direct I/O

23.5.1. SDIO Definitions

root domain A domain that owns configuration and mangement of a sun4v pci virtual root complex.

io domain A domain that has access to devices below a sun4v pci virtual root complex but is not
the root domain.

23.5.2. SDIO API Definitions

23.5.2.1. pci_iov_root_configured

trap# FAST_TRAP

function# PCI_IOV_ROOT_CONFIGURED

arg0 devhandle

ret0 status

The root complex identified by devhandle is ready to be shared. The root domain guest calls this when
it's ready for other io guests to begin using shared devices under the root complex identified by the argu-
ment devhandle, which must be the devhandle of a root complex device node owned by this guest.

This call is an indication to the hypervisor that any other guest sharing the devices under this root complex
may now access the configuration space of those devices.

In any io guest domain, pci_config_get and pci_config_put shall return EWOULDBLOCK
on any attempted access to config space under the root complex defined by the argument devhandle
until this API is called in the root domain. If the root domain is reset, behavior reverts back to the initial
behavior until this API is called in the root domain.

23.5.2.1.1. Errors

EINVAL Invalid devhandle

ENOACCESS No access, the guest is not the root domain for this root complex devhandle

PCI I/O Services

164

23.5.2.2. pci_real_config_get

trap# FAST_TRAP

function# PCI_REAL_CONFIG_GET

arg0 devhandle

arg1 pci_device

arg2 pci_config_offset

arg3 size

ret0 status

ret1 error_flag

ret2 data

Read the real PCI configuration space for the PCI adapter defined by the argument devhandle.

Read size (1, 2 or 4) bytes of data for the PCI device defined by the argument pci_device, from the
offset from the beginning of the configuration space defined by the argument pci_config_offset. If
there was no error during the read access, set ret1 (error_flag) to zero and set ret2 to the data read.
Insignificant bits in ret2 are not guaranteed to have any specific value and therefore must be ignored.

The data returned in ret2 is size-based byte-swapped.

If an error occurs during the read, set ret1 (error_flag) to a non-zero value.

pci_config_offset must be “size” aligned.

23.5.2.2.1. Errors

EINVAL Invalid devhandle, pci_device, offset, size

EBADALIGN pci_config_offset is not size-aligned

ENOACCESS Access to this offset is not permitted or not the root domain for this root com-
plex devhandle

23.5.2.3. pci_real_config_put

trap# FAST_TRAP

function# PCI_REAL_CONFIG_PUT

arg0 devhandle

arg1 pci_device

arg2 pci_config_offset

arg3 size

arg4 data

ret0 status

ret1 error_flag

Write real PCI config space for the PCI adapter defined by the argument devhandle.

Write size bytes of data in a single operation. The argument size must be 1, 2 or 4. The configuration
space address is described by the arguments pci_device and pci_config_offset.

PCI I/O Services

165

pci_config_offset is the offset from the beginning of the configuration space given by the argument
pci_device. The argument data contains the data to be written to configuration space. Prior to writing
the data is size-based byte swapped.

If an error occurs during the write access, do not generate an error report, do set ret1 (error_flag)
to a non-zero value. Otherwise, set ret1 to zero.

pci_config_offset must be size-aligned.

This function is permitted to read from offset zero in the configuration space described by the argument
pci_device if necessary to ensure that the write access to config space completes.

23.5.2.3.1. Errors

EINVAL Invalid devhandle, pci_device, offset, size

EBADALIGN pci_config_offset is not size-aligned

ENOACCESS Access to this offset is not permitted or not the root domain for this root com-
plex devhandle

23.5.2.4. pci_error_send

trap# FAST_TRAP

function# PCI_ERROR_SEND

arg0 devhandle

arg1 devino

arg2 pci_device

ret0 status

Send an error packet to any io guest sharing the device identified by the argument pci_device in the
fabric identified by the argument devhandle.

devhandle must be the devhandle of a PCI root complex, owned by this guest. devino must be the
devino associated with pci error packets for this root complex.

pci_device is the device reporting the error. If pci_device is zero, all other guests sharing this
pci fabric will receive an error packet. If pci_device is non-zero, only those guests sharing the device
identified by the pci_device argument will receive the error packet.

The error packet is delivered to the dev mondo queue of the io guest sharing this device, if any. The first
entry, SYSINO, will be the correct value for the devhandle, devino in that guest that represents the
shared root complex, identified by the arguments devhandle, devino for this guest.

Note

The epkt is never delivered to the domain that called this API.

Refer to [vpcierrs] for definition of the contents of pci error packets.

The packet shall contain the following fields:

0x00 sysino devhandle, devino of io guest's root complex

0x08 ehdl unique error handle, generated by hypervisor

PCI I/O Services

166

0x10 stick timestamp, the value of the %stick register

0x18 desc see below, error-specific

0x20 0

0x28 0

0x30 0

0x38 0

The DESC field shall contain the following values:

31:28 - Block - value 1 - hostbus
27:24 - Op - Value 0
23:20 - Phase - Value 0
19:16 - Cond - Value 0
15:12 - Dir - value 0
 11:0 - Flags, bit 11 (STOP) Set, everything else Clear.

23.5.2.4.1. Errors

EINVAL Invalid devhandle, pci_device, or devino

ENOACCESS Not the root domain for this root complex devhandle

167

Chapter 24. PCI MSI Services
MSI services are effectively part of PCI, however, they are logically grouped into a separate set of services
defined in this section.

24.1. Message Signaled Interrupt (MSI)

Message Signaled Interrupt as defined in the PCI Local Bus Specification and the PCI Express Base Spec-
ification. A device signals an interrupt via MSI using a posted write cycle to an address specified by system
software using a data value specified by system software. The MSI capability data structure contains fields
for the PCI address and data values the device uses when sending an MSI message on the bus. MSI-X is an
extended form of MSI, but uses the same mechanism for signaling the interrupt as MSI. For the purposes
of this document, the term “MSI” refers to MSI or MSI-X.

Root complexes that support MSI define an address range and set of data values that can be used to signal
MSIs.

sun4v/PCI requirements for MSI:

The root complex defines two address ranges. One in the 32-bit PCI memory space and one in the 64-bit
PCI memory address space used as the target of a posted write to signal an MSI.

The root complex treats any write to these address ranges as signaling an MSI, however, only the data
value used in the posted write signals the MSI.

24.2. MSI Event Queue (MSI EQ)

The MSI Event Queue is a page-aligned main memory data structure used to store MSI data records.

Each root port supports several MSI EQs, and each EQ has a system interrupt associated with it, and can
be targeted (individually) to any cpu. The number of MSI EQs supported by a root complex is described
by a property defined in [sun4vbind]. Each MSI EQ must be large enough to contain all possible MSI
data records generated by any one PCI root port. The number of entries in each MSI EQ is described by
a property defined in [sun4vbind].

Each MSI EQ is compliant with the definition of interrupt queues described in [pcie2002], however, instead
of accessing the queue head/tail registers via ASI-based registers, an API is provided to access the head/
tail registers.

The sun4v/PCI-compliant root complex has the ability to generate a system interrupt when the MSI EQ
is non-empty.

24.2.1. MSI/Message/INTx Data Record format

Each data record consists of 64 bytes of data, aligned on a 64-byte boundary. The data record is defined
as follows:

PCI MSI Services

168

6666555555555544444444443333333333222222222211111111110000000000
3210987654321098765432109876543210987654321098765432109876543210
0x00:
VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVxxxxxxxxxxxxxxxxxxxxxxxxTTTTTTTT
0x08:
II
0x10:
xx
0x18:
SS
0x20:
xxRRRRRRRRRRRRRRRR
0x28:
AA
0x30:
DD
0x38:
xx

Where,

xx..xx are unused bits and must be ignored by software.

VV..VV is the version number of this data record For this release of the spec, the version number field
must be zero.

TTTTTTTT is the data record type. The upper 4 bits are reserved, and must be zero.

0000 Not an MSI data record, reserved for software use

0001 MSG

0010 MSI32

0011 MSI64

0100 Reserved

... Reserved

0111 Reserved

1000 INTx

1001 Reserved

... Reserved

1110 Reserved

1111 Not an MSI data record, reserved for software use

All other encodings are reserved.

II..II is the sysino for INTx (software-defined value), otherwise zero.

SS..SS is the message time-stamp if available.

If supported by the implementation, a non-zero value in this field is a copy of the %stick register at the
time the message is created. If unsupported, this field will contain zero.

PCI MSI Services

169

RR..RR is the requester ID of the device that initiated the MSI/MSG and has the following format:

bbbbbbbb.dddddfff, Where bb..bb is the bus number, dd..dd is the device number and fff is the function
number.

Note that for PCI devices or any message where the requester is unknown, this may be zero, or the device-id
of an intermediate bridge.

For INTx messages, this field should be ignored.

AA..AA is the MSI address. For MSI32, the upper 32-bits must be zero. (for data record type MSG or
INTx, this field is ignored)

DD..DD is the MSI/MSG data or INTx number

For MSI-X, bits 31..0 contain the data from the MSI packet which is the msi-number. bits 63..32 shall
be zero.

For MSI, bits 15..0 contain the data from the MSI message which is the msi-number. bits 63..16 shall
be zero

For MSG data, the message code and message routing code are encoded as follows:

 63:32 - 0000.0000.0000.0000.0000.0000.GGGG.GGGG
 32:00 - 0000.0000.0000.0CCC.0000.0000.MMMM.MMMM

Where,

GG..GG is the target-id of the message in the following form:

 bbbbbbbb.dddddfff

where bb..bb is the target bus number, ddddd is the target device ID, and fff is the target function number.

CCC is the message routing code as defined by [pcie2002]

MM..MM is the message code as defined by [pcie2002]

For INTx data, bits 63:2 must be zero and the low order 2 bits are defined as follows:

00 INTA

01 INTB

02 INTC

03 INTD

24.3. Definitions
cpuid A unique opaque value which represents a target cpu.

devhandle Device handle. The device handle uniquely identifies a sun4v device. It consists of the the
lower 28-bits of the hi-cell of the first entry of the sun4v device's "reg" property as defined
by the Sun4v Bus Binding to Open Firmware.

msinum A value defining which MSI is being used.

PCI MSI Services

170

msiqhead The offset value of a given MSI-EQ head.

msiqtail The offset value of a given MSI-EQ tail.

msitype Type specifier for MSI32 or MSI64:

0 MSI32

1 MSI64

msiqid A number from 0 .. 'number of MSI-EQs - 1', defining which MSI EQ within the device
is being used.

msiqstate An unsigned integer containing one of the following values:

0 PCI_MSIQSTATE_IDLE (idle, non-error state)

1 PCI_MSIQSTATE_ERROR (error state)

msiqvalid An unsigned integer containing one of the following values:

0 PCI_MSIQ_INVALID (disabled/invalid)

1 PCI_MSIQ_VALID (enabled/valid)

msistate An unsigned integer containing one of the following values:

0 PCI_MSISTATE_IDLE (idle/not enabled)

1 PCI_MSISTATE_DELIVERED (MSI delivered)

msivalid An unsigned integer containing one of the following values:

0 PCI_MSI_INVALID (disabled/invalid)

1 PCI_MSI_VALID (enabled/valid)

msgtype A value defining which MSG type is being used. An unsigned integer containing one of
the following values, as per PCIe spec 1.0a:

0x18 PCIE_PME_MSG PME message

0x1b PCIE_PME_ACK_MSG PME ACK message

0x30 PCIE_CORR_MSG Correctable message

0x31 PCIE_NONFATAL_MSG Non-fatal message

0x33 PCIE_FATAL_MSG Fatal message

msgvalid An unsigned integer containing one of the following values:

0 PCI_MSG_INVALID (disabled/invalid)

1 PCI_MSG_VALID (enabled/valid)

24.4. API calls

24.4.1. pci_msiq_conf

trap# FAST_TRAP

PCI MSI Services

171

function# PCI_MSIQ_CONF

arg0 devhandle

arg1 msiqid

arg2 r_addr

arg3 nentries

ret0 status

Configure the MSI queue given by the arguments devhandle, msiqid for use and to be placed at real
address r_addr, and of nentries entries. nentries must be a power of two number of entries.

r_addr must be aligned exactly to match the queue size. Each queue entry is 64 bytes long, so for
example, a 32 entry queue must be aligned on a 2048 byte real address boundary.

The MSI-EQ Head and Tail are initialized so that the MSI-EQ is empty.

Implementation Note: Certain implementations have fixed sized queues. In that case nentries must
contain the correct value.

24.4.1.1. Errors

EINVAL Invalid devhandle, msiqid, or nentries

ENORADDR r_addr is not a valid real address

EBADALIGN r_addr is not properly aligned

24.4.2. pci_msiq_info

trap# FAST_TRAP

function# PCI_MSIQ_INFO

arg0 devhandle

arg1 msiqid

ret0 status

ret1 r_addr

ret2 nentries

Return configuration information for the MSI queue given by the arguments devhandle, msiqid.

The base address of the queue is returned in r_addr. The number of entries in the queue is returned in
nentries.

If the queue is unconfigured r_addr is undefined and zero is returned in nentries.

24.4.2.1. Errors

EINVAL Invalid devhandle or msiqid

24.4.3. pci_msiq_getvalid

trap# FAST_TRAP

function# PCI_MSIQ_GETVALID

PCI MSI Services

172

arg0 devhandle

arg1 msiqid

ret0 status

ret1 msiqvalid

Get the valid state of the MSI-EQ defined by the arguments devhandle and msiqid.

24.4.3.1. Errors

EINVAL Invalid devhandle or msiqid

24.4.4. pci_msiq_setvalid

trap# FAST_TRAP

function# PCI_MSIQ_SETVALID

arg0 devhandle

arg1 msiqid

arg2 msiqvalid

ret0 status

Set the valid state of the MSI-EQ defined by the arguments devhandle and msiqid to
the state described by the argument msiqvalid. msiqvalid must be PCI_MSIQ_VALID or
PCI_MSIQ_INVALID.

24.4.4.1. Errors

EINVAL Invalid devhandle, msiqid, or msiqvalid value or the MSI EQ is unini-
tialized.

24.4.5. pci_msiq_getstate

trap# FAST_TRAP

function# PCI_MSIQ_GETSTATE

arg0 devhandle

arg1 msiqid

ret0 status

ret1 msiqstate

Get the state of the MSI-EQ defined by the arguments devhandle and msiqid.

24.4.5.1. Errors

EINVAL Invalid devhandle or msiqid

24.4.6. pci_msiq_setstate

trap# FAST_TRAP

function# PCI_MSIQ_SETSTATE

PCI MSI Services

173

arg0 devhandle

arg1 msiqid

arg2 msiqstate

ret0 status

Set the state of the MSI-EQ defined by the arguments devhandle and msiqid to the
state described by the argument msiqstate. msiqstate must be PCI_MSIQSTATE_IDLE or
PCI_MSIQSTATE_ERROR.

24.4.6.1. Errors

EINVAL Invalid devhandle, msiqid, or msiqstate value or MSI EQ is uninitial-
ized

24.4.7. pci_msiq_gethead

trap# FAST_TRAP

function# PCI_MSIQ_GETHEAD

arg0 devhandle

arg1 msiqid

ret0 status

ret1 msiqhead

Return the current msiqhead for the MSI-EQ described by the arguments devhandle, msiqid.

24.4.7.1. Errors

EINVAL Invalid devhandle or msiqid or MSI EQ is uninitialized

24.4.8. pci_msiq_sethead

trap# FAST_TRAP

function# PCI_MSIQ_SETHEAD

arg0 devhandle

arg1 msiqid

arg2 msiqhead

ret0 status

Set the MSI EQ queue head in the MSI EQ described by the arguments devhandle, msiqid to the
value given by the msiqhead argument.

24.4.8.1. Errors

EINVAL Invalid devhandle, msiqid, or msiqhead or MSI EQ is uninitialized

24.4.9. pci_msiq_gettail

trap# FAST_TRAP

PCI MSI Services

174

function# PCI_MSIQ_GETTAIL

arg0 devhandle

arg1 msiqid

ret0 status

arg2 msiqtail

Return the current msiqtail for the MSI-EQ described by the arguments devhandle, msiqid.

24.4.9.1. Errors

EINVAL Invalid devhandle or msiqid or MSI EQ is uninitialized

24.4.10. pci_msi_getvalid

trap# FAST_TRAP

function# PCI_MSI_GETVALID

arg0 devhandle

arg1 msinum

ret0 status

ret1 msivalidstate

Return in msivalidstate the current valid/enabled state for the MSI defined by the arguments de-
vhandle, msinum.

24.4.10.1. Errors

EINVAL Invalid devhandle or msinum

24.4.11. pci_msi_setvalid

trap# FAST_TRAP

function# PCI_MSI_SETVALID

arg0 devhandle

arg1 msinum

arg2 msivalidstate

ret0 status

Set the valid/enabled state of the MSI described by the arguments devhandle, msinum to the valid/
enabled state defined by the argument msivalidstate

24.4.11.1. Errors

EINVAL Invalid devhandle, msinum, or msivalidstate

24.4.12. pci_msi_getmsiq

trap# FAST_TRAP

function# PCI_MSI_GETMSIQ

PCI MSI Services

175

arg0 devhandle

arg1 msinum

ret0 status

ret1 msiqid

For the MSI defined by the arguments devhandle, msinum return the MSI EQ that this MSI is bound
to in the return value msiqid.

24.4.12.1. Errors

EINVAL Invalid devhandle or msinum or MSI is unbound

24.4.13. pci_msi_setmsiq

trap# FAST_TRAP

function# PCI_MSI_SETMSIQ

arg0 devhandle

arg1 msinum

arg2 msiqid

arg3 msitype

ret0 status

Set the target MSI queue of the MSI defined by the arguments devhandle, msinum to the MSI EQ ID
defined by the argument msiqid.

24.4.13.1. Errors

EINVAL Invalid devhandle, msinum, or msiqid

24.4.14. pci_msi_getstate

trap# FAST_TRAP

function# PCI_MSI_GETSTATE

arg0 devhandle

arg1 msinum

ret0 status

ret1 msistate

Return the state of the MSI defined by the arguments devhandle, msinum. If the MSI is not initialized,
returns the state PCI_MSISTATE_IDLE.

24.4.14.1. Errors

EINVAL Invalid devhandle or msinum

24.4.15. pci_msi_setstate

trap# FAST_TRAP

PCI MSI Services

176

function# PCI_MSI_SETSTATE

arg0 devhandle

arg1 msinum

arg2 msistate

ret0 status

Set the state of the MSI defined by the arguments devhandle, msinum to the state defined by the
argument msistate.

24.4.15.1. Errors

EINVAL Invalid devhandle, msinum, or msistate

24.4.16. pci_msg_getmsiq

trap# FAST_TRAP

function# PCI_MSG_GETMSIQ

arg0 devhandle

arg1 msgtype

ret0 status

ret1 msiqid

For the msg defined by the arguments devhandle, msgtype return the MSI EQ that this msg is bound
to in the return value msiqid.

24.4.16.1. Errors

EINVAL Invalid devhandle or msgtype

24.4.17. pci_msg_setmsiq

trap# FAST_TRAP

function# PCI_MSG_SETMSIQ

arg0 devhandle

arg1 msgtype

arg2 msiqid

ret0 status

Set the target msiq of the msg defined by the arguments devhandle, msgtype to the MSI EQ id defined
by the argument msiqid.

24.4.17.1. Errors

EINVAL Invalid devhandle, msgtype, or msiqid

24.4.18. pci_msg_getvalid

trap# FAST_TRAP

PCI MSI Services

177

function# PCI_MSG_GETVALID

arg0 devhandle

arg1 msgtype

ret0 status

ret1 msgvalidstate

Return in msgvalidstate, the current valid/enabled state for the msg defined by the arguments de-
vhandle, msgtype.

24.4.18.1. Errors

EINVAL Invalid devhandle or msgtype

24.4.19. pci_msg_setvalid

trap# FAST_TRAP

function# PCI_MSG_SETVALID

arg0 devhandle

arg1 msgtype

arg2 msgvalidstate

ret0 status

Set the valid/enabled state of the msg described by the arguments devhandle, msgtype to the valid/
enabled state defined by the argument msgvalidstate

24.4.19.1. Errors

EINVAL Invalid devhandle, msgtype, or msgvalidstate

178

Chapter 25. Cryptographic services
The following APIs provide access via the Hypervisor to hardware assisted cryptographic functionality.
These APIs may only be provided by certain platforms, and even then may not be available to all virtual
machines. Restrictions on the use of these APIs may be imposed in order to support live-migration and
other system management activities.

25.1. Random Number Generation
The UltraSPARC-T2 incorporates a hardware random number generator to support cryptographic func-
tionality. This provides a source of entropy to be used by Operating System cryptographic frameworks to
ultimately provide efficient random number generation to higher layers of software.

The random number generation (RNG) APIs provide two forms of access to the underlying RNG hardware;
configuration & management, and random number data access.

25.1.1. Trusted Domains

In order to provide system-wide security, the configuration & management APIs are restricted in multiple
domain configurations to use only by Trusted Domains, for example the Control Domain.

Only Trusted domains are allowed configuration and diagnostic control of the RNG.

Trusted domains are designated by the LDom manager with enforcement of such designation implemented
within the Hypervisor. Attempts by a non-trusted domain to access Control or Diagnostic related API entry
points will fail with ENOACCESS errors.

Note that access to Control and Diagnostic entry points is dynamic and can be taken away at anytime from
a domain. Exactly one (1) domain must exist as the Trusted Domain to ensure proper RNG behavior.

In the 1.0 API, trusted domains were able to execute the rng_get_diag_control call, which gave
them exclusive access to the trusted domain API calls. In the 2.0 API, this call has been dropped and only
one domain, as specified by the LDoms manager, is allowed access to the trusted domain API calls.

The RNG operations are restricted as follows for the 1.0 API:

Trusted Domain(s) Any Domain

RNG_GETDIAG_CONTROL RNG_DATA_READ

RNG_CTL_READ

RNG_CTL_WRITE

RNG_DATA_READ_DIAG

The RNG operations are restricted as follows for the 2.0 API:

Trusted Domain(s) Any Domain

RNG_CTL_READ RNG_DATA_READ

RNG_CTL_WRITE

RNG_DATA_READ_DIAG

25.1.2. RNG Control Register data structure

Each RNG has both a read-only data register and a control register. The control register is used to modify
the behavior of the random number generator, while the data register contains each of the random numbers
consumed by client software. Both registers are 64-bits wide.

Cryptographic services

179

The RNG generates random numbers by using three independent noise generators. Each of these noise
generators may be individually programmed by writing to the same RNG control register a bit string in
bits 3:0 that specifies which noise generator needs to be programmed. If none of the bits are set, the noise
cells are turned off. If any combination of two or more bits are set, all of the noise generators are selected.
In this way, there are four ways in which the noise generator apparatus may be programmed. One can
select noise cell 1, cell 2, cell 3, or all of the cells at once.

Due to this noise generator selection scheme, four successive writes to the same control register with
different settings in bits 3:0 will completely configure the RNG.

To expedite writing out the control register's four possible settings, the control register read and write APIs
use a data structure comprised of all four possible control register settings.

Offset Size Field Description

0 8 rng_ctl1 Control bit for cell selection 1

8 8 rng_ctl2 Control bit for cell selection 2

16 8 rng_ctl3 Control bit for cell selection 3

24 8 rng_ctl4 Control bit for cell selection 4

25.1.3. RNG State

Specifies the state of the RNG and is set during rng_ctl_write operations.

Table 25.1. RNG states

Name Value

RNG_STATE_UNCONFIGURED 0

RNG_STATE_CONFIGURED 1

RNG_STATE_HEALTHCHECK 2

RNG_STATE_ERROR 3

When “configured” the RNG is available for general rng_data_read operations. In “health check”
mode the RNG is generally unavailable and assumed to be going through a health check sequence via a
Trusted domain. Once the health check is complete the Trusted domain will return the RNG to a “config-
ured” state. If the health check determines that the RNG is faulty then it will be left in the “error” state
and thus unavailable for any rng_data_read operations.

25.1.4. Maximum Data Read Length

The minimum length in bytes that can be read from the hardware RNG Data Register by
rng_data_read_diag is defined to be 8 bytes.

The maximum length in bytes that can be read from the hardware RNG Data Register by
rng_data_read_diag is defined to be 128K bytes (128 * 1024).

25.1.5. RNG Mutual Exclusion

All of the RNG hypervisor entry points are protected through mutual exclusion by the hypervisor to ensure
that only one thread of control is operating on the RNG at a time. This is necessary to prevent against
competing threads (or OS Guests) from re-initializing the RNG hardware while a Data read is possibly
in progress from another thread.

Cryptographic services

180

The hypervisor does not block waiting for access to the RNG device, instead it will return to the caller
with a EWOULDBLOCK error indicating that the hardware device was temporarily unavailable.

25.1.6. RNG Data Availability

The hypervisor will return EWOULDBLOCK errors when attempts are made to read data when no random
data is available.

25.1.7. RNG Watchdog Timeout

Each RNG device may be configured for a specific amount of time. Once that timeout value is reached,
the RNG device is transitioned to the “unconfigured” state. The watchdog delta is the number of system
ticks until the RNG transfers to the “unconfigured” state.

25.1.8. rng_data_read

trap# FAST_TRAP

function# RNG_DATA_READ

arg0 raddr

ret0 status

ret1 delta

API for reading a single 64-bit quantity from the RNG Data Register. The contents of the RNG Data
Register are stored into the buffer specified by raddr. The buffer address must be a real address and 8-
byte aligned.

The RNG register must be in the RNG_STATE_CONFIGURED state in order to successfully read from
the Data Register.

The client specifies the RNG to which it wants access by providing the rng_id (arg3) associated with
that RNG. If the rng_id is invalid then EINVAL is returned.

If this function returns EWOULDBLOCK, indicating that the hardware isn't ready to respond to the re-
quest, then it also returns a system clock tick value in ready_delta indicating how many system clock
ticks before the RNG will be available for a subsequent operation. Note that it is also possible for the
caller to encounter an EWOULDBLOCK error should another thread simply be doing a RNG operation
at the same time. In this situation the returned ready_delta will likely be 0 indicating that the RNG
is immediately available for retrying.

25.1.8.1. Errors

EIO RNG is currently Unconfigured or in a Healthcheck

ENOACCESS RNG is in the Error state and unavailable

EBADALIGN Pointer address is not correctly aligned

ENORADDR Pointer address is not a valid real address

EWOULDBLOCK RNG currently in use by another thread or it has not yet reached its steady state

25.1.9. rng_ctl_read (2.0)

trap# FAST_TRAP

function# RNG_CTL_READ

Cryptographic services

181

arg0 raddr

arg1 rng_id

ret0 status

ret1 state

ret2 ready_delta

ret3 watchdog_delta

ret4 write_status

This API will store the contents of the RNG control register into the structure pointed to by raddr (arg0).
This address must be a real address, physically contiguous, and aligned on an 8-byte boundary. If arg0 is
NULL (0), then no control register information will be stored. This API will also return the current state
(ret1), the current ready_delta (ret2), which specifies in how many system clock ticks from the
present time the RNG data register will be available for reading, the watchdog delta (ret3), which
specifies in how many system clock ticks from the present time the RNG will transition to an error state,
and the write_status* (ret4), which provides the status of the last write operation on the control
register for this RNG.

If the ready_delta has a value of zero, it indicates that the RNG data register is immediately available.

If watchdog_delta has a value of zero, it means that either the RNG has transitioned to the uncon-
figured state or that it was set initially to keep its current state in perpetuity. The client is responsible
for checking state to see in which way the watchdog timeout was used. If state refers to either the
healthcheck or configured states, it means that the watchdog timeout was not set. If state refers to the
unconfigured state, it means that the RNG needs to be re-programmed.

The client specifies the RNG to which it wants access by providing the rng_id (arg1) associated with
that RNG. If the rng_id is invalid an error is returned.

It is possible for the caller to encounter an EWOULDBLOCK error should another thread be doing a RNG
operation on the same rng_id at the same time. If the RNG currently has a write operation pending,
an EBUSY error will be returned. If Hypervisor returns an EBUSY error, the value in write_status
is undefined.

25.1.9.1. Programming note

The actual N2 RNG hardware control register does not return the same contents that were written from
a previous write operation. Thus, the Hypervisor will keep a snapshot of what was written on a previous
rng_ctl_write and simply returns this information whenever rng_ctl_read is called.

25.1.9.2. Write status

EOK Success

EIO Last write operation failed, the RNG contains the last valid configuration

25.1.9.3. Errors

EBADALIGN Pointer address is not correctly aligned

EINVAL Invalid RNG ID

EBUSY RNG has a pending write operation

ENORADDR Pointer address is not a valid real address

Cryptographic services

182

EWOULDBLOCK RNG currently in use by another thread, caller should retry

ENOACCESS Caller does not have permission to call this API

25.1.10. rng_ctl_write (2.0)

trap# FAST_TRAP

function# RNG_CTL_WRITE

arg0 raddr

arg1 newstate

arg2 watchdog_timeout

arg3 rng_id

ret0 status

This is the API for initializing the RNG hardware by writing to the RNG control register with the contents
of the structure pointed to by raddr (arg0). Write operations are asynchronous. Before returning to
the caller, the hypervisor will schedule the control register to be written out at a future time. If the caller
attempts to write to the same RNG before the prior write attempt completes, this call will return with an
EBUSY error number.

raddr is a real address and must be physically contiguous and aligned on an 8-byte boundary. The state of
the RNG will be set to newstate (arg1) and must be one of the state values specified in Section 25.1.3,
“RNG State”.

The ready delta of the RNG will be determined by finding the largest wait counter value from the control
register settings specified by raddr. That value will be used by Hypervisor to monitor reads of the RNG
data register. EWOULDBLOCK will be returned when the pool is empty and reads of the data register are
attempted before the wait counter has been exhausted.

When setting the state to RNG_STATE_CONFIGURED the caller also specifies a watchdog_timeout
(arg2), in system ticks (delta from the current time), to indicate when the current configura-
tion setting will effectively expire. Once this time has expired the RNG will be placed into the
RNG_STATE_UNCONFIGURED state thus taking the RNG out of the pool for data reads. Specifying a
watchdog_timeout value of zero (0) disables the watchdog timeout for the new configuration setting.
The intent of providing a timeout is to allow a Trusted Guest to enforce a policy of periodic “health checks”
of the RNG hardware if required. The watchdog_timeout argument is ignored when specifying any
state other than RNG_STATE_CONFIGURED.

For the sake of backwards compatibility, there will be a watchdog timeout threshold. If the client sets a
value at or below that threshold, the value is assumed to be zero. The threshold is 60 seconds worth of
system ticks.

The client specifies the RNG to which it wants access by providing the rng_id (arg3) associated with
that RNG. If the rng_id is invalid then EINVAL is returned.

It is possible for the caller to encounter an EWOULDBLOCK error should another thread be doing a RNG
operation on the same RNG at the same time.

25.1.10.1. Errors

EIO Write to RNG control register failed

EBUSY A write operation for the specific RNG is still pending

EINVAL Specified state is not a valid value or an invalid RNG ID was specified

Cryptographic services

183

EBADALIGN Pointer address is not correctly aligned

ENORADDR Pointer address is not a valid real address

EWOULDBLOCK RNG currently in use by another thread

ENOACCESS Caller does not have permission to call this API

25.1.11. rng_data_read_diag (2.0)

trap# FAST_TRAP

function# RNG_DATA_READ_DIAG

arg0 raddr

arg1 size

arg2 rng_id

ret0 status

ret1 ready_delta

This API provides access to 64-bit quantities from the RNG Data Register. The contents of the RNG Data
Register are repeatedly read and stored into consecutive locations starting at the specified raddr.

The buffer address in raddr must be a real address, size aligned, and physically contiguous. The buffer
size specifies the size of the buffer in bytes and must be a multiple of 8. If the size is greater than 8
then the RNG Data Register will be re-read into consecutive locations in the buffer for each multiple of 8
specified by size. For example, if a buffer size of 32 is specified then the RNG Data Register will be read
4 times (32/8) with each read consecutively stored into the buffer address.

If this function returns EWOULDBLOCK, indicating that the hardware isn't ready to respond to the re-
quest, then it also returns a system clock tick value in ready_delta indicating how many system clock
ticks from the current time that the RNG will be available for a subsequent operation.

25.1.11.1. Programming Note

The caller of this API must have Diagnostic Control of the RNG in order to invoke this operation (see
Section 25.1.12.1, “rng_get_diag_control (1.0)”).

25.1.11.2. Errors

EINVAL Specified buffer size is not valid or an invalid RNG ID has been specified

EBADALIGN Pointer address is not correctly aligned

ENORADDR Pointer address is not a valid real address

EWOULDBLOCK RNG is currently in use by another thread or it has not yet reached its steady
state. The caller should retry in ready_delta system clock ticks.

ENOACCESS Caller does not have permission to call this API

25.1.12. Deprecated RNG 1.0 APIs

25.1.12.1. rng_get_diag_control (1.0)

trap# FAST_TRAP

function# RNG_GET_DIAG_CONTROL

Cryptographic services

184

ret0 status

This API gives the calling Guest OS diagnostic control over the RNG for performing subsequent
rng_ctl_write and rng_data_read_diag operations. Only one Guest at a time is permitted to
execute the aforementioned diagnostic operations. Control will remain with the current Guest until another
Guest takes control by invoking this same entry point.

25.1.12.1.1. Errors

EWOULDBLOCK RNG currently in use by another thread

ENOACCESS Caller does not have permission to call this API

25.1.12.2. rng_ctl_read (1.0)

trap# FAST_TRAP

function# RNG_CTL_READ

arg0 raddr

ret0 status

ret1 state

ret2 delta

This API will store the contents of the RNG Control registers into the RNG control structure pointed to by
raddr. This address must be a real address, physically contiguous, and aligned on an 8-byte boundary.
If raddr is NULL (0), then no Control register information will be stored. This API will also return
the current state, and the current ready delta which specifies how many system clock ticks from the
present time that the RNG will be available for further operations. A value of zero indicates that the RNG
is immediately available.

25.1.12.2.1. Programming note

The actual N2 RNG hardware control register does not return the same contents that were written from
a previous write operation. Thus, the Hypervisor will keep a snapshot of what was written on a previous
rng_ctl_write and simply return this information whenever rng_ctl_read is called.

25.1.12.2.2. Errors

EBADALIGN Pointer address is not correctly aligned

ENORADDR Pointer address is not a valid real address

EWOULDBLOCK RNG currently in use by another thread, caller should retry

ENOACCESS Caller does not have permission to call this API

25.1.12.3. rng_ctl_write (1.0)

trap# FAST_TRAP

function# RNG_CTL_WRITE

arg0 raddr

arg1 newstate

arg2 timeout

ret0 status

Cryptographic services

185

ret1 delta

This API is used to initialize the RNG hardware by writing to the RNG Control register with the contents
of the structure pointed to by raddr. This address must be a real address, physically contiguous, and
aligned on an 8-byte boundary. The state of the RNG will be set to newstate and must be one of the
state values specified in Section 25.1.3, “RNG State”.

When setting the state to RNG_STATE_CONFIGURED the caller also specifies a timeout, in system
ticks (a delta from the current time), to indicate when the current configuration setting will effectively
expire. Once this time has expired the hypervisor will put the RNG into the RNG_STATE_ERROR state
thus making the RNG unavailable for Data Reads. A timeout value of zero (0) indicates an infinite
lifetime for the new configuration setting.

If this function returns EWOULDBLOCK, indicating that the hardware isn't ready to respond to the re-
quest, it also returns a value in delta (in system clock ticks) indicating when the RNG will be available for a
subsequent operation. This delay in having the RNG available occurs after a previous rng_ctl_write
operation and is to allow the RNG to reach a steady state after it has been configured.

25.1.12.3.1. Programming note

The intent of providing a timeout is to allow a Trusted Guest to enforce a policy of periodic “health checks”
of the RNG hardware if required. The timeout argument is ignored when specifying any state other than
RNG_STATE_CONFIGURED.

Note also that the caller must have Diagnostic Control of the RNG in order to invoke this operation (see
Section 25.1.12.1, “rng_get_diag_control (1.0)”).

25.1.12.3.2. Errors

EIO The calling Guest does not currently have Diagnostic Control to manipulate
the RNG settings. Caller must first invoke rng_get_diag_control.

EINVAL Specified state is not a valid value

EBADALIGN Pointer address is not correctly aligned

ENORADDR Pointer address is not a valid real address

EWOULDBLOCK RNG currently in use by another thread or it has not yet reached its steady state,
caller should retry in delta clock ticks.

ENOACCESS Caller does not have permission to call this API

25.1.12.4. rng_data_read_diag (1.0)

trap# FAST_TRAP

function# RNG_DATA_READ_DIAG

arg0 raddr

arg1 size

ret0 status

ret1 delta

This API provides access to 64-bit quantities from the RNG Data Register. The contents of the RNG Data
Register are repeatedly read and stored into consecutive locations starting at the specified raddr. The
buffer address in raddr must be a real address, size aligned, and physically contiguous. The buffer size
specifies the size of the buffer in bytes and must be a multiple of 8.

Cryptographic services

186

If the size is greater than 8 then the RNG Data Register will be re-read into consecutive locations in the
buffer for each multiple of 8 specified by size. For example, if a buffer size of 32 is specified then the
RNG Data Register will be read 4 times (32/8) with each read consecutively stored into the buffer address.

If this function returns EWOULDBLOCK, indicating that the hardware isn't ready to respond to the re-
quest, then it also returns a system clock tick value in delta indicating how many system clock ticks
from the current time that the RNG will be available for a subsequent operation.

25.1.12.4.1. Programming Note

The caller of this API must have Diagnostic Control of the RNG in order to invoke this operation (see
Section 25.1.12.1, “rng_get_diag_control (1.0)”).

25.1.12.4.2. Errors

EIO The calling Guest does not currently have Diagnostic Control to manipulate
the RNG settings. Caller must first invoke rng_get_diag_control.

EINVAL Specified buffer size is not valid

EBADALIGN Pointer address is not correctly aligned

ENORADDR Pointer address is not a valid real address

EWOULDBLOCK RNG currently blocked

ENOACCESS Caller does not have permission to call this API

25.2. Niagara crypto services

This sections describes the Niagara Crypto Service (NCS) Hypervisor API for the UltraSPARC-T1 and
UltraSPARC-T2 processors. This API is designed to resemble the queuing interfaces provided by other
hypervisor APIs.

This interface is designed to be used by a more generic cryptographic framework provided by a guest
Operating System. (For example the Solaris Cryptographic Framework). Therefore these hypervisor ser-
vices only provide access to chip specific functionality, rather than providing more generic cryptographic
operations.

25.2.1. Versioning

The interface presented here represents version 2.0. The previous NCS hypervisor API representing version
1.x is now deprecated.

25.2.2. Work queues

The UltraSPARC-T1 processor provides a multiply-accumulate-unit associated with each processor core
to be used for accelerating bulk cryptographic operations. UltraSPARC-T2 extended this functionality and
added a random number generator, and support for more advanced cryptographic operations via the CWQ.
A full description of this functionality can be found in the programmer's reference manuals for these chips,
and so is not discussed further here.

Work is submitted to a cryptographic unit via a queue, and similarly results are enqueued by the hypervisor
upon completion. A queue type parameter is used to select between MAU and CWQ functionality for
work submission.

The queues are managed as circular arrays with head and tail pointers indicating where active jobs are
present— Operation of the queues is analogous to the interrupt queues. Note: Byte ordering of all fields
is Big-endian.

Cryptographic services

187

25.2.2.1. Queue Type

The queue type parameter specifies whether the queue being operated on represents either the MAU or
CWQ, and has one of the values as specified below:

Table 25.2. Niagara Crypto queue types

NCS_QTYPE_MAU 0x01

NCS_QTYPE_CWQ 0x02 (UltraSPARC-T2 only)

The queue handle parameter specifies a 64-bit unsigned integer value that uniquely identifies the queue
being operated on.

25.2.2.2. MAU queue

The MAU queue is described by an array of 64-byte entries where each entry is described by the following
structure:

Table 25.3. Niagara Crypto MAU queue entry

Offset Size Name Description

0 8 nhd_state State

Valid values:

ND_STATE_FREE 0 Entry is unused

ND_STATE_PENDING 1 Allocated and pending submission to
MAU

ND_STATE_BUSY 2 Entry has been submitted to MAU

ND_STATE_DONE 3 Entry has been successfully executed

ND_STATE_ERROR 4 Entry completed execution, with an
error

8 8 nhd_type Bit flags to delineate independent MAU jobs which may be comprised
of one or more queue entries. Interrupts are only sent to the OS when
the Last entry in a job has been completed.

Valid values:

ND_TYPE_UNASSIGNED 0x00 Entry is unused

ND_TYPE_START 0x01 Entry is the start of a job

ND_TYPE_CONT 0x02 Continuation of an existing job

ND_TYPE_END 0x80 Entry is the end of a job

16 32 nhd_regs Values to be installed in the MAU hardware registers.

The nhd_regs field is a 32 byte structure with the following format:

Offset Size Name Description

0 8 mr_ctl MA Control Register

8 8 mr_mpa MA Physical Address Register

Cryptographic services

188

Offset Size Name Description

Offset Size Name Description

16 8 mr_ma MA Memory Address Register

24 8 mr_np MA NP Register

The exact definition of these registers is given in the Programmer's Ref-
erence Manual for the UltraSPARC-T1 or UltraSPARC-T2 processors,
and is beyond the scope of this document.

48 8 nhd_errstatus Bit flags indicating type of MAU error which may have occurred with
respect to descriptor.

Valid values:

ND_ERR_OK 0x00 No Error

ND_ERR_INVOP 0x01 Invalid MAU operation

ND_ERR_HWE 0x02 Hardware error detected by MAU

56 8 Padding Padding out to 64 bytes.

25.2.2.3. CWQ queue (UltraSPARC-T2 only)

The CWQ queue is described by an array of 64-byte entries where each entry is described by the following
structure:

Table 25.4. Niagara Crypto CWQ queue entry

Offset Size Name Description

0 8 cw_ctlbits Control bits indicating the nature of
the respective control word.

8 8 cw_src_addr Real address of source data.

16 8 cw_auth_key_addr Real address of location containing
authentication key.

24 8 cw_auth_iv_addr Real address of location containing
initial value for authentication.

32 8 cw_final_auth_state_addr Real address of the location that will
be used to hold the final authentica-
tion state.

40 8 cw_enc_key_addr Real address of location containing
encryption key.

48 8 cw_enc_iv_addr Real address of location containing
encryption initialization vector.

56 8 cw_dst_addr Real address of destination buffer.

The PRM for UltraSPARC-T2 details the exact definition of these fields.

25.2.3. ncs_qconf

trap# FAST_TRAP

function# NCS_QCONF

Cryptographic services

189

arg0 queue_type

arg1 raddr/handle

arg2 size

ret0 status

ret1 handle

This API is used for configuring or unconfiguring either a MAU queue or a CWQ queue as specified by
queue_type (arg0).

The the real address of the base of the queue is given in raddr (arg1) and must be aligned on a queue
size boundary. For example, a 32 entry MAU or CWQ queue must be aligned on a 2048-byte real address
boundary. When unconfiguring a queue, the handle (arg1) represents the queue to be unconfigured.

The number of entries in the queue is given in size (arg2) and must be a power of 2. A value of zero
(0) unconfigures the given queue represented by the queue handle (arg1).

25.2.3.1. Programming note

Upon success, when configuring a queue, the caller is returned a queue handle (ret1) which must be
used for subsequent queue operations. Note that the queue being configured is only of the MAU/CWQ for
the processor core containing the CPU upon which the caller is executing.

The calling thread should bind itself to the current CPU to ensure its context does not get switched to a
different CPU and possibly a different core during the operation.

25.2.3.2. Errors

EINVAL Specified queue type is not recognized, or specified queue size is not a power
of 2, or queue handle is invalid

ENOACCESS CPU does not have access to a MAU/CWQ

EBADALIGN Base address of queue is not correctly aligned

ENORADDR Pointer address is not a valid real address

25.2.4. ncs_qinfo

trap# FAST_TRAP

function# NCS_QINFO

arg0 handle

ret0 status

ret1 type

ret2 raddr

ret3 size

This API retrieves the queue type and the real address of the base of the queue (in raddr), and the queue
size for the queue identified by the queue handle (arg0).

25.2.4.1. Errors

EINVAL Queue handle is invalid

Cryptographic services

190

25.2.5. ncs_gethead

trap# FAST_TRAP

function# NCS_GETHEAD

arg0 handle

ret0 status

ret1 offset

This API retrieves the head offset for the queue identified by handle (arg0). The head offset repre-
sents the current beginning point for queue jobs to be processed. There is no guarantee that subsequent to
calling this entry point that the head will not move forward.

25.2.5.1. Errors

EINVAL Queue handle is invalid

25.2.6. ncs_sethead_marker

trap# FAST_TRAP

function# NCS_SETHEAD_MARKER

arg0 handle

arg1 offset

ret0 status

This API tells the hypervisor to set the head offset (arg1) for a given queue handle (arg0) to the
specified value. This value is used to effectively determine how far along the caller has processed the
queue of descriptors relative to where the CWQ hardware is currently operating. This value is NOT stored
into the actual CWQ hardware Head register since that register is managed by hardware once a queue has
been configured and enabled.

The offset must be aligned on a 64-byte boundary. Any attempt to specify a head offset value that
resides after the hardware's notion of the current head and before the hardware's notion of the current tail
will result in an EINVAL error.

25.2.6.1. Errors

EINVAL Queue handle is invalid or specified queue head offset value is invalid

25.2.7. ncs_gettail

trap# FAST_TRAP

function# NCS_GETTAIL

arg0 handle

ret0 status

ret1 offset

This API retrieves the tail offset (ret1) for the queue identified by the queue handle (arg0).

The tail represents the current point for enqueuing new jobs. Changes in the tail can only happen via the
ncs_settail API.

Cryptographic services

191

25.2.7.1. Errors

EINVAL Queue handle is invalid

25.2.8. ncs_settail

trap# FAST_TRAP

function# NCS_SETTAIL

arg0 handle

arg1 tail_offset

ret0 status

This API tells the hypervisor to set the tail_offset for a given queue handle (arg0) to the value
specified in offset (arg1). The hypervisor will automatically start processing of operations starting at
the current head pointer, if not already in progress.

The offset must be aligned on a 64-byte boundary and calculated so as to increase the number of pending
entries on the queue. Any attempt to decrease the number of pending queue entries is considered an invalid
tail offset and will result in an EINVAL error.

25.2.8.1. Programming note

Care must be taken with multi-threaded guest code where a scheduler may move the calling thread to
another virtual CPU. To ensure that the caller does not get switched to a different CPU and thus possibly
a different core and crypto queue between enqueuing a job and calling the ncs_settail API, the caller
should bind itself to the target CPU.

The caller can wait for an asynchronous interrupt indicating completion of a job in the queue at which
point the caller must check the current head/tail pointers to verify whether their job has completed.

25.2.8.2. Errors

EINVAL Queue handle is invalid or queue tail_offset value is invalid

ENORADDR Buffer address referenced in queue entry is not a valid real address

25.2.9. ncs_qhandle_to_devino

trap# FAST_TRAP

function# NCS_QHANDLE_TO_DEVINO

arg0 handle

ret0 status

ret1 devino

This API retrieves the interrupt number (devino) for the crypto unit represented by the given queue
handle (arg0).

25.2.9.1. Errors

EINVAL Queue handle is invalid

Cryptographic services

192

25.2.10. ncs_ulqconf (version 2.1)

trap# FAST_TRAP

function# NCS_ULQCONF

arg0 base_address or queue_handle

arg1 page_size (encoded)

arg2 queue_size (#entries)

ret0 status

ret1 queue_handle

This API is for configuring or unconfiguring the CWQ to set it up for the new User-land mode of opera-
tion of UltraSPARC-KT[ua2007n3]. When configuring a queue the caller is returned a queue_handle
(ret1) which can be used to unconfigure the given CWQ.

When configuring a queue, the base_address (arg0) is the real address of the page that is dedicated
for the queue and all data that is used by this CWQ during user-land operation. The queue itself should
be set up within the first 4K of the page. The page sizes supported are 4M and 256M as the smaller sizes
enabled by the specification (8K and 64K) would be too small for smooth operation.

When unconfiguring a queue, the queue_handle (arg0) represents the queue to be unconfigured.

The page_size (arg1) specifies the size of the page to be configured, encoded according to Table
21-18 of [ua2007n3] (that is 3 for 4M and 5 for 256M, other values are invalid).

The queue_size (arg2) specifies the number of entries in the queue and must be a power of 2. A value
of zero (0) is used to unconfigure the given queue represented by queue_handle (arg0).

Note

The queue being configured is only of the CWQ for the core containing the CPU upon which the
caller is executing. The calling thread should bind itself to the current CPU to ensure its context
does not get switched to a different CPU and possibly a different core during the operation.

25.2.10.1. Errors

EINVAL The specified queue_size is not a power of two, the page_size is invalid,
or the queue_handle is invalid

ENOACCESS CPU does not have access to a CWQ

EBADALIGN base_address is improperly aligned

ENORADDR base_address is not a valid real address

25.3. Trusted Platform Module Physical Access

A platform's TPM is expected to be used by a guest assuming the role of the control domain. These APIs
are intended to be used by that guest. Virtual TPMs are expected to be used by all other guests.

25.3.1. TPM Definitions

25.3.1.1. TPM Locality

Locality is defined in the PC Client specification[tpmpc]. Following is a brief summary of TPM Localities.

Cryptographic services

193

Locality is a concept that allows various trusted processes on the platform to communicate with the TPM
such that the TPM is aware of which trusted process is sending commands. There are six Localities defined
(numbered 0-4 and Legacy). Their use is defined as:

Locality 4 Trusted hardware. This is the Dynamic RTM.

Locality 3 Auxiliary components. Use of this is optional and, if used, it is implementation
dependent.

Locality 2 This is the run-time environment for the Trusted Operating System.

Locality 1 An environment for use by the Trusted Operating System.

Locality 0 The legacy environment for the Static RTM and its chain of trust.

Legacy locality This is Locality 0 using TPM 1.1 type I/O ports.

25.3.1.2. TPM Registers

The registers specified by the PC Client specification[tpmpc] for Locality 0 are listed below.

Table 25.5. TPM Registers

Offset Size Register Description

0x00 1 TPM_ACCESS Used to gain ownership of port

0x08 4 TPM_INT_ENABLE Controls interrupts

0x0c 1 TPM_INT_VECTOR SIRQ vector to be used by the TPM

0x10 4 TPM_INT_STATUS Interrupt status

0x14 4 TPM_INTF_CAPABILITY Interrupt capabilities

0x18 4 TPM_STS Status register

0x24 4 TPM_DATA_FIFO Read or write FIFO

0xf00 4 TPM_DID_VID Device ID/Vendor ID

0xf04 1 TPM_RID Device revision ID

0xf05-0xf7f TCG-defined config registers

0xf80-0xfff Vendor-defined config registers

All registers are architected to be exposed to “untrusted” software. There are various protocols to disable
certain functionality before the “untrusted” software is handed control. The guest may have access to all
of the programmable registers just as in a typical personal computing environment.

25.3.2. TPM Hypervisor Calls

The following API calls are used to access a platform's TPM and are in the TPM API group.

25.3.2.1. tpm_get

trap# FAST_TRAP

function# TPM_GET

arg0 locality

arg1 register_offset

Cryptographic services

194

arg2 access_size

ret0 status

ret1 register_value

This call reads the value of a TPM register as specified by the register_offset argument using the
TPM locality specified by locality. The size of the register access is specified by the access_size
argument.

On success, the call returns a status of EOK and the value of the requested TPM register.

25.3.2.1.1. Errors

EINVAL Invalid locality, register_offset, or access_size.

ENOACCESS Operation administratively prohibited.

25.3.2.2. tpm_put

trap# FAST_TRAP

function# TPM_PUT

arg0 locality

arg1 register_offset

arg2 access_size

arg3 register_value

ret0 status

This call writes a value to a TPM register as specified by the register_offset argument using the
TPM locality specified by locality. The size of the register access is specified by the access_size
argument.

On success, the call returns a status of EOK and the value of the requested TPM register.

25.3.2.2.1. Errors

EINVAL Invalid locality, register_offset, or access_size.

ENOACCESS Operation administratively prohibited.

195

Chapter 26. UltraSPARC-T2 Network
Interface Unit
26.1. Introduction

The network interface incorporated into the UltraSPARC-T2 processor is designed to be high performance
and capable of many sophisticated operations in order to optimize the performance of the UltraSPARC
strands themselves.

Critically in support of virtualization, the device has multiple DMA engines that can be assigned to differ-
ent on-chip processing strands and driven by an on-chip packet filter in order to balance packet processing
load and achieve the greatest possible parallelism.

A detailed discussion of this device is beyond the scope of this document, and the reader is recommended
to read Chapters 22 through 28 [ua2007n2] for more detail.

For the purpose of this document, we assume a working knowledge of the NIU and concern ourselves with
accessing the device via programmed IO operations (PIOs) and the addresses used in read/write requests.
The latter relates to memory protection. Together these two features enable resource (both memory and
DMAs) isolation, which is the basis of virtualization.

In UltraSPARC T2, since the device is part of the processor, the hypervisor controls how the hardware is
presented to a guest OS. Not all hardware resources support virtualization directly.

The NIU in UltraSPARC T2 is accessed primarily via load and store instructions and the hypervisor may
organize the hardware as a two-function device split into two different address ranges. Within each func-
tion, two address ranges are defined: one for management, one for virtualization. The entire device may
be accessed through the management addresses. Virtualization addresses, on the other hand, only have
accesses to a set of defined DMAs.

The control and status registers (CSRs) of multiple DMA channels can be grouped into an 8KB page within
the virtualization address ranges. The grouping itself is defined by a table in the management address range.
To support memory protection, each transmit or receive DMA supports two logical pages. The addresses in
the configuration registers, packet gather list pointers on the transmit side, and the allocated buffer pointer
on the receive side will be relocated accordingly. The logical page registers are only accessible via the
management address ranges.

In UltraSPARC T2, the sun4v hypervisor software may expose an 8KB page, with a few DMAs defined,
to the driver software thus enabling the driver software to control those DMAs via PIOs. In addition, hy-
pervisor also defines the logical page registers for these DMAs, which limits the addresses ranges allowed
in the descriptors for DMA transactions. Together, this protects the system memory with regard to DMA
operations guest OS software may use.

The remainder of this section details the hypervisor APIs calls available to interact with the Ultra-
SPARC-T2 NIU, however a working knowledge of the device is essential to understand these interfaces.

26.2. Definitions

Here we define a few of the abbreviations and acronyms used in the rest of this section.

Logical Device (LD) - A term used generically to refer to a functional block that may ultimately cause
an interrupt.

UltraSPARC-T2 Net-
work Interface Unit

196

Logical Device Group (LDG) - A group of logical devices sharing an interrupt. A group may have only
one LD.

Logical Device Flag (LDF) - Is a logical 'OR' of some LC

Logical Device Group Interrupt (LDGI) - The interrupt associated with a LDG. This interrupt is controlled
by a one shot mechanism, i.e. hardware will issue only one single interrupt, and software will need to arm
the LDG again to enable it to issue another interrupt.

Logical Device State Vector (LDSV) - a read only state vector capturing the LDFs of ALL the LDs.

Logical Domain (LDom) - Separation of platform resources into self-contained partition that is capable
of supporting an operating system.

Logical Page - A contiguous range of memory location. If an address posted by software is within the
logical page, it will be translated to a physical address by replacing the base address of the logical page
with the base address of the physical page. The size of the logical page is programmable.

Receive Block Ring (RBR) - It is a ring buffer of memory blocks posted by software.

Receive Completion Ring (RCR) - The ring stores the addresses of the buffers used to store incoming
packets.

Receive DMA Channel (RDC) - It is comprised of a RBR, a RCR and a set of control and status registers.
A receive DMA channel is selected after an incoming packet is classified. A packet buffer is derived from
the pool and used to store the incoming packet. Each channel is capable of issuing interrupt to software
based on the queue length of the Receive Completion Ring or a time-out.

Transmit Ring (TR) - The data structure built in system memory for software to post transmission requests.

Transmit DMA Channel (TDC) - Consists of a transmit ring and a set of control and status registers.

26.3. Version 1.0 and version 1.1 APIs

Version 1.0 of the NIU APIs allow a domain that owns a complete NIU device to configure, manage and
send/receive data through the NIU device.

Version 1.1 of the NIU APIs extend this ability to allow a domain to own part of the NIU device, specifi-
cally a virtual region with associated resources. It also adds a set of APIs to enable the domain that owns
the NIU device to share it with another domain.

26.4. Version 1.0 APIs

The following APIs are available by negotiating version 1.0 for the NIU API group.

26.4.1. niu_rx_logical_page_set

trap# FAST_TRAP

function# N2NIU_RX_LP_SET

arg0 chidx

arg1 pgidx

arg2 raddr

arg3 size

ret0 status

UltraSPARC-T2 Net-
work Interface Unit

197

This API configures a mapping described by arguments raddr and size in the NIU receive DMA engine
address translation (logical page) register indicated by chidx and pgidx.

If there is already a valid mapping for the page specified by pgidx, that mapping is overwritten.

The specified mapping is unconfigured if the size is 0. In this case, raddr is ignored.

chidx must be between 0 and 15.

pgidx must be 0 or 1.

raddr must be size aligned.

size must be a power of 2.

26.4.1.1. Errors

EBADALIGN Invalid alignment for raddr or size

ENORADDR Invalid real address

EINVAL Invalid index for channel or register

26.4.2. niu_rx_logical_page_get

trap# FAST_TRAP

function# N2NIU_RX_LP_GET

arg0 chidx

arg1 pgidx

ret0 status

ret1 raddr

ret2 size

Return the current mapping in the NIU receive DMA engine address translation (logical page) register
indicated by chidx and pgidx. The real address and size are returned in ret1 and ret2.

chidx must be between 0 and 15.

pgidx must be 0 or 1.

If there is no current mapping for the given chidx and pgidx, then the return values raddr and size
will both be 0.

26.4.2.1. Errors

EINVAL Invalid index for channel or register

26.4.3. niu_tx_logical_page_set

trap# FAST_TRAP

function# N2NIU_TX_LP_SET

arg0 chidx

arg1 pgidx

arg2 raddr

UltraSPARC-T2 Net-
work Interface Unit

198

arg3 size

ret0 status

Configure a mapping described by arguments raddr and size in the NIU transmit DMA engine address
translation (logical page) register indicated by chidx and pgidx.

If there is already a valid mapping for the page specified by pgidx, that mapping is overwritten. The
specified mapping is unconfigured if the size is 0. In this case, raddr is ignored.

chidx must be between 0 and 15.

pgidx must be 0 or 1.

raddr must be size-aligned.

size must be a power of 2.

26.4.3.1. Errors

EBADALIGN Invalid alignment for raddr or size

ENORADDR Invalid real address

EINVAL Invalid index for channel or register

26.4.4. niu_tx_logical_page_get

trap# FAST_TRAP

function# N2NIU_TX_LP_GET

arg0 chidx

arg1 pgidx

ret0 status

ret1 raddr

ret2 size

Return the current mapping in the NIU transmit DMA engine address translation (logical page) register
indicated by chidx and pgidx. The real address and size are returned in ret1 and ret2.

chidx must be between 0 and 15.

pgidx must be 0 or 1.

If there is no current mapping for the given chidx and pgidx, then the return values raddr and size
will both be 0.

26.4.4.1. Errors

EINVAL Invalid index for channel or register

26.5. Version 1.1 APIs

Version 1.1 APIs are an extension to the preceding version 1.0 APIs. The preceding APIs continue to
function, however by successfully negotiating version 1.1 for the NIU API group the following APIs will
also be available for guest software running on a UltraSPARC-T2 system.

UltraSPARC-T2 Net-
work Interface Unit

199

26.5.1. NIU Virtual Region (VR) Specific APIs

26.5.1.1. vr_assign

trap# FAST_TRAP

function# N2NIU_VR_ASSIGN

arg0 vr_idx

arg1 ldc_id

ret0 status

ret1 vr_cookie

This API assigns the specified virtual region to a domain identified by the endpoint ldc_id of the channel
to the target domain. The returned vr_cookie can be used by a domain to obtain access to the virtual
region.

vr_idx is the Virtualization Region index number (0–7). The NIU has 2 Functions, each Function has 2
Virtualization regions, each region can be split into 2 access protected pages.

The ldc_id is the LDC endpoint in the domain that owns the NIU device and the channel that runs
between and the domain to which the virtual region is being assigned.

Upon success the API returns in vr_cookie a 32-bit unique id. This cookie represents a specific NIU
and a specific Virtual Region (VR) within it.

26.5.1.1.1. Errors

ENOACCESS Domain does not own the NIU

ECHANNEL Invalid channel (LDC ID)

EINVAL Invalid vr_idx or VR is already assigned

26.5.1.2. vr_unassign

trap# FAST_TRAP

function# N2NIU_VR_UNASSIGN

arg0 vr_cookie

ret0 status

This API frees the virtual region that was previously assigned to a domain. Only the domain that owns the
NIU device is allowed to call this interface. After the virtual region is unassigned, subsequent access by
the guest will fail with EINVAL to hypervisor calls, or memory access violations.

vr_cookie is a 32-bit unique id that represents the NIU virtual region as returned by
n2niu_vr_assign.

26.5.1.2.1. Errors

ENOACCESS Domain does not own the NIU

EINVAL Invalid cookie or VR not assigned

UltraSPARC-T2 Net-
work Interface Unit

200

26.5.1.3. vr_getinfo

trap# FAST_TRAP

function# N2NIU_VR_GETINFO

arg0 vr_cookie

ret0 status

ret1 real_base

ret2 real_size

This API obtains the real address base and size for the virtual region corresponding to the specified cookie
value. This API can only successfully be called from the guest that owns the virtual region associated
with that cookie.

vr_cookie A 32-bit unique id that represents a NIU/VR.

real_base is the base real address of the start of the virtualization region. real_size is the size of
the VR mapping.

26.5.1.3.1. Errors

ENOACCESS Cookie not associated with this domain

EINVAL Invalid cookie

26.5.2. NIU DMA Channel (DMAC) Specific APIs

26.5.2.1. vr_rx_dma_assign and vr_tx_dma_assign

trap# FAST_TRAP

function# N2NIU_VR_RX_DMA_ASSIGN

arg0 vr_cookie

arg1 gch_idx

ret0 status

ret1 vch_idx

trap# FAST_TRAP

function# N2NIU_VR_TX_DMA_ASSIGN

arg0 vr_cookie

arg1 gch_idx

ret0 status

ret1 vch_idx

These two APIs assign TX and RX DMA channel resources to a specific virtual region. A virtual region
has to be assigned to a domain before resources can be assigned to the virtual region. There is a hardware
maximum of 8 channels per virtual region, but implementations may restrict the channels maximum fur-
ther. Each global channel may only be assigned to one virtual region at a time.

vr_cookie is a 32-bit unique id that represents an NIU/VR.

UltraSPARC-T2 Net-
work Interface Unit

201

gch_idx is the Global DMA channel index number (0–15).

vch_idx is the Virtual DMA channel index number (0–7).

Programming Note

The interrupt resources assigned to this channel will be automatically migrated to the guest do-
main. In addition, the interrupt resource is also marked disabled. Its the responsibility of the do-
main that owns the NIU device to remove any interrupt handler associated with the channel.

26.5.2.1.1. Errors

ENOACCESS Domain does not own the NIU

EINVAL Invalid cookie or channel

ENOMAP Channel not available

26.5.2.2. vr_rx_dma_unassign and vr_tx_dma_unassign

trap# FAST_TRAP

function# N2NIU_VR_RX_DMA_UNASSIGN

arg0 vr_cookie

arg1 vch_idx

ret0 status

trap# FAST_TRAP

function# N2NIU_VR_TX_DMA_UNASSIGN

arg0 vr_cookie

arg1 vch_idx

ret0 status

This API unassigns RX and TX DMA channel resources from a virtual region. Accesses to an unassigned
virtual channel in the guest will return EINVAL or memory access violations.

Once a channel has been unassigned it may be reassigned to another region.

vr_cookie is a 32-bit unique id that represents the virtual region.

vch_idx is the Virtual DMA channel index number (0–7).

Programming Note

The unassign operation will migrate the interrupts back to the domain that owns the NIU device.
It will also disable the channel if it is not already disabled. The channels are restored back to the
domain that owns the NIU device.

26.5.2.2.1. Errors

ENOACCESS Domain does not own the NIU

EINVAL Invalid cookie or channel

UltraSPARC-T2 Net-
work Interface Unit

202

ENOMAP Channel is not assigned

26.5.2.3. vr_get_rx_map and vr_get_tx_map

trap# FAST_TRAP

function# N2NIU_VR_GET_RX_MAP

arg0 vr_cookie

ret0 status

ret1 dma_map

trap# FAST_TRAP

function# N2NIU_VR_GET_TX_MAP

arg0 vr_cookie

ret0 status

ret1 dma_map

These APIs obtain a list of TX or RX DMA channel resources assigned to a virtual region.

vr_cookie is a 32-bit unique id that represents an NIU/VR. Upon success the API returns in dma_map
the Rx/Tx DMA channel map (bit mask) that shows which slots in the virtual region have DMA channels
mapped. For example, bit N will be set in the map iff virtual channel N (0–7) is assigned in the VR.

26.5.2.3.1. Errors

ENOACCESS Cookie not associated with this domain

EINVAL Invalid cookie

26.5.2.4. vrrx_set_ino and vrtx_set_ino

trap# FAST_TRAP

function# N2NIU_VRRX_SET_INO

arg0 vr_cookie

arg1 vch_idx

arg2 ino

ret0 status

trap# FAST_TRAP

function# N2NIU_VRTX_SET_INO

arg0 vr_cookie

arg1 vch_idx

arg2 ino

ret0 status

This API assigns an interrupt number for the specified RX/TX virtual DMA channel in a virtual region.
A unique interrupt number should be assigned to each channel across all VRs assigned from a single NIU
device.

UltraSPARC-T2 Net-
work Interface Unit

203

vr_cookie is a 32-bit unique id that represents an NIU/VR. vch_idx is the Virtual DMA channel
index number, retrieved through the n2niu_vr_get_*_map interface (0–7). ino is a unique 32-bit
device interrupt no. (devino) to be associated with this channel. Each DMA Channel corresponds to an
interrupt source and should be assigned a unique interrupt number between 0 and 63.

Programming Note

These device inos must then be assigned an interrupt cookie, (or converted to system wide inter-
rupt numbers sysinos), for use within the domain.

26.5.2.4.1. Errors

ENOACCESS Cookie not associated with this domain

EINVAL Invalid cookie

26.5.2.5. vrrx_get_info and vrtx_get_info

trap# FAST_TRAP

function# N2NIU_VRTX_SET_INO

arg0 vr_cookie

arg1 vch_idx

ret0 status

ret1 group

ret2 logdev

trap# FAST_TRAP

function# N2NIU_VRTX_SET_INO

arg0 vr_cookie

arg1 vch_idx

ret0 status

ret1 group

ret2 logdev

These APIs get the virtual group number and logical device associated with a RX/TX virtual DMA channel
in a virtual region. Since interrupts are delivered via bits in the LDSV that corresponds to the logical device,
the guest needs to map each virtual channel to a logical device in order to identify the interrupted channel
and re-arm the interrupt. The guest will use PIO's using these values to rearm the associated interrupts.

vr_cookie is a 32-bit unique id that represents an NIU/VR.

vch_idx is the Virtual DMA channel index number (0–7).

Upon success the API returns in group the Virtual Group number (Bits 7:5 of the VRARDDR associated
with that VR's LDSV management, and in logdev the logical device number. Please refer to [ua2007n2]
for more detail.

26.5.2.5.1. Errors

ENOACCESS Cookie not associated with this domain

UltraSPARC-T2 Net-
work Interface Unit

204

EINVAL Invalid cookie

ENOINTR No virtual group exists for that channel in this domain

26.5.2.6. vrrx_lp_set and vrtx_lp_set

trap# FAST_TRAP

function# N2NIU_VRRX_LP_SET

arg0 vr_cookie

arg1 vch_idx

arg2 pgidx

arg3 raddr

arg4 size

ret0 status

trap# FAST_TRAP

function# N2NIU_VRTX_LP_SET

arg0 vr_cookie

arg1 vch_idx

arg2 pgdix

arg2 raddr

arg2 size

ret0 status

These APIs configure a mapping described by arguments raddr and size in the NIU DMA engine address
translation (logical page) register indicated by vch_idx and pgidx. If there is already a valid mapping for
the page specified by pgidx, that mapping is overwritten. The specified mapping is unconfigured if the size
is 0. In this case, raddr is ignored. If the size is non-zero, the real address (raddr) should be size aligned
and the size must be a power of 2.

This interface is identical to the version 1.0 NIU interfaces described above except for the presence of a
cookie, and it uses virtual channels instead of global channels. Accessing this memory after the region has
been unassigned will cause access violations in the guest.

The argument vr_cookie is a 32-bit unique id that represents an NIU/VR. vch_idx is the virtual DMA
channel index number and should be between 0 and 15. pgidx is the logical page index number and legal
values are 0 or 1. raddr is the logical page real address (size aligned) and size is the logical page size.

26.5.2.6.1. Errors

ENOACCESS Cookie not associated with this domain

EBADALIGN Invalid alignment for raddr or size

EINVAL Invalid cookie or invalid index for channel or page

26.5.2.7. vrrx_lp_get and vrtx_lp_get

trap# FAST_TRAP

function# N2NIU_VRRX_LP_GET

UltraSPARC-T2 Net-
work Interface Unit

205

arg0 vr_cookie

arg1 vch_idx

arg2 pgidx

ret0 status

ret1 raddr

ret2 size

trap# FAST_TRAP

function# N2NIU_VRTX_LP_GET

arg0 vr_cookie

arg1 vch_idx

arg2 pgidx

ret0 status

ret1 raddr

ret2 size

These APIs return the current mapping in the NIU DMA engine address translation (logical page) register
indicated by vch_idx and pgidx. The real address and size are returned to the caller. If there is no current
mapping for the given chidx and pgidx, then the return values raddr and size will both be 0. This interface is
identical to the NIU version 1.0 interfaces except for the presence of a cookie, and it uses virtual channels
instead of global channels.

The argument vr_cookie is a 32-bit unique id that represents an NIU/VR. vch_idx is the virtual DMA
channel index number and should be in the range 0 to 7. pgidx is the logical page index number; legal
values are 0 and 1.

The APIs return raddr the logical page real address and size the logical page size.

26.5.2.7.1. Errors

ENOACCESS Cookie not associated with this domain

EINVAL Invalid cookie or invalid index for channel or page

26.5.3. Virtualized Access to Non-virtualized NIU registers

The domain that is the recipient of a virtual region and its DMA channel resources is only allowed limited
access to various registers that control DMA behavior. The APIs specified below allow the domain to set
or get non-virtualized DMA channel registers.

26.5.3.1. vrrx_param_get and vrtx_param_get

trap# FAST_TRAP

function# N2NIU_VRRX_PARAM_GET

arg0 vr_cookie

arg1 vch_idx

arg2 param

ret0 status

UltraSPARC-T2 Net-
work Interface Unit

206

ret1 value

trap# FAST_TRAP

function# N2NIU_VRTX_PARAM_GET

arg0 vr_cookie

arg1 vch_idx

arg2 param

ret0 status

ret1 value

These APIs return the current value of a RX/TX virtual channel parameter. Where vr_cookie is a 32 bit
unique id that represents an NIU/VR. vch_idx is the Virtual DMA channel index number, and param is
the register to query (enumerated lookup) Upon success value contains the register value.

Legal Values for RX params (others return EINVAL):

Register Value Reference

RDC_RED_PARA 0 [ua2007n2], Table 25-19

Legal Values for TX params (others return EINVAL):

Register Value Reference

TDC_DMA_MAX 0 [ua2007n2], Table 26-25

26.5.3.1.1. Errors

ENOACCESS Cookie not associated with this domain or specified parameter is not accessible

EINVAL Invalid cookie or invalid index for channel or page

26.5.3.2. vrrx_param_set and vrtx_param_set

trap# FAST_TRAP

function# N2NIU_VRRX_PARAM_SET

arg0 vr_cookie

arg1 vch_idx

arg2 param

arg3 value

ret0 status

trap# FAST_TRAP

function# N2NIU_VRTX_SET_INO

arg0 vr_cookie

arg1 vch_idx

arg2 param

arg3 value

ret0 status

UltraSPARC-T2 Net-
work Interface Unit

207

These APIs set the value of a RX/TX virtual channel parameter. Where vr_cookie is a 32-bit unique
id that represents an NIU/VR. vch_idx is the Virtual DMA channel index number. param specifies the
register to set and value is the register value.

Legal Values for RX params (others return EINVAL):

Register Value Reference

RDC_RED_PARA 0 [ua2007n2], Table 25-19

Legal Values for TX params (others return EINVAL):

Register Value Reference

TDC_DMA_MAX 0 [ua2007n2], Table 26-25

26.5.3.2.1. Errors

ENOACCESS Cookie not associated with this domain or specified parameter is not accessible

EINVAL Invalid cookie or invalid index for channel or page

26.6. Version 2.0 APIs

The current set of NIU APIs allow a domain that owns the device to configure, manage and send/receive
data through the NIU device, or to assign HW resources to another logical domain.

The new set of hypervisor APIs proposed in this document extend these APIs to reference a specific NIU
on the system. The NIU will be identified using a devhandle — a unique identifier that can be obtained
by reading the cfg-handle property specified in the NIU device node in the guest MD.

The following APIs are available by negotiating version 2.0 for the NIU API group:

N2NIU_RX_LP_SET

N2NIU_RX_LP_GET

N2NIU_TX_LP_SET

N2NIU_TX_LP_GET

Modified

N2NIU_VR_ASSIGN

N2NIU_VR_UNASSIGN

N2NIU_VR_GETINFO

N2NIU_VR_RX_DMA_ASSIGN

N2NIU_VR_RX_DMA_UNASSIGN

N2NIU_VR_TX_DMA_ASSIGN

N2NIU_VR_TX_DMA_UNASSIGN

N2NIU_VR_GET_RX_MAP

N2NIU_VR_GET_TX_MAP

N2NIU_VRRX_SET_INO

N2NIU_VRTX_SET_INO

N2NIU_VRRX_GET_INFO

Unmodified

N2NIU_VRTX_GET_INFO

UltraSPARC-T2 Net-
work Interface Unit

208

N2NIU_VRRX_LP_SET

N2NIU_VRRX_LP_GET

N2NIU_VRTX_LP_SET

N2NIU_VRTX_LP_GET

N2NIU_VRRX_PARAM_GET

N2NIU_VRRX_PARAM_SET

N2NIU_VRTX_PARAM_GET

N2NIU_VRTX_PARAM_SET

26.6.1. niu_rx/tx_logical_page_set

trap# FAST_TRAP

function# N2NIU_RX_LP_SET

arg0 devhandle

arg1 chidx

arg2 pgidx

arg3 raddr

arg4 size

ret0 status

trap# FAST_TRAP

function# N2NIU_TX_LP_SET

arg0 devhandle

arg1 chidx

arg2 pgidx

arg3 raddr

arg4 size

ret0 status

These interfaces are identical to Section 26.4.1, “niu_rx_logical_page_set” and Section 26.4.3,
“niu_tx_logical_page_set” except for the addition of the devhandle argument.

26.6.2. niu_rx/tx_logical_page_get

trap# FAST_TRAP

function# N2NIU_RX_LP_GET

arg0 devhandle

arg1 chidx

arg2 pgidx

ret0 status

ret1 raddr

ret2 size

trap# FAST_TRAP

UltraSPARC-T2 Net-
work Interface Unit

209

function# N2NIU_TX_LP_GET

arg0 devhandle

arg1 chidx

arg2 pgidx

ret0 status

ret1 raddr

ret2 size

These interfaces are identical to Section 26.4.2, “niu_rx_logical_page_get” and Section 26.4.4,
“niu_tx_logical_page_get” except for the addition of the devhandle argument.

26.6.3. NIU Virtual Region (VR) Specific APIs

26.6.3.1. vr_assign

trap# FAST_TRAP

function# N2NIU_VR_ASSIGN

arg0 devhandle

arg1 vr_idx

arg2 ldc_id

ret0 status

ret1 vr_cookie

This interface is identical to Section 26.5.1.1, “vr_assign” except for the addition of the devhandle
argument.

210

Chapter 27. Chip and platform specific
performance counters
27.1. UltraSPARC-T1 performance counters

An UltraSPARC-T1 processor has one JBus, and four DRAM controllers integrated onto the same circuit.
Each of these components contains counters that may be programmed to monitor and count specific events.
A complete description of the UltraSPARC-T1 performance counters is given in the UltraSPARC-T1
Supplement to UltraSPARC Architecture 2005 manual.

Access the memory (DRAM) controller and JBus performance counters of a UltraSPARC-T1 processor
system is provided via an hypervisor API service. In a system configured with more than one guest domain,
only one guest is allowed access to these performance counters.

A machine description property (“perfctraccess”) indicates that a guest is allowed access to the perfor-
mance registers and this is enforced by the hypervisor.

Each DRAM and JBus performance register is assigned a unique performance register (PerfReg) number
for reading/writing purposes as follows:

Table 27.1. UltraSPARC-T1 J-Bus/DRAM Performance Counters

PerfReg Description

0 J-Bus Performance control register

1 J-Bus Performance counter register

2 DRAM Performance control register 0

3 DRAM Performance counter register 0

4 DRAM Performance control register 1

5 DRAM Performance counter register 1

6 DRAM Performance control register 2

7 DRAM Performance counter register 2

8 DRAM Performance control register 3

9 DRAM Performance counter register 3

27.1.1. niagara_get_perfreg

trap# FAST_TRAP

function# NIAGARA_GET_PERFREG

arg0 perfreg

ret0 status

ret1 value

This service reads the value of the DRAM/JBus performance register, as selected by the perfreg argu-
ment. Upon successful completion, it returns an EOK status and the performance register value.

27.1.1.1. Errors
ENOACCESS No access allowed to performance registers

Chip and platform specif-
ic performance counters

211

EINVAL Invalid performance register number

27.1.2. niagara_set_perfreg

trap# FAST_TRAP

function# NIAGARA_SET_PERFREG

arg0 perfreg

arg1 value

ret0 status

This service sets the DRAM/JBus performance register, as specified by perfreg, to value. Upon suc-
cessful completion, it updates the specified performance register value and returns EOK status.

27.1.2.1. Errors:

ENOACCESS No access allowed to performance registers

EINVAL Invalid performance register number

27.2. UltraSPARC-T1 MMU statistics counters

This section describes the hypervisor API to support MMU statistics collection on a UltraSPARC-T1 based
system. This API is intended for UltraSPARC T1-specific performance measurement.

27.2.1. Hypervisor API for UltraSPARC-T1 MMU statistics collection

On UltraSPARC-T1, hypervisor maintains MMU statistics. Privileged code provides Hypervisor a buffer
wherein these statistics can be collected. After the successful configuration of the buffer, it is continuously
updated (hits increased and ticks updated).

27.2.1.1. MMU statistic buffer layout

The MMU statistics buffer has a fixed size, layout and content as defined below:

Table 27.2. UltraSPARC-T1 MMU statistic buffer layout

Offset Size Field

0x00 0x08 IMMU TSB hits ctx0, 8KByte TTE

0x08 0x08 IMMU TSB ticks ctx0, 8KByte TTE

0x10 0x08 IMMU TSB hits ctx0, 64KByte TTE

0x18 0x08 IMMU TSB ticks ctx0, 64KByte TTE

0x20 0x10 reserved

0x30 0x08 IMMU TSB hits ctx0, 4MByte TTE

0x38 0x08 IMMU TSB ticks ctx0, 4MByte TTE

0x40 0x10 reserved

0x50 0x08 IMMU TSB hits ctx0, 256MByte TTE

0x58 0x08 IMMU TSB ticks ctx0, 256MByte TTE

0x60 0x20 reserved

0x80 0x08 IMMU TSB hits ctxnon0, 8KByte TTE

Chip and platform specif-
ic performance counters

212

Offset Size Field

0x88 0x08 IMMU TSB ticks ctxnon0, 8KByte TTE

0x90 0x08 IMMU TSB hits ctxnon0, 64KByte TTE

0x98 0x08 IMMU TSB ticks ctxnon0, 64KByte TTE

0xa0 0x10 reserved

0xb0 0x08 IMMU TSB hits ctxnon0, 4MByte TTE

0xb8 0x08 IMMU TSB ticks ctxnon0, 4MByte TTE

0xc0 0x10 reserved

0xd0 0x08 IMMU TSB hits ctx0, 256MByte TTE

0xd8 0x08 IMMU TSB ticks ctx0, 256MByte TTE

0xe0 0x20 reserved

0x100 0x08 DMMU TSB hits ctx0, 8KByte TTE

0x108 0x08 DMMU TSB ticks ctx0, 8KByte TTE

0x110 0x08 DMMU TSB hits ctx0, 64KByte TTE

0x118 0x08 DMMU TSB ticks ctx0, 64KByte TTE

0x120 0x10 reserved

0x130 0x08 DMMU TSB hits ctx0, 4MByte TTE

0x138 0x08 DMMU TSB ticks ctx0, 4MByte TTE

0x140 0x10 reserved

0x150 0x08 DMMU TSB hits ctx0, 256MByte TTE

0x158 0x08 DMMU TSB ticks ctx0, 256MByte TTE

0x160 0x20 reserved

0x180 0x08 DMMU TSB hits ctxnon0, 8KByte TTE

0x188 0x08 DMMU TSB ticks ctxnon0, 8KByte TTE

0x190 0x08 DMMU TSB hits ctxnon0, 64KByte TTE

0x198 0x08 DMMU TSB ticks ctxnon0, 64KByte TTE

0x1a0 0x10 reserved

0x1b0 0x08 DMMU TSB hits ctxnon0, 4MByte TTE

0x1b8 0x08 DMMU TSB ticks ctxnon0, 4MByte TTE

0x1c0 0x10 reserved

0x1d0 0x08 DMMU TSB hits ctx0, 256MByte TTE

0x1d8 0x08 DMMU TSB ticks ctx0, 256MByte TTE

0x1e0 0x20 reserved

Note: "ticks" is the cumulative time spend handling the specified hit measured via deltas in the %tick
register

27.2.2. niagara_mmustat_conf

trap# FAST_TRAP

function# NIAGARA_MMUSTAT_CONF

Chip and platform specif-
ic performance counters

213

arg0 raddr

ret0 status

ret1 prev_raddr

This function enables MMU statistic collection and supplies the buffer to deposit the results for the current
virtual CPU. The real address of the buffer, raddr, is supplied in arg0.

The return value, ret1, is the previously specified buffer (prev_raddr), or zero for the first invocation.

If raddr is zero MMU statistic collection is disabled for the current virtual CPU and any previously supplied
buffer is no longer accessed.

If an error is returned no statistics are collected (equivalent to passing an raddr of zero).

The initial contents of the buffer should be zero otherwise the collected statistics will be meaningless.

27.2.2.1. Errors

ENORADDR Invalid raddr

EBADALIGN raddr not aligned on a 64-byte boundary

EBADTRAP API not supported (all non-UltraSPARC-T1 architectures)

27.2.3. niagara_mmustat_info

trap# FAST_TRAP

function# NIAGARA_MMUSTAT_INFO

ret0 status

ret1 raddr

This function provides an idempotent mechanism to query the state and real address of the currently con-
figured buffer.

The real address of the current buffer, raddr, or zero, if no buffer is defined, is returned in ret1.

27.2.3.1. Errors

EBADTRAP API not supported (all non-UltraSPARC-T1 architectures)

27.3. Fire performance counter APIs

The UltraSPARC-T1 processor is connected to its IO sub-systems via Sun's J-Bus interconnect. The Fire I/
O ASIC is used in most UltraSPARC-T1 based systems to bridge between this J-Bus and two PCI-Express
root complexes. The SPARC Hypervisor virtualizes and mostly hides this physical infrastructure. This set
of APIs, when available, provide limited access to the internal performance counters of the Fire device.

27.3.1. Definitions

For the purpose of accessing Fire performance counters devhandle as defined in Section 23.2, “IO Data
Definitions” is used to identify the Fire bridge, (and consequently its performance counters), associated
with a particular PCI-Express root complex.

Within each Fire each performance register is assigned a unique performance register (PerfReg) number
for reading/writing purposes as follows:

Chip and platform specif-
ic performance counters

214

Table 27.3. Fire performance counters

PerfReg Description

0 J-Bus Performance control register

1 J-Bus Performance counter register 0

2 J-Bus Performance counter register 1

3 PCIe IMU Performance control register

4 PCIe IMU Performance counter register 0

5 PCIe IMU Performance counter register 1

6 PCIe MMU Performance control register

7 PCIe MMU Performance counter register 0

8 PCIe MMU Performance counter register 1

9 PCIe TLU Performance control register

10 PCIe TLU Performance counter register 0

11 PCIe TLU Performance counter register 1

12 PCIe TLU Performance counter register 2

13 PCIe LPU Performance control register

14 PCIe LPU Performance counter register 0

15 PCIe LPU Performance counter register 1

The values associated with each performance counter are defined in the Fire 2.0 Programmer's Reference
Manual, however performance register IDs 14 and 15 are implemented as read/write instead of read only.

27.3.2. fire_get_perf_reg

trap# FAST_TRAP

function# FIRE_GET_PERFREG

arg0 devhandle

arg1 perfreg

ret0 status

ret1 value

This call reads the value of the Fire performance register specified by the argument perfreg of the Fire
leaf specified by the argument devhandle.

Upon successful completion, it returns EOK status and performance register value. Otherwise, it returns
one of the following errors:

27.3.2.1. Errors

EINVAL Invalid performance register number

ENOACCESS No access allowed to performance registers

27.3.3. fire_set_perf_reg

trap# FAST_TRAP

Chip and platform specif-
ic performance counters

215

function# FIRE_SET_PERFREG

arg0 devhandle

arg1 perfreg

arg2 value

ret0 status

This call sets the value of the Fire performance register as specified by the argument perfreg of the Fire
leaf specified by the argument devhandle to the value specified by the argument value.

Upon successful completion, it updates the specified performance register value and returns EOK status.
Otherwise, it returns one of the following errors:

27.3.3.1. Errors

EINVAL Invalid performance register number

ENOACCESS No access allowed to performance registers

27.4. UltraSPARC T2 performance counters

The UltraSPARC-T2 processor is a fully integrated System On a Chip (SOC) design that incorporates
processing cores together with memory controllers, a PCI Express IO root complex and high performance
Ethernet interfaces. Performance instrumentation is provided on-chip for each of SPARC, DRAM, PCI-
Express and Ethernet sub-systems.

27.4.1. Strand performance instrumentation

Each hardware strand has a pair of registers to control/capture CPU specific instrumentation:

Table 27.4. SPARC performance counters

Description Access

SPARC Performance Control Register ASR 0x10

SPARC Performance Instrumentation Counter ASR 0x11

These registers are directly accessible by the privileged code. The HT bit in SPARC PCR controls the
counting of hyperprivileged events, can be set only in hyperprivileged mode. The hypervisor provides an
API to allow read/write access to the SPARC performance control register. A guest should not assume it
can count hyperprivileged events. Attempting to set HT bit may result in the API call failing with ENOAC-
CESS and the guest should handle this gracefully.

For further information on the register specifications the reader is directed to the UltraSPARC-T2 pro-
grammers reference manual.

27.4.2. DRAM Performance Instrumentation

Each DRAM channel in Niagara2 has a pair of performance counters, packed into a single register, plus a
register to control what is counted. There are a total of four different DRAM channels for a UltraSPARC-T2
system. The hypervisor provides an API for read/write access to these registers.

27.4.3. API calls for SPARC and DRAM performance counters

Each of the SPARC and DRAM controller performance registers is assigned a unique performance register
(PerfReg) number as follows:

Chip and platform specif-
ic performance counters

216

Table 27.5. UltraSPARC-T2 SPARC and DRAM performance counters

PerfReg Description

0 SPARC Performance Control Register

1 DRAM Performance Control Register 0

2 DRAM Performance Counter Register 0

3 DRAM Performance Control Register 1

4 DRAM Performance Counter Register 1

5 DRAM Performance Control Register 2

6 DRAM Performance Counter Register 2

7 DRAM Performance Control Register 3

8 DRAM Performance Counter Register 3

The interface for reading/writing SPARC performance control register will pass the entire register value
and not just the HT bit.

27.4.4. niagara2_get_perfreg

trap# FAST_TRAP

function# NIAGARA2_GET_PERFREG

arg0 perfreg

ret0 status

ret1 value

This call reads the value of the SPARC or DRAM performance register, as specified by the argument
perfreg.

Upon successful completion the call returns a status of EOK and a performance register value.

27.4.4.1. Errors

EINVAL Invalid performance register number

ENOACCESS No access allowed to performance registers

27.4.5. niagara2_set_perfreg

trap# FAST_TRAP

function# NIAGARA2_GET_PERFREG

arg0 perfreg

arg1 value

ret0 status

This calls sets the SPARC / DRAM performance register specified by the argument perfreg, to the value
specified by the argument value.

Upon successful completion, it updates the specified performance register value and returns a status of
EOK.

Chip and platform specif-
ic performance counters

217

27.4.5.1. Errors

EINVAL Invalid performance register number

ENOACCESS No access allowed to performance registers

27.4.6. API calls for PCI-Express interface unit performance counters

The following hypervisor API calls provide access to the PCI Express Interface performance counters for
a UltraSPARC-T2 processor.

The definition and functionality of the following performance registers is given in the UltraSPARC-T2
Programmer's Reference Manual.

Table 27.6. UltraSPARC-T2 PCI-Express performance counters

PerfReg Description

0 DMU IMU Performance Counter Select

1 DMU IMU Performance Counter 0

2 DMU IMU Performance Counter 1

3 DMU MMU Performance Counter Select

4 DMU MMU Performance Counter 0

5 DMU MMU Performance Counter 1

6 PEU Performance Counter Select

7 PEU Performance Counter 0

8 PEU Performance Counter 1

9 PEU Performance Counter 2

10 PEU Bit Error Counter I

11 PEU Bit Error Counter II

27.4.7. n2piu_get_perf_reg

trap# FAST_TRAP

function# N2PIU_GET_PERFREG

arg0 devhandle

arg1 perfreg

ret0 status

ret1 value

This call reads the value of the UltraSPARC-T2 PIU performance register specified by the argument per-
freg of the PCI leaf specified by the argument devhandle.

Upon successful completion, it returns EOK status and performance register value.

27.4.7.1. Errors

EINVAL Invalid performance register number

Chip and platform specif-
ic performance counters

218

ENOACCESS No access allowed to performance registers

27.4.8. n2piu_set_perf_reg

trap# FAST_TRAP

function# N2PIU_SET_PERFREG

arg0 devhandle

arg1 perfreg

arg2 value

ret0 status

This call sets the value of the N2 PIU performance register as specified by the argument perfreg of the
PCI leaf specified by the devhandle argument to the value specified by the argument value.

Upon successful completion, it updates the specified performance register value and returns EOK sta-
tus.

27.4.8.1. Errors

EINVAL Invalid performance register number

ENOACCESS No access allowed to performance registers

27.5. UltraSPARC T2+ performance counters

The UltraSPARC-T2+ processor is a fully integrated System On a Chip (SOC) design that incorporates
processing cores together with memory controllers, a PCI Express IO root complex, and coherency links
for multi-node support. Performance instrumentation is provided on-chip for each of SPARC, DRAM,
PCI-Express, and Coherency Link sub-systems.

27.5.1. Strand performance instrumentation

Each hardware strand has a pair of registers to control/capture CPU specific instrumentation:

Table 27.7. SPARC performance counters

Description Access

SPARC Performance Control Register ASR 0x10

SPARC Performance Instrumentation Counter ASR 0x11

These registers are directly accessible by the privileged code. The HT bit in SPARC PCR controls the
counting of hyperprivileged events, can be set only in hyperprivileged mode.

For further information on the register specifications the reader is directed to the UltraSPARC-T2+ pro-
grammers reference manual.

27.5.2. DRAM Performance Instrumentation

Each DRAM channel in UltraSPARC-T2+ has a pair of performance counters, packed into a single register,
plus a register to control what is counted. There are a total of two DRAM channels on each node of an
UltraSPARC-T2+ system. The hypervisor provides an API for read/write access to these registers.

Chip and platform specif-
ic performance counters

219

27.5.3. L2 Cache Control Register

The L2 Control Register adds address interleave ceiling mask and nodeid fields. The PERF_CONFIG bits
are the only bits that are exposed through these interfaces. The perf control bits in the L2 Control Register
are 37:36 which are bits 1:0 in the virtualized L2 Control Register.

27.5.4. LPU Performance Instrumentation

There are three performance counter registers contained in the LPU core on a per port basis.

27.5.5. GPD Performance Instrumentation

There is one set of performance counter registers contained in the GPD core.

27.5.6. ASU Performance Instrumentation

There is one set of performance counter registers contained in the ASU core.

27.5.7. API calls for SPARC and DRAM performance counters

These sun4v APIs provide an interface to read and write the DRAM performance registers as they are not
accessible by the privileged software.

The privileged software can use this interface to write the HT bit in the SPARC performance control
register as well. The access to write to the HT bit can be denied, in which case the sun4v API returns
ENOACCESS. The code using these interfaces must handle such a failure gracefully.

The SPARC performance registers are used to get CLC performance counters by setting the
PERF_CONFIG bits in L2_CONTROL_REG. In default mode all L2 misses are counted. The
PERF_CONFIG bits in L2 control register can be programmed to count misses serviced from local mem-
ory, misses serviced from remote memory or misses serviced by cache-to-cache transfers. As most of the
L2_CONTROL_REG is not accessible by the privilege code, a virtualized generic register is used to pro-
gram PERF_CONFIG bits in all L2_CONTROL_REG.

The SPARC PCR, the virtualized L2_CONTROL_REG, the DRAM, and Zambezi performance registers
are assigned unique performance register numbers (PerfReg#) which uniquely identifies each performance
register.

The API version 1.0 includes only the Victoria Falls SPARC and DRAM performance counters.

The API version 1.1 is an extension of version 1.0 and includes Zambezi performance counters as well.

The table below describes the SPARC PCR, the virtualized L2_CONTROL_REG, and the DRAM per-
formance registers.

Table 27.8. UltraSPARC-T2+ SPARC, L2, and DRAM performance counters

PerfReg Node Group Description

0 local SPARC Performance Control Register

1 local all L2 Bank Control Register for local node

2 0 0 DRAM Performance Control Register 0

3 0 0 DRAM Performance Counter Register 0

4 0 1 DRAM Performance Control Register 0

Chip and platform specif-
ic performance counters

220

PerfReg Node Group Description

5 0 1 DRAM Performance Counter Register 0

6 1 0 DRAM Performance Control Register 0

7 1 0 DRAM Performance Counter Register 0

8 1 1 DRAM Performance Control Register 0

9 1 1 DRAM Performance Counter Register 0

10 2 0 DRAM Performance Control Register 0

11 2 0 DRAM Performance Counter Register 0

12 2 1 DRAM Performance Control Register 0

13 1 1 DRAM Performance Counter Register 0

14 3 0 DRAM Performance Control Register 0

15 3 0 DRAM Performance Counter Register 0

16 3 1 DRAM Performance Control Register 0

17 3 1 DRAM Performance Counter Register 0

18 0 LPU0 Zambezi 0 LPU A Performance Control Register

19 0 LPU0 Zambezi 0 LPU A Performance Counter Register 0

20 0 LPU0 Zambezi 0 LPU A Performance Counter Register 1

21 0 LPU1 Zambezi 0 LPU B Performance Control Register

22 0 LPU1 Zambezi 0 LPU B Performance Counter Register 0

23 0 LPU1 Zambezi 0 LPU B Performance Counter Register 1

24 0 LPU2 Zambezi 0 LPU C Performance Control Register

25 0 LPU2 Zambezi 0 LPU C Performance Counter Register 0

26 0 LPU2 Zambezi 0 LPU C Performance Counter Register 1

27 0 LPU3 Zambezi 0 LPU D Performance Control Register

28 0 LPU3 Zambezi 0 LPU D Performance Counter Register 0

29 0 LPU3 Zambezi 0 LPU D Performance Counter Register 1

30 0 GPD Zambezi 0 GPD Performance Control Register

31 0 GPD Zambezi 0 GPD Performance Counter Register 0

32 0 GPD Zambezi 0 GPD Performance Counter Register 1

33 0 ASU Zambezi 0 ASU Performance Control Register

34 0 ASU Zambezi 0 ASU Performance Counter Register 0

35 0 ASU Zambezi 0 ASU Performance Counter Register 1

36-53 1 Same as 18-35 but for Node 1

54-71 2 Same as 18-35 but for Node 2

72-89 3 Same as 18-35 but for Node 3

The interface for accessing the SPARC Performance Control Register operates on the entire register and
always on the current hardware strand.

For Zambezi performance counters there is a case where multiple accesses cannot be satisfied given the
hardware restrictions in Zambezi and where the hypervisor cannot block waiting to access Zambezi for

Chip and platform specif-
ic performance counters

221

which API calls returns EWOULDBLOCK error code. A error code EINVAL is returned when the register
number is out of range, i.e PerfReg# is not in 0-89. A error code ENOTSUPPORTED is returned when
the PerfReg# is not supported, for e.g., Zambezi registers are not supported on a 2-way system. When a
guest does not have access to a register the API call returns ENOACCESS error code.

27.5.8. vfalls_get_perfreg

trap# FAST_TRAP

function# VFALLS_GET_PERFREG

arg0 perfreg

ret0 status

ret1 value

This call reads the value of the SPARC, virtualized L2_CONTROL_REG, DRAM, or Zambezi perfor-
mance register as specified by the argument perfreg.

Upon successful completion the call returns a status of EOK and a performance register value.

27.5.8.1. Errors

EINVAL Invalid performance register number

ENOTSUPPORTED Register number not supported

ENOACCESS No access allowed to performance registers

EWOULDBLOCK Cannot complete operation without blocking

27.5.9. vfalls_set_perfreg

trap# FAST_TRAP

function# VFALLS_GET_PERFREG

arg0 perfreg

arg1 value

ret0 status

This calls sets the SPARC, virtualized L2_CONTROL_REG, DRAM, or Zambezi performance register
specified by the argument perfreg, to the value specified by the argument value.

Upon successful completion, it updates the specified performance register value and returns a status
of EOK.

27.5.9.1. Errors

EINVAL Invalid performance register number

ENOTSUPPORTED Register number not supported

ENOACCESS No access allowed to performance registers

EWOULDBLOCK Cannot complete operation without blocking

Chip and platform specif-
ic performance counters

222

27.5.10. UltraSPARC T2+ PCIe performance instrumentation

UltraSPARC-T2+ PCIe performance instrumentation remains unchanged from UltraSPARC T2, see Sec-
tion 27.4.6, “API calls for PCI-Express interface unit performance counters”.

27.6. UltraSPARC KT performance counters

The UltraSPARC-KT processor is a fully integrated System On a Chip (SOC) design that incorporates
processing cores together with memory controllers, a PCI Express IO root complex, and coherency links
for multi-node support. Performance instrumentation is provided on-chip for each of SPARC, DRAM,
PCI-Express, and Coherency Link sub-systems.

27.6.1. Strand performance instrumentation

Each hardware strand has a pair of registers to control/capture CPU specific instrumentation:

Table 27.9. SPARC performance counters

Description Access

SPARC Performance Control Register ASR 0x10

SPARC Performance Instrumentation Counter ASR 0x11

These registers are directly accessible by the privileged code. The HT bit in SPARC PCR controls the
counting of hyperprivileged events, can be set only in hyperprivileged mode. A new sample mode (bit 32
of PCR) is added to the Performance Control Register.

For further information on the register specifications the reader is directed to the UltraSPARC-KT pro-
grammers reference manual.

27.6.2. DRAM Performance Instrumentation

Each memory controller has four performance counters, packed into two registers, plus a register to control
what is counted. The counters count all events for that memory controller, which receives read and write
traffic from eight L2 cache banks.

27.6.3. L2 Cache Control Register

The L2 Control Register adds address interleave ceiling mask and nodeid fields. The PERF_CONFIG bits
are the only bits that are exposed through these interfaces. The perf control bits in the L2 Control Register
are 37:36 which are bits 1:0 in the virtualized L2 Control Register.

27.6.4. API calls for SPARC and DRAM performance counters

These sun4v APIs provide an interface to read and write the DRAM performance registers as they are not
accessible by the privileged software.

The privileged software can use this interface to write the HT bit in the SPARC performance control
register as well. The access to write to the HT bit can be denied, in which case the sun4v API returns
ENOACCESS. The code using these interfaces must handle such a failure gracefully.

The SPARC performance registers are used to get CLC performance counters by setting the
PERF_CONFIG bits in L2_CONTROL_REG. In default mode all L2 misses are counted. The
PERF_CONFIG bits in L2 control register can be programmed to count misses serviced from local mem-
ory, misses serviced from remote memory or misses serviced by cache-to-cache transfers. As most of the

Chip and platform specif-
ic performance counters

223

L2_CONTROL_REG is not accessible by the privilege code, a virtualized generic register is used to pro-
gram PERF_CONFIG bits in all L2_CONTROL_REG.

The SPARC PCR, the virtualized L2_CONTROL_REG, and the DRAM performance registers are as-
signed unique performance register numbers (PerfReg#) which uniquely identifies each performance reg-
ister.

The table below describes the SPARC PCR, the virtualized L2_CONTROL_REG, and the DRAM per-
formance registers.

Table 27.10. UltraSPARC-T3 SPARC, L2, and DRAM performance counters

PerfReg Node Description

0 local SPARC Per-
formance
Control Reg-
ister

1 local All L2 Bank
Control Reg-
isters

2+(i*6) i MCU 0 Per-
formance
Control Reg-
ister

3+(i*6) i MCU 0 Per-
formance
Counter Reg-
ister 0/1

4+(i*6) i DRAM Per-
formance
Counter Reg-
ister 2/3

5+(i*6) i MCU 1 Per-
formance
Control Reg-
ister

6+(i*6) i MCU 1 Per-
formance
Counter Reg-
ister 0

7+(i*6) i MCU 1 Per-
formance
Counter Reg-
ister 1

The interface for accessing the SPARC Performance Control Register operates on the entire register and
always on the current hardware strand.

27.6.5. kt_get_perfreg

trap# FAST_TRAP

Chip and platform specif-
ic performance counters

224

function# KT_GET_PERFREG

arg0 perfreg

ret0 status

ret1 value

This call reads the value of the SPARC, virtualized L2_CONTROL_REG, or, or Zambezi performance
register as specified by the argument perfreg.

Upon successful completion the call returns a status of EOK and a performance register value.

27.6.5.1. Errors

EINVAL Invalid performance register number

ENOTSUPPORTED Register number not supported

ENOACCESS No access allowed to performance registers

EWOULDBLOCK Cannot complete operation without blocking

27.6.6. kt_set_perfreg

trap# FAST_TRAP

function# KT_GET_PERFREG

arg0 perfreg

arg1 value

ret0 status

This calls sets the SPARC, virtualized L2_CONTROL_REG, or DRAM performance register specified
by the argument perfreg, to the value specified by the argument value.

Upon successful completion, it updates the specified performance register value and returns a status
of EOK.

27.6.6.1. Errors

EINVAL Invalid performance register number

ENOTSUPPORTED Register number not supported

ENOACCESS No access allowed to performance registers

EWOULDBLOCK Cannot complete operation without blocking

27.6.7. API calls for UltraSPARC-T3 PCI-Express performance counters

The following hypervisor API calls provide access to the PCI Express performance counters for a Ultra-
SPARC-T3 processor.

The definition and functionality of the following performance registers is given in the UltraSPARC-T3
Programmer's Reference Manual.

Table 27.11. UltraSPARC-T3 PCI-Express performance counters

PerfReg Description

0 PEX Performance Counter Select

Chip and platform specif-
ic performance counters

225

PerfReg Description

1 PEX Performance Counter 0

2 PEX Performance Counter 1

3 ATU Performance Counter Select

4 ATU Performance Counter 0

5 ATU Performance Counter 1

6 IMU Performance Counter Select

7 IMU Performance Counter 0

8 IMU Performance Counter 1

9 NPU Performance Counter Select

10 NPU Performance Counter 0

11 NPU Performance Counter 1

12 PEU0 Performance Counter Select

13 PEU0 Performance Counter 0

14 PEU0 Performance Counter 1

15 PEU1 Performance Counter Select

16 PEU1 Performance Counter 0

17 PEU1 Performance Counter 1

27.6.8. kt_ios_get_perf_reg

trap# FAST_TRAP

function# KT_IOS_GET_PERFREG

arg0 devhandle

arg1 perfreg

ret0 status

ret1 value

This call reads the value of the UltraSPARC-T3 IOS performance register specified by the argument per-
freg of the PCI leaf specified by the argument devhandle.

Upon successful completion, it returns EOK status and performance register value.

27.6.8.1. Errors

EINVAL Invalid performance register number

ENOACCESS No access allowed to performance registers

27.6.9. kt_ios_set_perfreg

trap# FAST_TRAP

function# KT_IOS_SET_PERFREG

arg0 devhandle

arg1 perfreg

Chip and platform specif-
ic performance counters

226

arg2 value

ret0 status

This call sets the value of the UltraSPARC-T3 IOS performance register as specified by the argument
perfreg of the PCI leaf specified by the devhandle argument to the value specified by the argument
value.

Upon successful completion, it updates the specified performance register value and returns EOK sta-
tus.

27.6.9.1. Errors

EINVAL Invalid performance register number

ENOACCESS No access allowed to performance registers

227

Chapter 28. Logical Domain Channel
(LDC) infrastructure
28.1. Overview

Logical domain channels (LDCs) are designed as point-to-point communication channels between logical
domains or between a logical domain and an external entity such as a service processor or the Hypervisor
itself.

Within a LDom a LDC is instantiated as a single endpoint (unless the LDC has been created to loop back
to the same LDom). The identity of the owner of the other endpoint is opaque to the LDom - this enables
LDCs to be re-connected to other endpoints at will.

Conventional attestation protocols may be layered on top of the basic LDC mechanism if the identity of
the owner of the other end of a LDC is required. Such attestation is beyond the scope of this document.

Logical Domain Channels provide two ways of transferring data between endpoints; A simple micro-data-
gram based transfer mechanism where data is sent in 64-byte packets. The second approach allows clients
to export regions of their memory address space to share with clients at the other end of specified LDC
connections. The importing clients can then access the remote memory region by either mapping it into its
address space, use an Hypervisor API call to copy data to/from exported memory, or program an IOMMU
to directly read/write the memory.

28.1.1. Packet based communication

28.1.1.1. Between Domains

Domain-to-Domain LDCs provide clients in each domain a simple message communication mechanism.
A domain's LDC transport will register Tx and Rx message queues with the Hypervisor prior for each
LDC endpoint on behalf of its virtual device client.

The message queues are very similar to the sun4v cpu_mondo and dev_mondo queues where each entry
in the queue holds 64 bytes of data. The transport also uses Hypervisor interfaces to register interrupts for
each channel and for targeting these interrupts at specific virtual CPUs.

28.1.1.2. Between Domain and Hypervisor

Domain-to-Hypervisor LDCs provide a way for LDC clients in a domain to communicate with clients in
the Hypervisor. Instead of using privileged Hypervisor APIs, LDCs provide a general purpose messaging
mechanism that allows clients to send both commands and data as part of messages, and also directly
read/write Hypervisor memory. On the domain side, the interfaces are similar to the ones in the case to
inter-domain LDCs. The domain client will register a message queue, to transmit and receive packets from
the Hypervisor.

Hypervisor clients at the other end of the channel will use an private internal Hypervisor API to register a
callback for each endpoint. When a domain sends data, the Hypervisor will invoke the callback registered
at the Hypervisor endpoint, to process the LDC packet, in the context of the sending CPU. The Hypervisor
will not allocate any internal queues to receive packets from the sending domain. If the internal client,
chooses to buffer the incoming datagrams, it may choose to do so by providing its own buffering mech-
anism.

Logical Domain Chan-
nel (LDC) infrastructure

228

28.1.1.3. Between SP and Domain/Hypervisor

Communication with the SP over LDCs provide clients in both the guest and hypervisor to send/receive
data using LDC APIs. Like domain to hypervisor LDC connections, the interfaces are similar to the ones
in the case to inter-domain LDCs. The domain client will register a message queue, to transmit and re-
ceive packets from the SP. Hypervisor clients at the other end of the channel will use an private internal
Hypervisor API to register a callback for each endpoint. When a domain advances the Tx tail data, the
Hypervisor will initiate a send by copying packets out of the Tx queue into the queue associated with that
channel in the SRAM.

28.1.2. Shared memory communication

Memory can be shared between domains or between the Hypervisor and a domain using the LDC shared
memory framework. The Hypervisor LDC framework provides interfaces to domains that allow them
to register tables that contain the list of pages being exported along with its usage criteria and access
permissions. The Hypervisor, will then arbitrate access to the exported pages from the importing domains
using the tables registered by the exporting domain. The rest of this document will refer to these tables
as memory map tables or just map tables.

28.1.2.1. Between domains

At the time of domain initialization, each domain nexus will register with the Hypervisor one or more map
tables for each LDC connection. It will also specify the page size for which the table will be utilized. Since
each processor MMU has capability to support multiple page sizes, an OS instance and its applications
might use different size pages for its memory regions. In the current design, each table will contain entries
for pages of one size only. Also since each table is bound to a unique LDC connection, only the domain
and client at the other endpoint has implicit access to the pages being exported via this table.

When a client (driver) wants to export memory it will use the nexus API calls to specify the VA range it
wants to export. It will need to specify whether the memory being exported is for remote mapping, remote
copying or IOMMU access only. The nexus will add entries to the channel's map table and return back to
the client a range of cookies that correspond to the VA range. The client driver can then share the cookies
with its peer at the other end of the LDC connection.

The driver in the importing domain will then use the cookies it obtained from the exporter to either copy
the data to/from of the exported memory, or request the nexus to map the memory associated with the
cookies into its address space. In the case of the latter, the nexus will return back to the client driver a RA
range(s) that corresponds to the exported memory.

28.1.2.2. Between domain and the Hypervisor

Domain to Hypervisor LDCs can be used to directly read, write, or map Hypervisor memory. Similar to
a guest, the Hypervisor can choose to export access to pages in its physical address space to a guest over
a LDC connection. It does this by creating a map table that holds the pages it is exporting. It can then
provide the guest with a cookie that uniquely identifies the entry in the table. The guest client driver will
then use the same interface it uses for domain-to-domain LDCs, to either map or read/write the page in
the Hypervisor address space.

28.1.2.3. Between Domain/Hypervisor and the service processor

The LDC infrastructure does not allow exporting memory segments to clients of LDC in the service pro-
cessor.

Logical Domain Chan-
nel (LDC) infrastructure

229

28.2. Hypervisor infrastructure

28.2.1. Packet delivery

The Hypervisor provides a simple point-to-point messaging mechanism to send and receive packets over
a LDC connection. LDC connections as mentioned earlier allows domains to send data to other domains,
or the Hypervisor. The Hypervisor guarantees ordered delivery by creating two locks for packet transfer
over LDC.

LDC connections are created by the LDom manager by adding the appropriate nodes in the MD. A guest
identifies the LDCs associated with virtual devices by looking in its machine description nodes for the
device. Each guest/client registers LDC Tx and Rx queues for each endpoint. A guest initiates a transfer
by copying data into its transmit queue and invoking a Hypervisor API to setting the tail for the Tx queue.

If a remote receive queue exists, the Hypervisor sends a interrupt to the remote endpoint signaling it that
there is data available for read. The receiving endpoint calls into the hypervisor to read the head and tail
for the Rx queue. The hypervisor copies data from the sender's Tx queue to the receiver's Rx queue, and
then returns the updated head and tail to the receiver.

28.2.2. Shared memory

This section describes the mechanism by which memory from one logical domain may be exported for
access by another logical domain. This facility enables shared memory to be utilized for such functionality
as virtual device services.

Using the interfaces described herein, one logical domain may export a number of its own memory pages
across a logical domain channel for access and use by the logical domain at the other end of the channel.
The mechanism is intended to be directly analogous to the way a domain would export pages of its memory
for access by I/O devices on the other side of an I/O bridge (I/O MMU).

28.2.2.1. Map table

The principle means by which a domain may export its local memory across a domain channel is through
the use of an export map table that the guest defines within it's own local memory - much like a TSB is
used to define local virtual memory mappings. The recipient domain at the other end of the logical channel
may make use of the exported memory either by using a hypervisor API call to copy data into or out of
its local memory, or by using a hypervisor API call to explicitly map the remote exported memory into
its real address space for access.

The real address space of each domain's virtual machine is independent of all the others. Therefore to
coordinate references to exported memory between domains, cookies are used to refer to entries within
the exporter's map table.

Consider a domain (“X”) that wishes to export a page of memory to another domain (“Y”). For this to
be possible a domain channel must connect X to Y. Let us assume that such a channel has been created
by the domain manager.

In order to export any memory across this domain channel, domain X must allocate an export map table
from its local memory, and assign that map table to its local channel endpoint.

The assigned map table may be used to export multiple pages, which remain exported until explicitly
removed from the map table, or the table itself is un-assigned from the channel endpoint.

The map table must be a power of number of entries in size, and must be aligned in memory on a real
address boundary equal to its size in bytes. Hypervisor API calls are provided to assign a map table to a

Logical Domain Chan-
nel (LDC) infrastructure

230

channel endpoint, unassign the table, and to get the table info. A map table may not be assigned to more
than one channel endpoint at a time.

28.2.2.2. Map table cookies

For the recipient domain“Y” to be able to refer to exported memory, it must use a 'cookie' that describes
the memory that domain “X” is exporting. This cookie may be considered a form of address for the remote
memory, much like a DMA-cookie is used for DMA operations by an IO device.

The export cookie is created by the exporting domain “Y” and it contains two essential pieces of informa-
tion— the size of the exported page mapping, and the index in the exporter's map table of that mapping. A
cookie may also contain offset information so as to identify data located within the memory page defined
by a mapping.

A cookie only has meaning within the context of the domain channel its associated map table is bound to.
Thus if a map table is assigned to a channel endpoint in domain “X”, then domain “Y” must also identify its
local endpoint when using the cookie. In this way the hypervisor is not responsible for creating or tracking
or transferring cookies between domains.

A cookie is created by the exporting domain, and can be communicated by any means to the importing
domain— for example by message over the same domain channel. When a cookie is used (for example
with a ldc_copy operation), the associated local channel endpoint enables the hypervisor to determine
the remote channel endpoint and the therefore the remote (exporting) domain and the export table itself.
The cookie may then be used to locate the entry in the export map table that defines the memory being
exported.

Cookies created by an exporting domain have the following format:

 6 6 5
 3 0 9 sz sz-1 0
 +------+-----------------------+-------------------------+
 | pgsz | tbl_idx | pg_off |
 +------+-----------------------+-------------------------+

The upper four bits of the cookie identify the page size of the exported page, and use the same page size
encodings as the basic sun4v TTE format.

The remainder of a cookie consists of an offset within the specified exported page and an index to the
entry within the exporting domain's map table that identifies the actual exported page. The offset field
ranges from bit zero, to the number of offset bits relevent for the cookie's page size. The index field starts
at the first bit for the page frame number and continues to bit 59. For example, for an 8K page; the page
size field (bits 60 to 63) is zero, the page offset is in bits 0 through 12, and the table index is specified
in bits 13 through 59.

This compressed cookie format enables a page size, index value and page offset to be transferred in one
single 64-bit value that may in effect be treated as an address itself. Basic arithmetic may be applied to
the offset field, which if it overflows will automatically adjust the table index field. In this way a large
number of sequential map table entries of the same page size can be described by a single cookie value.

28.2.2.3. Map table entry

For the export map table, each entry consists of a two 64-bit words illustrated below:

Logical Domain Chan-
nel (LDC) infrastructure

231

 6 5 5 5 1 1 1 1
 3 7 6 5 3 2 1 0 9 8 7 6 5 4 3 0
 +----+-----+---------------+---+---+---+---+---+---+-+-+-+-------+
 |rsvd|inuse| raddr |sw1|sw2|cpw|cpr|iow|ior|x|w|r| pgszc |
 +----+-----+---------------+---+---+---+---+---+---+-+-+-+-------+
 | revocation cookie |
 +--+

The map entry (word 0) bit fields are defined as follows:

• Bits 63-57 - reserved - Must be written as zero

• Bit 56 - In use - This bit is set by the hypervisor if a map-table entry is still in use by the importing
domain. It is also cleared by the hypervisor if the entry is no longer mapped by the importing domain.

• Bits 55-13 - Real address (RA) - For page sizes larger than 8KB, the low order address bits below the
page size must be set to zero

• Bit 12 - SW1 - This bit is available for use by software.

• Bit 11 - SW2 - This bit is available for use by software.

• Bit 10 - Copy writeable (CPW) - If set to 1 the hypervisor ldc_copy API may be used by the importing
domain to write to this exported page.

• Bit 9 - Copy readable (CPR) - If set to 1 the hypervisor ldc_copy API may be used by the importing
domain to read from this exported page.

• Bit 8 - I/O Writable (IOW) - If set to 1 this exported page may be mapped by an IOMMU for writing
by an I/O DMA operation.

• Bit 7 - I/O Readable (IOR) - If set to 1 this exported page may be mapped by an IOMMU for reading
by an I/O DMA operation.

• Bit 6 - e(X)ecute - If set to 1 instructions may be fetched and executed from this page by the importing
domain

• Bit 5 - (W)ritable - If set to 1 this page may be mapped and written to as shared memory by the importing
domain

• Bit 4 - (R)eadable - If set to 1 this page may be mapped and read from as shared memory by the importing
domain

• Bits 3-0 - Page size code (pgszc) - page size code 0 = 8KB, 1=64KB, 2=512KB, 3=4MB, 4=32MB,
5=256MB, 6=2GB, 7=16GB Sizes 8 through 15 are reserved.

The permissions bits (bits 4 through 10) indicate the access permissions granted by the exporting domain
to the importer of the page described by the specific map table entry. If no access permissions are granted,
(bits 4 through 10 are all zero), the map table entry is considered invalid.

Note: It is recommended that invalid map table entries have the entire 64-bit word set to zero.

Map table entries must not contain overlapping or identical real address ranges— do so yields undefined
results for both exporter and importer— without guarantee that the exporter will be able to revoke access
permissions to the exported page.

Logical Domain Chan-
nel (LDC) infrastructure

232

28.2.2.4. Copying in and out of a peer's exported memory

Once a LDC peer has provided access to memory pages via it's map table, a guest operating system can
request the hypervisor to copy data into and out of those pages by simply presenting cookies provided by
the peer with the ldc_copy hypervisor API call.

Each time the call is made the hypervisor validates the presented cookie together with the access permission
provided in the exporter's map table to determine whether the copy should indeed be allowed. This is the
simplest mechanism by which data may be transferred in bulk between guest operating systems.

28.2.2.5. Mapping page use and restrictions

For a guest to use memory exported by one of it's LDC peers, it must ask the hypervisor to provide access
to the exported page. This is achieved using the ldc_mapin hypervisor API call.

The map-in call returns a real address of where the imported shared memory page was mapped with-
in the importing guests virtual machine real address space. Shared memory is un-imported using the
ldc_unmap API call by passing the same real address that was returned from the ldc_mapin API call.

As part of the importer's real address space, the imported shared memory page may be used for virtual
memory mappings and IO MMU mappings with the same mechanisms as it's own memory pages. How-
ever, imported shared-memory pages are not generally accessible like normal memory pages, and the hy-
pervisor enforces a number of restrictions upon their use:

The guest exporting a shared memory page may only allow certain types of access to that page (for example
for reading only). For example, attempts to map a page without read or write permission for load or store
instructions will fail (or in the case of TSB use generate a data or instruction access exception trap for
an invalid real address).

In addition to the restrictions required by the exporting guest, the hypervisor itself requires that importing
pages are not aliased either by virtual memory mappings, or IO MMU mappings. Virtual memory mappings
are allowed only for context 0 but are available to all virtual CPUs.

Imported shared memory must be unmapped and re-mapped in before a new virtual or IOMMU address
may be assigned— even if the old virtual address has been de-mapped with the appropriate demap API call.

28.2.2.6. Mapping revocation

When a guest wishes to discontinue the export of a page to its LDC peer, it can do so by simply denying
further access by disabling the access permissions in the map entry word in the corresponding map table
entry. (It is recommended that an entry be disabled/invalidated) by writing the value 0 to the whole map
entry word (word 0).

Denying future accesses does not automatically revoke existing page mappings to which the LDC peer
may have access.

Well-behaved peers sharing exported memory are recommended to use a communication protocol to de-
termine when exported memory pages are available or no longer in use by a peer. It is anticipated, there-
fore, that only in extraordinary circumstances will a guest that exports memory need to forcibly deny (“re-
voke”) access to a previously exported memory page.

To avoid the cost of an export revocation for well behaved peers, the hypervisor provides an indication
that an exported page is actually still in use by a peer in the form of a revocation cookie in the second
word of the map-table entry for the exported page. This revocation cookie word must be initialized to zero
when a page is exported, and will be over-written by the hypervisor with a revocation cookie while the
exported page is actually in use by the peer guest.

Logical Domain Chan-
nel (LDC) infrastructure

233

When a page is no longer to be exported, the export mapping permissions should be removed after which
the revocation cookie word can be examined to see if the page is actually still in use by the peer guest.
A revocation cookie value of zero indicates the page is not in use— at which point the map table entry
may be re-used for exporting other pages.

A non-zero value for the revocation cookie indicates that the previously exported page is still in use by the
peer guest. It then becomes a matter of policy for the exporter as to whether it wishes to forcibly revoke
the access permissions for the importer, or simply wait for the importer to clean-up itself.

To forcibly revoke access permission for the peer guest, the exporting guest simply uses the ldc_revoke
API call with the LDC cookie for the exported page, and the revocation cookie provided in the export
map table.

Removing individual permissions for exported pages must be done by unmapping or revoking access to
the exported page first, then re-exporting it with the new permissions required.

Forcibly revoking access to an exported page, can have catastrophic consequences for the importer—
including failed memory accesses or failed device DMA transactions. Therefore, the exporter should avoid
revocation as far as possible.

Exit of the exporting guest will cause the hypervisor to automatically forcibly revoke exported page map-
pings.

An importer of shared memory pages that is intended to be robust should be designed to shield itself
against exported mappings being forcibly revoked at any time either by the exporter or automatically by the
hypervisor if the exporter exits. Importers wishing to avoid these issues may always use the ldc_copy
capability to move data.

28.3. LDC virtual link layer

Logical domain channels provide a virtual link layer abstraction that are designed as point-to-point com-
munication channels between logical domains or between a logical domain and an external entity such as
a service processor or the Hypervisor itself. Logical domain channels provide an encapsulation protocol
onto which higher level transport can be built such as TCP/IP and PPP.

Figure 28.1. LDC Virtual Link Layer

Guest 2

Hypervisor

LDC Virtual Link Layer

Guest 1

LDC Virtual Link Layer

LDC Framework

VIO
Client

1

VIO
Client

2

Misc
In- Kernel

Clients

VIO
Svc
1

VIO
Svc
2

Misc
In- Kernel

Clients

Logical Domain Chan-
nel (LDC) infrastructure

234

28.3.1. Communication overview

28.3.1.1. Data Transfer Mechanisms

Data transferred between domains can be encapsulated into LDC packets or transferred directly from
one domain's memory to another using the Hypervisor shared memory communication support. The link
layer protocol defined here provides clients the ability to choose either mechanism for data transfer. The
link layer will fragment and reassemble messages as part of the transfer. It will insert additional header
information as part of each packet to indicate the start and end of a fragmented data transfer. The LDC
link layer uses network byte ordering to transfer all data. The actual details of the transfer protocol itself
will be invisible to the clients.

Packet-based Transfer
Data can be transferred out of a virtual machine by encapsulating it into LDC packets or transferring it
directly from one domain's memory to another using the Hypervisor shared memory communication
support. The link layer protocol will provide client drivers the ability to choose either mechanism for
data transfer.

In the case of the packet based mechanism, the link layer protocol will fragment and reassemble
messages as part of the transfer. It will insert additional header information as part of each packet to
indicate the start and end of a fragmented data transfer. The actual details of the transfer itself will be
invisible to the client driver. It is recommended that this approach be used only for short messages.

Shared Memory Access
The shared memory access mechanism allows a client driver to make sections of its memory visible
to other domains. This support is build on top of the underlying Hypervisor infrastructure for setting
up memory map tables to share memory segments.

Client drivers will use the interface to obtain a cookie associated with the memory they want to expose.
The client can then send the cookie to a client driver in a remote domain using the packet based
transfer. The receiving client can then request its LDC framework to consume the cookie and map
the remote domain's memory into its address space. Once the mapping is completed, clients can read,
write these shared memory regions and also setup DMA operations to directly transfer data into or
out of domain buffers.

A slight modification to the direct memory map is the copy option, where the data is copied in to or
out of the buffers that have been exposed by a virtual device client or server via a Hypervisor API.
In this approach, when a virtual device wants to send data, either the device client or server will first
copy the data from the exporter's memory to a local memory buffer.

Both methods of data transfer is provided because all virtual machine client may not allow shared memory
communication either due to technology limitations or security concerns.

28.3.1.2. Protocol Modes

Clients of the LDC mechanism can either be clients that implement sophisticated transport layer like ca-
pabilities, i.e. virtual Ethernet with a TCP/IP stack, or a simple client with no special transport capability
like the FMA daemon or a virtual console device. These clients have different reliability requirements on
the underlying virtual link layer protocol. The virtual link layer protocol will meet the requirements of
either type of client by implementing three different types of data transfer protocol.

Raw mode
The raw virtual link layer protocol protocol does not add any overhead by appending any headers and
sends only 64-byte packets at a time. It has no support for session management, message fragmentation

Logical Domain Chan-
nel (LDC) infrastructure

235

and re-assembly, or retransmissions. It provides a very thin layer over the Hypervisor interface and
mostly passes through read and write requests to the Hypervisor.

Unreliable mode
The unreliable link layer protocol will implement a communication mechanism that will include sup-
port of connection establishment via a simple handshake protocol. It will also implement support
for negotiating a session and detecting session termination. It will only implement support to detect
either lost or out-of-order packets, and not reassemble out of order packets and only stitch together
packets received in order. The unreliable mode also supports fragmentation and reassembly of LDC
datagrams. Clients of this link layer mechanism will need to implement their own error detection
mechanism and do the required retransmission.

Reliable mode
The reliable link layer protocol implements all the support encompassed within the unreliable link
layer protocol. In addition, it implements support for streaming buffers, detecting out-of-order packets
and packet loss and acknowledges received packets. The primary distinction of reliable mode is to
provide an error detection capability via packet ACKs and NACKs.

28.3.2. Packet formats

The Hypervisor LDC framework provides the capability to deliver 64-byte packets between peer channel
endpoints. It does not impose any predefined format for each word in the 64-byte packet. Depending on
whether the clients want to use a raw, reliable or unreliable link mode, the link will utilize different formats
for each LDC packet. In the case of the reliable link each packet will consist of a 16-byte header, and 48-
bytes of data payload. The unreliable link will have a smaller 8-byte header, and contains 56-bytes of data
payload. The raw link will utilize the complete 64-bytes for the data payload. The high-level formats of
the raw, unreliable and reliable packet are shown below.

Raw Datagram Packet:

 6
 3 0
 +--+
word 0-7: | data payload |
 +--+

Unreliable Datagram Packet:

 6 5 5 4 4 4 3 3 3
 3 6 5 8 7 0 9 2 1 0
 +------+-------+------+-----+----------------------+
 word 0: | type | stype | ctrl | env | seqid |
 +------+-------+------+-----+----------------------+
word 1-7: | data payload |
 +--+

Reliable Datagram Packet:

 6 5 5 4 4 4 3 3 3

Logical Domain Chan-
nel (LDC) infrastructure

236

 3 6 5 8 7 0 9 2 1 0
 +------+-------+------+-----+----------------------+
 word 0: | type | stype | ctrl | env | seqid |
 +------+-------+------+-----+----------------------+
 word 1: | (reserved) | ackid |
 +--+
word 2-7: | data payload |
 +--+

Description:

• Packet Type (Word 0, Bits 0-7): Each packet sent from one LDC endpoint to another can consist of
either control, data or error information or a combination there-of. The appropriate 'type' field bit(s) are
set to indicate packet contents.

LDC_CTRL 0x01

LDC_DATA 0x02

LDC_ERR 0x10

• Packet Sub-Type (Word 0, Bits 8-15): The stype field contains values INFO, ACK or NACK and defines
the type of data, control or error message. The combination of the type and stype fields define the nature
of the message.

LDC_INFO 0x01

LDC_ACK 0x02

LDC_NACK 0x04

• Control Info (Word 0, Bits 16-23): The ctrl field contains either basic control information and/or error
information. The control info values currently supported are listed below:

LDC_VERS 0x01 Link version

LDC_RTS 0x02 Request to send

LDC_RTR 0x03 Ready to receive

LDC_RDX 0x04 Ready for data exchange

• Packet Envelope (Word 0, Bits 24-31): The env field, depending on the packet type, contains either
control or data related information. If the packet contains a control info of type RTS or RTR, the envelope
contains protocol mode and will have one of the following values:

LDC_MODE_RAW 0x00 Raw mode

LDC_MODE_UNRELIABLE 0x01 Request to send

 0x02 Reserved

LDC_MODE_RELIABLE 0x03 Reliable mode

When using RAW mode, since there is no handshake as part of the protocol, the RAW mode value spec-
ified above is never exchanged as part of the packet envelope. It is only specified here for completeness.

In the case of packets containing data, the envelope contains the number of bytes in the current packet.
It also contains information pertaining to fragmented transfers. The format of the envelope for a data
packet is shown below:

Logical Domain Chan-
nel (LDC) infrastructure

237

 3 3 2 2
 1 0 9 4
 +--------------+----------------------------+
 | stop | start | pkt_size |
 +--------------+----------------------------+

When a message is fragmented, the first fragment has the start bit in the envelope field, set to 1.
The last fragment has the stop bit set to 1. Intermediate fragments between a start and stop packet
have neither bit set. In the case of a single packet transfer (less than the max payload), both start and
stop bits in the envelope are set to 1.

• Sequence ID (Word 0, Bits 32-63): The seqID field is populated with an unique sequential number for
every packet sent from one endpoint to another. This is used by the receiver to detect and enforce packet
ordering, and acknowledging received packets.

The AckID field below is only used for the reliable link implementation

Implementation Note: In order to generate a unique session ID, it is recommended that the link uses 32-
bits from the CPU tick register as the session ID.

• Acknowledgment ID (Word 1, Bits 31-63): An endpoint can acknowledge packets it has received by
sending an ACK back to its peer. The 'ackid' field contains the sequence ID of the last packet received
in correct order by an endpoint. The peer may send separates messages to ACK received packets or
embed acknowledgments in data packets.

28.3.3. Communication protocol

The link layer implements a thin connection establishment, tear down and data transfer protocol on top of
the Hypervisor infrastructure. When clients opens a channel for communication, the link allocates memory
for transmit and receive queues and registers these with the Hypervisor. Since neither endpoints have any
knowledge about a endpoint's capabilities and whether it is ready to receive data , a simple handshaking
protocol is needed to prior to starting the data transfer. This also ensures that clients can start and terminate
their sessions independent of each other, and reestablish a connection when necessary.

Implementation Note: In the case of a reliable connection, the link should buffer outgoing messages for
retransmission purposes. It will mark packets in the transmit queue as completed when it receives ACKs.
In the event of a packet loss or timeout, this allows the link to retransmit packets.

28.3.3.1. Session establishment

• After setting up the Tx and Rx queues, either endpoint will initiate a version negotiation by sending a
LDC_VERS message, with the version number it supports in the second word of the message. The link will
use a simple count down algorithm so that both sides use to agree on a mutual version. If the peer endpoint
agrees with the same version or the same major but a lower minor version, it will respond back with an
ACK (same msg with the ACK bit set). If it does not support the version, it will respond with an error
message NACK and also set the version field to the next lower version version it supports. If it does not
support a lower version, it will set the version fields to zero. The sender can then re-send another VERS
request with the received lower version or a new even lower version. This will continue on until either
the endpoint initiating the VERSION handshake exhausts all the version it supports or the peer accepts a
version or responds with an NACK message with version set to zero.

Logical Domain Chan-
nel (LDC) infrastructure

238

 6 3 3 2 2 1 1
 3 2 1 4 3 6 5 8 7 0
 +------------------------+-----+------+------+------+
 | | - | VERS | INFO | CTRL |
 +------------------------+-----+------+------+------+
 | | major | minor |
 +------------------------+------------+-------------+

• Following the version negotiation, either endpoints will negotiate a 3-way handshake. As part of this
handshake, the endpoints will exchange initial sequence IDs for the session.

 6 3 3 2 2 1 1
 3 2 1 4 3 6 5 8 7 0
 +------------------------+-----+------+------+------+
 | seqID | - | RTS/ | INFO | CTRL |
 | | | RTR | | |
 +------------------------+-----+------+------+------+

 6 3 3 2 2 1 1
 3 2 1 4 3 6 5 8 7 0
 +------------------------+-----+------+------+------+
 | peer_init_seqID + 1 | - | RDX | INFO | CTRL |
 +------------------------+-----+------+------+------+

• The sending link endpoint aka endpoint_A will initiate an handshake with the other side i.e. endpoint_B
by sending an LDC_RTS message that contains the initial seqID (if reliable), and the mode it would like
to use for communication.

• If endpoint_B has setup a receive queue, it will either:

• respond back with a LDC_RTR message, that contains its initial seqID and the matching link mode
message.

• endpoint_A will then respond back with a LDC_RDX message. This will mark the channel status as UP
and data transfer can now commence.

• If endpoint_B has not setup a receive queue, the hypervisor send (hv_tx_set_qtail) operation will
fail.

Logical Domain Chan-
nel (LDC) infrastructure

239

 Endpoint A Endpoint B
 | |
 | |
 | CTRL/INFO/VERS(ver_3.x) |
 + -----------------------------> +
 | CTRL/NACK/VERS(ver_2.x) |
version + <----------------------------- +
negotiation | CTRL/INFO/VERS(ver_1.x) |
 + -----------------------------> +
 | CTRL/ACK/VERS(ver_1.x) |
 + <----------------------------- +
 . .
 . CTRL/INFO/RTS .
 | (seqid_A, mode) |
 + -----------------------------> +
 . .
 | CTRL/INFO/RTR |
handshake | (seqid_B, mode) |
 + <----------------------------- +
 | |
 . CTRL/INFO/RDX .
 | (seqid_A+1, mode) |
 + -----------------------------> +
 | |
 data xmit data xmit
 | |

Following a successful handshake, both sides can start transmitting data.

28.3.3.2. Session termination

A session between two endpoints can be torn down either due to a packet error, repeated packet loss,
too many retransmissions or at the request of a client. A session is normally terminated by either un-con-
figuring or reconfiguring the receive queue. On receiving a CHANNEL_DOWN or CHANNEL_RESET
notification from the Hypervisor the receiver will reset its internal state from which a version negotiation
and handshake will need to occur prior to fresh data transmission.

28.3.3.3. Session status notification

A session is established when either endpoints initiate a handshake or is terminated following an Rx queue
un-configuration or reconfiguration. Following either events, the link can notify its client about a change
in session state via the callback registered by the client.

28.3.3.4. Data transfer

28.3.3.4.1. Packet format

When sending data to its peer, depending on the size, a link will either send the data in one packet or
fragment the data into multiple packets. The type field in the msg pkt will be set to DATA for all packet
based transfers. The stype field will be of value INFO and the envelope field will contain the number of
bytes being sent in each packet. The start and stop bits are used to indicate the start and end of a fragmented
transfer. The first packet in the transfer will have the start bit set to 1. Subsequent packets have neither the

Logical Domain Chan-
nel (LDC) infrastructure

240

start nor stop bit set. The last packet sent as part of a fragmented transfer will have have the stop bit set to
1. If the data is transmitted in a single packet, both the start and stop bit will be set to 1.

28.3.3.4.2. Streaming support

The Reliable mode also implements support for streaming data transfers. It does this by breaking each
message into MTU size blocks, specified by the client at the time of channel initialization. During send
(ldc_write), each message is first broken up into MTU size blocks before being transmitted using the
packet transfer approach discussed above. On the receiving end, the link layer passes data back to client
in MTU size blocks without any reassembly. Using streaming eliminates the need to allocate very large
Tx and Rx queues in the link layer as very large messages can be transferred in MTU size chunks.

28.3.3.4.3. Message ACKs

Message ACKs are used in the case of reliable link mode to indicate data transfer progress.

A client can only queue a fixed number of packets, after which it will have to wait for an ACK from the
receiver before it can send more packets. The receiver will periodically respond back with a DATA/ACK
control message, and the 'ackid' field will contain the sequence ID of the last packet it received in correct
order. Since the packet control field bits for an ACK message do not overlap with those of a regular data
packet, a endpoint can send an ACK message embedded in a data packet.

28.3.3.4.4. Transmit queues and retransmissions

In the case of a reliable link, the link will retransmit the packets in the event of a data loss.

For each message sent by a client, the link will maintain it in a list of message segments.

Each segment corresponds to one more fragments i.e. packets in the transmit queue. It will store the seqID
corresponding to first fragment with the segment. It will initiate a send by storing the fragmented packets
in the transmit queue. At the same time it will start a timer for the message. If a ACK for the packets are
not received before the timer expires, the sender will retransmit the message with the same set of start of
end seqIDs. If an duplicate ACK is received, it will discard it.

The sender will also maintain a head and tail pointer to keep track of the packets that have been transmitted
and the ones that have been ACKed. In the event of a timeout, the sender will retransmit packets by copying
over the packets into queue locations starting at tail location. All packets in the queue will purged when
a session is torn down and/or established.

There are multiple retransmit scenarios and these are handled in the following manner:

• Packet loss

This is the simplest of all cases. In the event of packet loss, the receiver will discard all future packets
until it receives a packet in correct sequence. The sender will initiate retransmission on timeout.

• Premature timeout / Delayed ACKs

There are cases when the receiver is backed up and does not respond to the sender in a timely fashion.
This will cause the sender to timeout prematurely and retransmit the segment's packets to the receiver.
It might either during the retransmission or subsequently receive ACKs for the first transfer. When it
receives the ACK, it can mark the message segment as successfully sent. It will then ignore any duplicate
ACKs received as a result of the retransmission. Similarly, the receiver will discard packets associated
with the retransmission (same seqID range), if it had previously received the message successfully. Even
if the receiver discards incoming messages as duplicates, it will need to ACK the messages as earlier
ACKs could have been lost.

Logical Domain Chan-
nel (LDC) infrastructure

241

• Lost ACKs

In the event, the message was sent successfully, but the ACK was lost, the sender will eventually timeout
and retransmit the segment packets. Since receiver already received the message, it will discard the
message but still send an ACK. If there is an error during retransmission, the receiver will discard the
packets as before.

28.3.3.4.5. Link errors

Either during the initial handshake or during the course of data transmission, either endpoints can detect
an error and take the corresponding action. The errors currently detected and handled within the link are
listed below:

• Packet error

During data transmission, packets can either get dropped or gets sent out of order. When the receiver
detects a packet that is out of order, it will purge all pending packets in its transmit queue, until it finds
a packet with the correct sequence. The unreliable link does not support retransmissions, and packets
are dropped on error. Transmit sequence errors are detected via invalid start/stop bits in pkts.

In the case of reliable link mode, packet loss is detected using seqID. It will send an ACK for the last
packet that was received in correct order. This allows the sender to determine what seqID to start the
retransmission from. Since there might be packets in flight (pkts between the ACKd pkt and the current
TX tail ptr), the receiver will have to continue dropping all future packets until it receives a packet with
the seqID that corresponds to the lost packet. The sender will eventually timeout and recopy lost or
unacknowledged packets starting from the current tail location and initiate the retransmission of packets
starting with the lost packet.

28.3.3.4.6. Link interrupt handler

Links that are capable of handling interrupts can register an interrupt handler for each LDC channel with
a target CPU to which the interrupt should be delivered. The link should allocate the CPU to channels
in a round-robin manner. When a channel has pending data in its LDC queue, the Hypervisor will send
a dev_mondo interrupt to the link. The link will either process the packet in the queue (if it is a control
packet), or invoke the client's callback (if it is a data packet) to let it know that there is pending data.

242

Chapter 29. Virtual IO device protocols
29.1. Virtual IO communication protocol

Virtual devices, clients and/or services, at the most basic level rely on the underlying Hypervisor LDC
framework (Chapter 22, Logical Domain Channel services) and LDC transport layer (Chapter 28, Logical
Domain Channel (LDC) infrastructure) to transfer data.

Since both these layers only provide a basic communication mechanism, Virtual IO (VIO) devices employ
a basic handshake procedure to agree on transmission properties for the channel, before meaningful data
can be exchanged between the two channel endpoints. As part of the handshake they negotiate a common
version, device attributes, data transfer type, and if necessary shared memory descriptor ring information.
Following a successful handshake, the devices can send and receive data. All VIO devices use the LDC
unreliable transport mode for all communication.

The figure below shows two logical domains with VIO device clients and services communicating with
each other using the VIO protocol and layered on top of the underlying LDC framework. Domain A has
exclusive access to local physical devices through native device drivers and exports access to these devices
over the LDC connection to domain B.

29.1.1. VIO data transfer

VIO devices will transfer data either using packet mode by storing the data in LDC datagrams or sharing
the data using the shared memory capability of the Hypervisor. A VIO device that uses packet mode, will
use either a single LDC datagram packet or use the fragmentation-reassembly capabilities of the LDC
transport layer to packetize and transfer larger messages. The Hypervisor shared memory support allows
guests to share memory regions in their address space with another guest at the other end of a channel
(FWARC/2006/184 [http://arc.opensolaris.org/caselog/FWARC/2006/184/]). This capability allows VIO
client drivers to share segments of memory with a VIO client or service so that data can be transferred
efficiently and much faster, instead of transferring data over the channel by packetizing each transfer.

http://arc.opensolaris.org/caselog/FWARC/2006/184/
http://arc.opensolaris.org/caselog/FWARC/2006/184/

Virtual IO device protocols

243

Figure 29.1. Virtual I/O Layers

Guest 2

Hypervisor

Guest 1

LDC Transport LDC Transport

VIO ProtocolVIO Protocol

Nat ive
Net

Driver

Virtual
Disk

Server

Virtual
Network
Switch

Virtual
Network

Virtual
Disk

Native
Disk

Driver

Network
Device

Block
Device

Like conventional IO devices, the virtual IO devices that use the Hypervisor shared memory infrastructure
for data transfer, will setup and use descriptor rings. The descriptor ring is a contiguous circular ring buffer
that IO devices use to queue requests, receive responses and transfer associated data. VIO devices that
use shared memory will either share their descriptor rings or send the descriptors as in-band messages.
The subsequent sections describe the content of control and data packets, the transfer protocol and the
structure of the descriptor rings used by VIO devices. It also specifies the device specific content of the
LDC packets and descriptors for virtual network and disk devices.

Virtual IO device protocols

244

29.1.2. VIO device message tag

All packets exchanged by VIO devices over a channel will use a common message tag as the header for
the message. The message tag uniquely identifies the session, the type and subtype of the message. The
subtype envelope contains message specific meta-data. All packets sent/received by VIO devices will
specify all message tag fields and no field is optional. The format of the message tag along with values for
the type, subtype and subtype_env fields are shown below:

 6 5 5 4 4 3 3
 3 6 5 8 7 2 1 0
+------+-------+----------------+----------------------------+
| TYPE | STYPE | STYPE_ENV | SID |
+------+-------+----------------+----------------------------+

Message Types:

VIO_TYPE_CTRL 1

VIO_TYPE_DATA 2

VIO_TYPE_ERR 4

Sub-Message Types:

VIO_SUBTYPE_INFO 1

VIO_SUBTYPE_ACK 2

VIO_SUBTYPE_NACK 4

Sub-Type Envelope:

VIO_VER_INFO 0x0001

VIO_ATTR_INFO 0x0002

VIO_DRING_REG 0x0003

VIO_DRING_UNREG 0x0004

VIO_RDX 0x0005

VIO_TYPE_CTRL

reserved 0x0006-0x003f

VIO_PKT_DATA 0x0040

VIO_DESC_DATA 0x0041

VIO_DRING_DATA_REG 0x0042
VIO_TYPE_DATA

reserved 0x0043-0x007f

VIO_TYPE_ERR reserved 0x0080-0x00ff

Device Class-specific sub-type envelopes

VNET reserved 0x0100-0x01ff

VDSK reserved 0x0200-0x02ff

reserved reserved 0x0300-0xffff

Virtual IO device protocols

245

29.1.3. VIO device peer-to-peer handshake

For VIO devices, both the server and/or client has to successfully complete a handshake before data transfer
can commence. The handshake can be initiated by either parties. In the description below each message
sent or received is specified using the format <type> / <subtype> / <subtype_env>.

29.1.3.1. Version negotiation

A handshake is initiated by one peer sending a CTRL/INFO/VER_INFO to the other endpoint. This
message consists of a dev_class field identifying the type of the sending device, and a major/minor
pair which specify the protocol version (the protocol version will determine the type and amount of data
that will be expected to be exchanged in later phases of the handshake). It also sets the session ID (sid)
to a random value by setting it to the lower 32-bits of the CPU tick. The client will send a new session ID
with each version negotiation request. The session ID corresponding to the accepted version gets used as
part of each message sent as part of the session.

If the device class is recognized and the version major/minor numbers are acceptable then the receiving
endpoint responds back with a CTRL/ACK/VER_INFO message leaving all the parameters unchanged.
It also stores the sender's SID for use in future message exchanges.

If the major version is not supported, then the peer sends back a CTRL/NACK/VER_INFO message con-
taining the next lower major version it supports. If it does not support any lower major numbers, it will
NACK with the version major and minor values set to zero. The initiating endpoint can then if it wishes
send another CRTL/INFO/VER_INFO message either with the major number it received from its peer,
if it is acceptable, or with its next lower choice of version. If the major version is supported but not at the
specified minor version level, the receiver will ACK back with a lower supported minor version number.

Similarly, if the 'dev_class' is unrecognized, the receiver will respond back with CTRL/NACK/VER_INFO
with the parameters unchanged and the handshake is deemed to have failed. The format of the version
exchange packet is shown below:

 6 5 5 4 4 3 3 2
 3 6 5 8 7 2 1 4 0
 +------+-------+---------------+----------------------------+
word 1: | TYPE | I/A/N | VER_INFO | SID |
 +------+-------+---------------+---------+------------------+
word 2: | MAJOR | MINOR |DEV_CLASS| |
 +--------------+---------------+---------+------------------+

The currently supported devices types are listed below:

VDEV_NETWORK 1

VDEV_NETWORK_SWITCH 2

VDEV_DISK 3

VDEV_DISK_SERVER 4

NOTE: Irrespective of what state the receiving endpoint believes the channel to be in, receipt of a CTRL/
INFO/VER_INFO message at any time will cause the endpoint to reset any internal state it may be main-
taining for that channel and restart the handshake.

Virtual IO device protocols

246

29.1.3.2. Attribute exchange

Following the initial version negotiation phase, VIO device clients/services will exchange device specific
attribute information, depending on the device class and the agreed upon API version. Each attribute in-
formation packet is of the type CTRL/INFO/ATTR_INFO and contains parameters like transfer mode,
maximum transfer size, and other device specific attributes. An ACK response is an acknowledgment by
the peer that it will use these attributes in future transfer. A NACK response is an indication of mismatched
attributes. It is up to the particular device class whether it restarts the handshake or exchanges other at-
tributes. The device specific section for virtual disk and network devices contains more information about
the exchanged attributes.

 6 5 5 4 4 3 3 2
 3 6 5 8 7 2 1 4 0
 +------+-------+---------------+----------------------------+
 word 1: | TYPE | I/A/N | VER_INFO | SID |
 +------+-------+---------------+----------------------------+
word 2-7: : (device specific attributes) :
 +---+

29.1.3.3. Descriptor ring registration

Most virtual devices will use the shared memory capabilities of the Hypervisor LDC framework to send
and receive data. Like conventional IO devices, the virtual IO devices will use descriptor rings to keep track
of all transactions being performed by the device. Prior to using a descriptor ring, and following version
negotiation, and other device specific attribute exchange, VIO clients will register shared descriptor ring
information with its channel peer.

 6 5 5 4 4 3 3 2
 3 6 5 8 7 2 1 4 0
 +------+-------+---------------+----------------------------+
 word 1: | TYPE | I/A/N | VER_INFO | SID |
 +------+-------+---------------+----------------------------+
 word 2: | DRING_IDENT |
 +------------------------------+----------------------------+
 word 3: | NUM_DESCRIPTORS | DESCRIPTOR_SIZE |
 +--------------+---------------+----------------------------+
 word 4: | OPTIONS | reserved | NCOOKIES |
 +--------------+---------------+----------------------------+
word 5-n: : (LDC_TRANSPORT_COOKIE * NCOOKIES) :
 +---+

A VIO client will register a descriptor ring by sending a CTRL/INFO/DRING_REG message to its peer.
The message will contain information about the number of descriptors in the ring, the descriptor size,
the LDC transport cookie(s) associated with the descriptor ring memory and the number of cookies. The
options field allows certain VIO clients to specify descriptor ring properties that describe its intended
use. The options bits are exclusive and the VIO client must specify only one of the supported values.
The supported values in version 1.0 of the VIO protocol are:

VIO_TX_DRING 1 Transmit descriptor ring

VIO_RX_DRING 2 Receive descriptor ring

Virtual IO device protocols

247

In version 1.6 of the VIO protocol, an additional value is supported:

VIO_RX_DRING_DATA 4 Receive descriptor ring with data area

On receiving the registration message, the receiver will ACK the message, and in the ACK provide the
sender an unique dring_ident. The dring_ident will be used by the sender to either unregister
the ring or refer to the descriptor ring during data transfer. A NACK to this message from the receiving
end is regarded as a fatal error and the entire session is deemed to have failed and a new session has to be
established by re-initiating a handshake. The dring_ident field is not used in the registration message
and only used during the ACK.

A LDC transport cookie (LDC_TRANSPORT_COOKIE) is 16-bytes in size and consists of
cookie_addr and cookie_size fields. The cookie_addr field corresponds to the Hypervi-
sor LDC shared memory cookie for each page (see FWARC/2006/184 [http://arc.opensolaris.org/casel-
og/FWARC/2006/184/]) and the cookie_size corresponds to the actual number of bytes that is shared
within the page pointed to by the cookie. If the descriptor ring memory segment spans multiple pages, an
unique transport cookie is used to refer to each page within the segment. The format of the LDC transport
cookie is shown below:

 6
 3 0
 +---+
 | HV shared memory cookie (cookie_addr) |
 +---+
 | cookie_size |
 +---+

When two or more successive pages in the descriptor ring memory segment are stored in consecutive
entries in the LDC map table, a single transport cookie can be used refer to all these page entries. The
cookie_addr in this case will still point to first page in the set, but the cookie_size will correspond
to the size spanning all consecutive entries.

A VIO device might typically share multiple descriptor rings with its peer and can choose to register all
descriptor rings with its peer at the time of the initial handshake or at any point after data transfer has
commenced. If a device intends to do all its data transfer using descriptor rings, it will have to register at
least one descriptor ring before data transfer can commence.

With VIO_RX_DRING_DATA option, the descriptor ring registration message is extended with additional
fields that provide information about the data area that is being exported, as shown below.

 6 3 3
 3 2 1 0
 +----------------------------+-----------------------------+
 word n+1: | DATA_NCOOKIES | DATA_AREA_SIZE |
 +----------------------------+-----------------------------+
word n+2-m: : (LDC_TRANSPORT_COOKIE * DATA_NCOOKIES :
 +--+

DATA_NCOOKIES The number of LDC transport cookies associated with the data buffer area being
exported.

http://arc.opensolaris.org/caselog/FWARC/2006/184/
http://arc.opensolaris.org/caselog/FWARC/2006/184/
http://arc.opensolaris.org/caselog/FWARC/2006/184/

Virtual IO device protocols

248

DATA_AREA_SIZE The size of the data buffer area that is being exported.

In VIO_RX_DRING_DATA mode, a VIO device registers a data buffer area with its peer in addition to
the descriptor ring. The data buffer area is allocated by the VIO device, as a single large buffer of size
DATA_AREA_SIZE. The data buffer area is managed by the VIO device as individual buffers that are of
a certain size determined by the device class specific protocol. For example, in the case of virtual network
device class, the buffers may be of size at least equal to the MTU negotiated during attribute phase of
handshake. The VIO device exports this buffer area using the hypervisor shared memory infrastructure.
It obtains LDC transport cookie(s) to this data buffer area and not the individual buffers. It then passes
the cookie(s) to the peer in the DRING_REG message. The peer imports this data buffer area using the
cookie(s) that it received in the message, using the hypervisor shared memory infrastructure. The peer uses
this data buffer area for its data transfers based on the descriptor format specified by its device class.

A VIO client can unregister a descriptor ring by sending a CTRL/INFO/DRING_UNREG message to its
peer. It will specify the dring_ident it received from the peer at the time of registration. The peer will
ACK a successful unregister request and NACK the request if the dring_ident specified is invalid.
If subsequent data transfers refer to an unregistered descriptor ring, the DRING_DATA requests will be
NACKd.

 6 5 5 4 4 3 3
 3 6 5 8 7 2 1 0
 +-----------+-------+---------------+-----------------------+
 word 1: | TYPE_CTRL | I/A/N | DRING_UNREG | SID |
 +-----------+-------+---------------+-----------------------+
 word 2: | DRING_IDENT |
 +---+

29.1.3.4. Handshake completion

After successful completion of all negotiations and required information exchange, an endpoint will send
a RDX message to its peer to indicate that it can now receive data from it.

An endpoint initiates this by sending a CTRL/INFO/RDX message to the receiving end. The receiver
acknowledges the message by sending CTRL/ACK/RDX. Because LDC connections are duplex, each
endpoint has to send a RDX message to its peer before data transfer can commence in both directions.
When a RDX is sent by an endpoint, the endpoint is explicitly enabling a simplex communication path,
whereby it announces that it can now receive data from its peer. It is VIO device specific whether they
require the establishment of a duplex connection before data transfer can commence. There is no payload
associated with a RDX message and they are not NACKed.

 6 5 5 4 4 3 3
 3 6 5 8 7 2 1 0
 +-----------+----------+-----+----------------------------+
word 1: | TYPE_CTRL | INFO/ACK | RDX | SID |
 +-----------+----------+-----+----------------------------+

Once the channel has been established (indicated by the receipt of a RDX message) in either simplex or
duplex mode further informational messages may be sent by the initiating endpoint or requested by the
receiving endpoint as time goes by. The content and effect these messages have on the session is device
specific. These messages are also regarded as in-band notifications.

Virtual IO device protocols

249

29.1.4. VIO data transfer modes

VIO devices can send data to their peers over a channel using different transfer modes.

During the handshake, each device will specify to its peer the transfer mode (xfer_mode) it intends
to use as part of the attribute info message. The device specific attribute message format specifies the
location of the xfer_mode field in the message. The supported transfer modes in versions 1.0 and 1.1
of the VIO protocol are:

VIO_PKT_MODE 1 Packet-based transfer

VIO_DESC_MODE 2 In-band descriptors

VIO_DRING_MODE 3 Descriptor rings

In version 1.2, the VIO protocol will allow concurrent use of the different transfer modes, specifically
packet based transfer and descriptor ring modes. In order to do this, the xfer_mode field in the attribute
info message will be changed to a bit mask with the following values:

VIO_PKT_MODE 1 Packet-based transfer

VIO_DESC_MODE 2 In-band descriptors

VIO_DRING_MODE 4 Descriptor rings

In version 1.2, the virtual network and switch clients will use the packet transfer mode in addition to the
descriptor ring mode (xfer_mode=5) to send high priority Ethernet frames as data packets for faster
out-of-band processing.

29.1.4.1. Packet based transfer

 6 5 5 4 4 3 3
 3 6 5 8 7 2 1 0
 +-----------+-------+----------+----------------------------+
 word 1: | TYPE_DATA | I/A/N | PKT_DATA | SID |
 +-----------+-------+----------+----------------------------+
 word 2: | SEQ_NO |
 +---+
word 3-7: : DATA_PAYLOAD :
 +---+

As discussed in the earlier section, VIO packets always consist of a generic message tag header and a se-
quence id (which is incremented with each packet sent). Additionally, if a VIO device intends to use packet
mode for sending data, it can use up to 40 bytes of a LDC datagram without using LDC transport's pack-
et fragmentation capability. Larger transfers will require the use of the fragmentationreassembly support
provided by the underlying LDC transport. The format of a LDC packet containing data is shown above.

29.1.4.2. Descriptor rings

As mentioned in the earlier section, a descriptor ring is a contiguous circular ring buffer VIO devices use to
queue requests, receive responses and transfer associated data. Each descriptor in the ring holds request and
response parameters specific to the particular device along with opaque cookies that point to the page(s) of
memory that are being shared for reading and/or writing. The descriptor ring will utilize Hypervisor shared
memory support, so that clients at both ends of the channel can modify the contents of the descriptor(s).

Virtual IO device protocols

250

Each VIO client will specify that it intends to use descriptor rings, as part of the attribute info exchange.
It will also specify whether or not it intends to share the descriptors using shared memory or send each
descriptor as an in-band message. If it shares the descriptor ring using shared memory, it will register at
least one descriptor ring with its peer at the other end.

29.1.4.2.1. Descriptor format in VIO_RX_DRING_DATA mode

If the dring mode option chosen between VIO devices is VIO_RX_DRING_DATA, the format of the de-
scriptor is device class specific. Currently, it is defined for only the virtual network class; Section 29.3.2,
“vNet descriptors” contains more information on this.

29.1.4.2.2. Descriptor format in VIO_TX_DRING/VIO_RX_DRING mode

Each entry in a descriptor ring consists of a common descriptor ring entry header and the descriptor payload
as shown in the figure below. The descriptor payload consists of fields that are device class specific and
are discussed in more detail in Section 29.2, “Virtual disk protocol” and Section 29.3, “Virtual network
protocol”.

 6 5 5 5
 3 6 5 4 0
 +--------+---+--+
 | DSTATE | A | reserved |
 +--------+---+--+
 : (descriptor payload) :
 +---+

The descriptor dstate specifies the state of the the descriptor. The valid state values are:

VIO_DESC_FREE 0x01

VIO_DESC_READY 0x02

VIO_DESC_ACCEPTED 0x03

VIO_DESC_NONE 0x04

Initially when a descriptor ring is allocated, all entries in the ring are marked with value of
VIO_DESC_FREE. When a client queues one or more requests, it will change the flags value for the
corresponding descriptor(s) to VIO_DESC_READY. It will then send a message to its peer requesting
it to process the descriptors. The client that is processing the descriptor will first change the state to
VIO_DESC_ACCEPTED, acknowledging receipt of the request and prior to processing the request.

On completing the request, it will update the descriptor with its response and change the value of the flag
to VIO_DESC_DONE. The client that initiated the request, will take the appropriate action after seeing
the request as been marked as VIO_DESC_DONE and then change it to VIO_DESC_FREE. If the state
of a descriptor transitions to an unexpected state, the behavior is undefined. A VIO device under these
circumstances, might either reset the session and restart the handshake, or send an error message to its peer.

29.1.4.2.3. Descriptor Ring Data Message Format (common to all dring modes)

When the requesting client updates one or more descriptors and marks them as ready for processing, it
will send a DATA/INFO/DRING_DATA message to its peer at the other end of the channel. The message
will contain the dring_ident the requester received at the time of registering the descriptor ring. It
also specifies the start and end index corresponding to the descriptors that have been updated. If end index
value specified is -1, the receiver will process all descriptors starting with the start index and continue until

Virtual IO device protocols

251

it does not find a descriptor marked VIO_DESC_READY. The receiver at this point will send an implicit
ACK to the sender to let it know that it is done processing all requests. Subsequently, if the sender marks
additional entries as VIO_DESC_READY, it will reinitiate processing by sending another DRING_DATA
request.

If the start and end index, either overlap with requests sent earlier or correspond to descriptors not in
VIO_DESC_READY state, the request will be NACKed by the receiver.

 6 5 5 4 4 3 3
 3 6 5 8 7 2 1 0
 +------------+-------+----------+-----------------------------+
 word 1: | TYPE_DATA | I/A/N | PKT_DATA | SID |
 +------------+-------+----------+-----------------------------+
 word 2: | SEQ_NO |
 +---+
 word 3: | DRING_IDENT |
 +-------------------------------+-----------------------------+
 word 4: | START_IDX | END_IDX |
 +------------+------------------+-----------------------------+
 word 5: | PROC_STATE | reserved |
 +------------+--+

The requester can also request an explicit acknowledgment from the client processing the request (to
track progress) by setting the (A)cknowledge field in the descriptor. The client, after processing the de-
scriptor (changes state as VIO_DESC_DONE), will send a DATA/ACK/DRING_DATA message with the
dring_ident for this descriptor ring and end_idx equal to this descriptor.

When the requester sends requests with an end_idx = -1, the proc_state field in the ACK/NACK
message, is used by the receiver to indicate its current processing state. The valid proc_state field
values are:

VIO_DP_ACTIVE_MODE 1 Active processing req

VIO_DP_STOPPED 2 Stopped processing req

If the receiver continues to process requests or is waiting for more descriptors to be marked
VIO_DESC_READY, it will ACK with proc_state set to VIO_DP_ACTIVE. Instead, if the receiver
stops after processing the last ACK/NACK, and is waiting for an explicit DATA/INFO/DRING_DATA
message, it will set the proc_state set to VIO_DP_STOPPED.

The proc_state value is then used by the requester to determine when the receiver's state, and accord-
ingly sends an explicit DRING_DATA message when more requests are queued. It is not always necessary
that clients need to register a shared descriptor ring to make use of the HV shared memory infrastructure.
A simpler client can still use the shared memory capabilities and instead of sharing the descriptor ring,
it will send the descriptor itself as in-band data. The DESC_HANDLE in the pkt is an opaque handle that
corresponds to the descriptor in the sender's ring.

The content of the in-band descriptor packet is shown below:

 6 5 5 4 4 3 3
 3 6 5 8 7 2 1 0
 +------------+-------+-----------+---------------------------+
 word 1: | TYPE_DATA | I/A/N | DESC_DATA | SID |

Virtual IO device protocols

252

 +------------+-------+-----------+---------------------------+
 word 2: | SEQ_NO |
 +--+
 word 3: | DESC_HANDLE |
 +--+
 : (descriptor payload) :
 +--+

In case of both a DRING_DATA and DESC_DATA message, if the receiver gets a data packet out of order
(as indicated by a non-consecutive sequence number) then it will NACK the packet and will not process any
further data packets from this client. If there are no errors the receiver will ACK the receipt of descriptor
ring or descriptor data packets if there is an explicit request by the sender to ACK a data packet by setting
the (A)cknowledge bit in the descriptor.

Implementation Note

Upon receipt of a NACK, the sending client can either try to recover or stop sending data and
return to initial state and restart the channel negotiation again.

For virtual network and virtual switch devices, in version 1.6 of the VIO protocol, if the dring mode nego-
tiated is RX_DRING_DATA, some of the fields in the DRING_DATA message are interpreted differently:

• The seq_no field serves as only an unique ID for the packet. The sender may not guarantee that the
DRING_DATA messages (INFO/ACK/NACK) will be sent with the seq_no in order.

• The receiver may specify a start index of -1 in its ACK message, to indicate that the sender should ignore
the start index of range of descriptors being ack'd and only the end index (last processed descriptor
index) is valid.

• The ACK bit in the descriptor is reserved (See Section 29.3.2, “vNet descriptors”) and is ignored if
specified by the sender. Thus a peer may not send ACK/NACK messages with a proc_state value
of VIO_DP_ACTIVE.

29.1.5. Virtual IO Dynamic Device Service (DDS)

Virtual IO devices following the initial handshake, send and receive data using the packet and/or descriptor
based modes as described in the earlier sections. This forms the under pinnings of the virtual IO data
transfer infrastructure in a LDoms environment. While compelling for a variety of application workloads,
virtualized I/O still does not provide high performance I/O capabilities that certain I/O oriented workloads
require. The Hybrid I/O model provides the opportunity to share device resources across multiple client
domains with better granularity while overcoming the performance bottlenecks of virtualized I/O.

A new control message type will be added in VIO protocol versions 1.3 and higher to support the Hybrid
IO model. The new Dynamic Device Service (DDS) control message, with a subtype envelope value of
VIO_DDS_INFO, will provide virtual IO devices and services the ability to exchange and share physical
device resource information with their peers.

VIO_DDS_INFO 6 DDS information

Each DDS control message will allow a device to share or reclaim a resource, or change the properties of
a resource. A peer on receiving a CTRL/INFO/DDS_INFO message, will take necessary action and then
either ACK or NACK the message depending on whether the requested operation was successful or not.

Each VIO_DDS_INFO message, in addition to the VIO msg header, includes a DDS message header
consisting of a DDS class, subclass, and request_id fields. Though the format of the DDS message

Virtual IO device protocols

253

header itself is generic to the VIO protocol, the DDS message class and sub-class values are specified by
the virtual network or disk devices. The DDS request ID in the header will used to correlate the INFO
requests with ACK and NACK responses. The DDS msg format is shown below:

 6 5 5 4 4 3 3
 3 6 5 8 7 2 1 0
 +------------+----------+-----------+----------------------------+
 word 1: | TYPE_DATA | I/A/N | DDS_INFO | SID |
 +------------+----------+-----------+----------------------------+
 word 2: | CLASS | SUBCLASS | reserved | DDS_REQUEST_ID |
 +------------+----------+-----------+----------------------------+
word 3-7: : (dds message payload) :
 +--+

Device specific class and subclass values, including contents of the DDS message is discussed in Sec-
tion 29.3.4, “Network Device Resource Sharing via DDS”. The class value ranges reserved for various
VIO device classes is specified below:

DDS_GENERIC 0x00-0x0f Generic DDS class

DDS_VNET 0x10-0x1f Generic DDS class

DDS_VDSK 0x20-0x2f Generic DDS class

reserved 0x30-0xff Reserved

29.2. Virtual disk protocol

In the protocol outlined above, the attribute exchange and descriptor payload contents are undefined and
left to be specified by the VIO devices. This section describes the contents of these packets for use by
both the virtual disk client and server to exchange data. The vDisk client, following an attribute exchange,
will send to the server block disk read and write requests, in addition to disk control requests. The server
will export each block device over an unique channel, and accept requests from the client, once a session
has been established.

29.2.1. Attribute information

During the initial handshake, as part of the CTRL/INFO/ATTR_INFO message, the virtual disk server
and client exchange information about the transfer protocol and the physical device itself. The format of
the attribute contents is shown below:

The vDisk client will provide the server with the transfer mode (xfer_mode) and the requested maximum
transfer size (max_xfer_sz) it intends to use for sending disk requests to the server.

The vdisk_block_size is specified in bytes. The vdisk_size and max_xfer_sz are specified
in multiples of the vdisk_block size.

For version 1.0 of the vDisk protocol the client's request must set vdisk_block_size to the minimum
block size the client wishes to handle, and specify the max_xfer_size. If the server cannot support
the requested vdisk_block_size or max_xfer_sz requested by the client, but can support a lower
size, it will specify its vdisk_block_size and/or a lower max_xfer_sz in its ACK. If the client
has no minimum block size requirement it may use the value of 0 as its requested vdisk_block_size,
in this case the max_xfer_size in the client's attribute request to the server is interpreted as being
specified in bytes. Either client or server may simply reset the LDC connection if they fail to agree on
communication attributes.

Virtual IO device protocols

254

For version 1.1 of the vDisk protocol, the vDisk server can set vdisk_size to -1 if it can not obtain
the size at the time of the handshake. This can happen when the underlying disk has been reserved by
another system. Under these circumstances, the vDisk client can retrieve the size at a later time, after the
completion of the handshake, using the VD_OP_GET_CAPACITY operation.

If either client or server cannot support the specified transfer mode, the connection will be reset and the
handshake may be restarted. The server in its ACK message will also provide the vdisk type (vd_type),
vdisk_block_size and vdisk_size to the client. The supported types are:

VD_DISK_TYPE_SLICE 1 Slice in a block device

VD_DISK_TYPE_DISK 2 Entire block device

 6 5 5 4 4 4 3 3 3
 3 6 5 8 7 0 9 2 1 0
 +------------+----------+-----------------+------------------------+
word 1: | TYPE_CTRL | I/A/N | ATTR_INFO | SID |
 +------------+----------+----------+------+------------------------+
word 2: | XFER_MODE | VD_TYPE | VD_MEDIA | rsvd | VD_BLOCK_SIZE |
 +------------+----------+----------+------+------------------------+
word 3: | OPERATIONS |
 +--+
word 4: | VDISK_SIZE |
 +--+
word 5: | MAX_XFER_SZ |
 +--+

All other disk types are reserved and for version 1.0 of the vdisk protocol should be considered as an error.

Only in protocol versions 1.1 and higher of the vdisk protocol, the server in its ACK message will pro-
vide the client the vdisk_size (specified as a multiple of the block size), and the vdisk media type
(vdisk_mtype). The supported vdisk media types are:

VD_MEDIA_TYPE_FIXED 1 Fixed device

VD_MEDIA_TYPE_CD 2 CD device

VD_MEDIA_TYPE_DVD 3 DVD device

All other disk media types are reserved and for version 1.1 of the vdisk protocol should be considered
as an error.

Both these fields are reserved and not available in version 1.0 of the vdisk protocol. Clients
should use the disk geometry information (see Section 29.2.3.9, “VDisk Get Disk Geometry
(VD_OP_GET_DISKGEOM)”) to compute the vdisk size.

The operations field is a bit-mask specifying all the disk operations supported by the server, where each
bit position, if set, corresponds to the operation command supported by the server. The list of supported
operations encodings is described in Section 29.2.3, “Disk operations”.

29.2.2. vDisk descriptors

Virtual disk clients will send their disk requests by queueing them in descriptors as part of a shared de-
scriptor ring.

Virtual IO device protocols

255

As requests are initiated only by the client, and the buffers pointed to by each descriptor are used for both
writing and reading disk blocks, the vDisk client will register the descriptor ring as both a Tx and Rx ring.
In the case of descriptor rings that are not shared, the virtual disk client will send the requests as in-band
descriptor messages.

The descriptor payload is formatted as follows:

 6 5 5 4 4 3 3
 3 6 5 8 7 2 1 0
 +--+
 | REQ_ID |
 +-----------+-------+----------+-----------------------------+
 | OPERATION | SLICE | reserved | STATUS |
 +-----------+-------+----------+-----------------------------+
 | OFFSET |
 +--+
 | SIZE |
 +------------------------------+-----------------------------+
 | NCOOKIES | reserved |
 +------------------------------+-----------------------------+
 : LDC_COOKIE * NCOOKIES :
 +--+

The payload contains the operation being performed.

The offset field specifies the relative disk block address when doing a block read or write operation to
the disk. This corresponds to the block offset from the start of the disk, or the disk slice as appropriate. It
is specified in terms of the vdisk_block_size received from the server. The size field specifies the
number of blocks being read or written when doing a VD_OP_BREAD or VD_OP_BWRITE operation. In
the case where the vdisk_block_size in the client's attribute request is zero the size is interpreted
as being specified in bytes.

29.2.3. Disk operations

For each client request sent to the server, the server will process the descriptor contents and submit the
request to the device. Each virtual disk request is identified by an unique req_id. The operation field
specifies the operation being done on the device. The server will then return the status of the operation in
the same descriptor but with the status field containing the outcome of the operation. The supported
values in version 1.0 of the vdisk protocol are:

VD_OP_BREAD 0x01 Block read

VD_OP_BWRITE 0x02 Block write

VD_OP_FLUSH 0x03 Flush disk contents

VD_OP_GET_WCE 0x04 Get write cache status

VD_OP_SET_WCE 0x05 Enable/disable write cache

VD_OP_GET_VTOC 0x06 Get VTOC

VD_OP_SET_VTOC 0x07 Set VTOC

VD_OP_GET_DISKGEOM 0x08 Get disk geometry

VD_OP_SET_DISKGEOM 0x09 Set disk geometry

Virtual IO device protocols

256

VD_OP_GET_DEVID 0x0b Get device ID

VD_OP_GET_EFI 0x0c Get EFI

VD_OP_SET_EFI 0x0d Set EFI

reserved 0x0a,0x0e-0xff Reserved for 1.0

In addition, the following values are supported in version 1.1 of the vDisk protocol:

VD_OP_SCSICMD 0x0a SCSI control command

VD_OP_RESET 0x0e Reset disk

VD_OP_GET_ACCESS 0x0f Get disk access

VD_OP_SET_ACCESS 0x10 Set disk access

VD_OP_GET_CAPACITY 0x11 Get disk capacity

reserved 0x12-0xff Reserved for 1.1

As mentioned before, the vDisk server at the time of the initial attribute exchange will specify the bit mask
of operations it supports. If the server does not support a required operation, it is up to the specific client
implementation to decide whether it returns an error or internally implements the operation. All operations
can be optionally implemented by a particular vDisk server implementation.

If an operation is supported by the server, the outcome of the operation will be always available in the
descriptor ring entry status field.

The ncookies and ldc_cookie fields refer to the segment of memory from/to which data is being
read/written. See Section 29.1.3.3, “Descriptor ring registration” for more information about the LDC
transport cookie.

29.2.3.1. Disks and slices

A vdisk server may export either an entire disk device, or a simple slice (or partition) of a disk to a client
as configured by the administrator. In the event that an entire disk is exported to a client, it is client policy
as to how it determines the partitioning information or re-partitions that whole virtual disk.

To enable a server to potentially mount or examine a disk created by a client, the server may elect to offer
the VD_OP_GET/SET_VTOC operations to its client. If the client elects to use these operations to retrieve
partition information, the client when it reads or writes to the disk must specify the slice being accessed
— in this case the offset field for those transactions is specified relative to the start of the referenced
slice (not the start of the disk).

A client is not required to use the VTOC operations, and the server is not required to support them. In
either of these events, if the client wishes to use the disk exported by the server it must read (and write, if
re-partitioning) its own partition table at some client specific location on the disk.

Attempts to mix reads and writes with get and set VTOC operations to read/manipulate disk partition
information have undefined results, and clients are required (though this may only be optionally enforced
by the server) to use a consistent approach to discovering or modifying disk partition information.

The slice field is currently only used for VD_OP_BREAD and VD_OP_BWRITE. For all other operations it
is ignored, and should be set to zero. If the disk served is of type VD_DISK_TYPE_SLICE the slice field
is treated as reserved; i.e. must be set to zero, and ignored by the consumer. For a VD_DISK_TYPE_DISK
the slice field refers to the disk slice or partition on which a specific operation is being done — the field only
has meaning for disk servers that export a GET_VTOC service so that clients know which slice corresponds
to which partition.

Virtual IO device protocols

257

If the vDisk client does not use the VTOC service, it must specify a value of 0xff for the slice field for read
and write transactions so that the server knows that the offset specified is the absolute offset relative to the
start of a disk. Mixing read and write transactions to specific slices together with absolute disk transactions
has undefined results, and clients must not do this. A client must close the disk channel and re-negotiate
the vDisk service if it wishes to switch between using slice based access (explicitly passing the value of
the slice being accessed) and absolute access (where slice is 0xff) when the server offers a disk type of
VD_DISK_TYPE_DISK.

29.2.3.2. VDisk Block Read command (VD_OP_BREAD)

This command performs a basic read of a block from the device service. The decriptor ring entry for this
command contains the offset and number of blocks to read together with the LDC cookies for the data
buffers.

Once completed the status field in the descriptor is updated with the completion status of the operation.

29.2.3.3. VDisk Block Write command (VD_OP_BWRITE)

This command performs a basic write of a block from the device service. The decriptor ring entry for
this command contains the offset and number of blocks to write together with the LDC cookies for the
data buffers.

Once completed the status field in the descriptor is updated with the completion status of the operation.

29.2.3.4. VDisk Flush command (VD_OP_FLUSH)

This command performs a barrier and synchronisation operation with the disk service.

There are no additional parameters in the decriptor entry for this command.

Before completing this command, the disk service will ensure that all previously executed write operations
are flushed to their respective disk devices, and all previously executed reads are completed and their data
returned to the client.

29.2.3.5. VDisk Get Write Cache enablement status
(VD_OP_GET_WCE)

This command is used by a virtual disk client to query whether write-caching has been enabled on the
disk being exported by the vDisk server. The payload is a single 32 bit unsigned integer. A value of 0
means write caching is not enabled, a value of 1 means write-caching is enabled (a flush operation should
be used as a barrier to ensure writes are forced to non-volatile storage). All other values are reserved and
have undefined meaning.

29.2.3.6. VDisk Enable/Disable Write Cache (VD_OP_SET_WCE)

This command is used a virtual disk client to enable or disable the write cache on the disk being exported
by the vDisk server. The payload is a single 32-bit integer. A value of zero disables writecaching on the
server side. A value of one enables write caching on the server side. All other values are reserved and are
treated as errors by the vDisk server.

29.2.3.7. VDisk Get Volume Table of Contents (VD_OP_GET_VTOC)

This command is used to return information about the table of contents for the disk volume a client is
attached to. The successful result of this command includes the following data structure being returned to
the client in the buffer described by the LDC cookie(s) in the descriptor ring.

Virtual IO device protocols

258

The returned data structure has the following header format:

 6 4 4 3 3
 3 8 7 2 1 0
 +---+
 word 0: | Volume name |
 +----------------+-------------+----------------------------+
 word 1: | NUM_PARTITIONS | SECTOR_SIZE | ASCII Label ... |
 +----------------+-------------+----------------------------+
word 2-16: : ... ASCII Label ... :
 +------------------------------+----------------------------+
 word 17: | ... ASCII Label | reserved |
 +------------------------------+----------------------------+

The volume name is an 8 character ASCII name for the volume.

The ASCII label is a 128 character ASCII label assigned to this disk volume. This is distinct from the
actual volume name.

The field sector_size is the size in bytes of each sector of the disk volume.

The field num_partitions is the number of partitions on this disk volume. The header described above
is immediately followed by the structure below repeated once for each of the number of partitions specified
by the header:

 6 4 4 3 3
 3 8 7 2 1 0
 +----------------+------------+------------------------------+
 word X+0: | ID tag of part | PERM_FLAGS | reserved |
 +----------------+------------+------------------------------+
 word X+1: | start block number of partition |
 +--+
 word X+2: | number of blocks in partition |
 +--+

Reserved fields should be ignored.

29.2.3.8. VDisk Set Volume Table of Contents (VD_OP_SET_VTOC)

This command is used by a virtual disk client to set the table of contents for the disk volume the client
is attached to.

The supplied data structure has the same format as for the get VTOC command (VD_OP_GET_VTOC).
Reserved fields must be set to zero.

29.2.3.9. VDisk Get Disk Geometry (VD_OP_GET_DISKGEOM)

This command is used to return the geometry information about the disk volume a client is attached to.
The successful result of this command includes the following data structure being returned to the client in
the buffer described by the LDC cookie(s) in the descriptor ring.

Virtual IO device protocols

259

The returned data structure has the following format:

Offset Size Name Description

0 2 ncyl Number of data cylinders

2 2 acyl Number of alternate cylinders

4 2 bcyl Cylinder offset for fixed head area

6 2 nhead Number of heads

8 2 nsect Number of sectors

10 2 intrlv Interleave factor

12 2 apc Alternate sectors per cylinder (SCSI only)

14 2 rpm Revolutions per minute

16 2 pcyl Number of physical cylinders

18 2 write_reinstruct Number of sectors to skip for writes

20 2 read_reinstruct Number of sectors to skip for reads

29.2.3.10. VDisk Set Disk Geometry (VD_OP_SET_DISKGEOM)

This command is used by a virtual disk client to set the geometry information for the disk volume the
client is attached to. The supplied data structure has the same format as the get disk geometry command
(VD_OP_GET_DISKGEOM).

29.2.3.11. VDisk SCSI Command (VD_OP_SCSICMD)

This command is used to deliver a SCSI packet to the vDisk server. It is implementation specific as to
whether the server passes the received packet directly to a SCSI drive or whether it chooses to simulate
the SCSI protocol itself. A server must not advertise this command if it does not support either capability.

The LDC cookie in the descriptor ring should point to the following data structure which describes the
command arguments. The same buffer is also used to return the result of the command to the vDisk client.

 6 5 5 4 4 4 3 3 3 2 2 1 1
 3 6 5 8 7 0 9 2 1 4 3 6 5 0
 +-------+-------+-------+-------+-----+----------+---------+
word 0: | CSTAT | SSTAT | TATTR | TPRIO | CRN | reserved | TIMEOUT |
 +-------+-------+-------+-------+-----+----------+---------+
word 1: | OPTIONS |
 +--+
word 2: | CDB LENGTH |
 +--+
word 3: | SENSE LENGTH |
 +--+
word 4: | DATA-IN SIZE |
 +--+
word 5: | DATA-OUT SIZE |
 +--+
word 6: | CDB DATA |
 : : :
word I: | |
 +--+

Virtual IO device protocols

260

word I+ | SENSE DATA |
 : : :
word J: | |
 +--+
word J+: | DATA-IN |
 : : :
word K: | |
 +--+
word K+1:| DATA-OUT |
 : : :
word L: | |
 +--+

The cstat field reports to the vDisk client the SCSI command completion status. SCSI command com-
pletion status are described in the SCSI Architecture Model documents[scsi3].

The sstat field reports to the vDisk client the SCSI command completion status of the SCSI sense
request. SCSI command completion status are described in the SCSI Architecture Model documents[scsi3].

The sstat field is defined only if a SCSI sense buffer was provided and if the SCSI command completion
status indicates that sense data should be available.

The tattr field defines the task attribute of the SCSI command to execute. The possible attributes are:

0x00 no task attribute defined

0x01 SIMPLE

0x02 ORDERED

0x03 HEAD OF QUEUE

0x04 ACA

Task attributes are defined in the SCSI Architecture Model documents[scsi3]. The vDisk server may ignore
the task attribute.

The tprio field is a 4-bit value defining the task priority assigned to the SCSI command to execute. The
task priority is defined in the SCSI Architecture Model documents[scsi3]. The vDisk server may ignore
the task priority.

The crn field is a command reference number (CRN). SCSI command reference numbers are defined in
the SCSI Architecture Model documents[scsi3]. The vDisk server may ignore the CRN.

The reserved field is reserved and should not be used.

The timeout field is the time in seconds that the vDisk server should allow for the completion of the
command. If it is set to 0 then no timeout is required.

The options field is a bitmask specifying options for the SCSI command to execute. The possible bit-
mask values are:

0x01 (CRN) This bitmask indicates that a command reference number (CRN) is specified in
therequest.

0x02 (NORETRY) This bitmask indicates that the vDisk server should not attempt any retry or other
recovery mechanisms if the SCSI command terminates abnormally in any way.

Virtual IO device protocols

261

The Command Descriptor Block (CDB) length field is set by the vDisk client and indicates the number
of bytes available in the CDB field.

The sense length field is initially set by the vDisk client and indicates the number of bytes available
in the sense field for storing sense data for SCSI commands returning with a SCSI command completion
status indicating that sense data should be available. After the execution of the SCSI command, the vDisk
server sets the sense length field to the number of bytes effectively returned in the sense field, or
0 if no sense data were returned.

The data-in size field is initially set by the vDisk client and indicates the number of bytes available
for data transfers to the data-in field. After the execution of the SCSI command, the vDisk server sets
the data-in size field to the number of bytes effectively transfered to the data-in field, or 0 if
no data were transfered.

The data-out size field is initially set by the vDisk client and indicates the number of bytes available
for data transfers from the data-out field. After the execution of the SCSI command, the vDisk server
sets the data-out size field to the number of bytes effectively transfered from the data-out field,
or 0 if no data were transfered.

The CDB data field contains the SCSI Command Descriptor Block (CDB) which defines the SCSI
operation to be performed by the vDisk server. The structure of the CDB is part of the SCSI Standard
Architecture[scsi3]. The size of the CDB data field should be equal to the number of bytes indicated by
the vDisk client in the CDB length field rounded up to a multiple of 8 bytes.

The sense data field contains sense data for SCSI commands returning with a SCSI command com-
pletion status indicating that sense data should be available. The structure of sense data is described in
the SCSI Primary Commands documents[scsi3]. The size of the sense data field should be equal to
the number of bytes indicated by the vDisk client in the sense length field rounded up to a multiple
of 8 bytes.

The data-in field contains command specific information returned by the vDisk server at the time of
command completion. The validity of the returned data depends on the SCSI command completion status.
The size of the data-in field should equal to the number of bytes indicated by the vDisk client in the
data-in size field rounded up to a multiple of 8 bytes.

The data-out field contains command specific information to be sent to the vDisk server. The size of the
data-out field should be equal to the number of bytes indicated by the vDisk client in the data-out
size field rounded up to a multiple of 8 bytes.

29.2.3.12. VDisk Get Device ID (VD_OP_GET_DEVID)

Device IDs[diskids] are persistent unique identifiers for devices in Solaris, and provide a means for iden-
tifying a device, independent of device's current name or instance number. This command is used to return
the device ID of a disk volume backing a virtual disk. A successful completion of this command will result
in the following data structure being returned to the client in the buffer described by the LDC cookie(s)
in the descriptor ring.

 6 4 4 3 3
 3 8 7 2 1 0
 +--------------+---+
 word 0: | reserved | type | length |
 +--------------+-------------+-------------------------------+
 word 1: | devid |
 +--+

Virtual IO device protocols

262

 6

The field devid contains the ID of the disk volume. The field length in the request should be
set to the size of the buffer allocated by the vdisk client for storing the device ID. The vdisk serv-
er will then set it to the size of the returned devid in its response. The returned device ID value will
be truncated if the provided space is not large enough to store complete ID. The field type spec-
ifies the type of device ID. Please refer to PSARC cases 1995/352 [http://arc.opensolaris.org/casel-
og/PSARC/1995/352/], 2001/559 [http://arc.opensolaris.org/caselog/PSARC/2001/559/], and 2004/504
[http://arc.opensolaris.org/caselog/PSARC/2004/504/], for a description of device IDs along and a list of
the device ID type values.

29.2.3.13. VDisk Get EFI Data (VD_OP_GET_EFI)

This command is used to get EFI data for the disk volume a client is attached to. A successful completion
of this command will result in the following data structure with the EFI data in the data field being returned
to the client in the buffer described by the LDC cookie(s) in the descriptor ring. The returned data structure
has the following format:

 3 0
 +--+
 word 0: | LBA |
 +--+
 word 1: | length |
 +--+
 word 2-N:| EFI data |
 +--+

The field LBA is the logical block address of the disk volume to get EFI data. Data returned in the EFI
data field is determined by the value specified in the LBA field:

• If LBA is equal to 1, then the vdisk server should return the GUID Partition Table Header (GPT).

• If LBA is equal to the PartitionEntryLBA field from the GUID Partition Table Header, then the
vdisk server should return the GUID Partition Entry array (aka GPE).

If the EFI data buffer is not large enough to return the request data then the vdisk server should return
an error. The field length is the maximum number of bytes that can be stored in the data field of the
provided structure.

The format of the GUID Partition Table Header and GUID Partition Entry are beyond the scope of this
document and are defined in the Extensible Firmware Interface Specification[efi].

29.2.3.14. VDisk Set EFI Data (VD_OP_SET_EFI)

This command is used by a virtual disk client to set EFI data for the disk volume the client is attached to.
The supplied data structure has the same format as for the get EFI command (VD_OP_GET_EFI).

The value of the LBA field determines the content of the EFI data field and the action taken by the vdisk
server.

• If LBA = 1, then the vdisk server should use the contents of the EFI data field to set the GUID Partition
Table Header (aka GPT).

http://arc.opensolaris.org/caselog/PSARC/1995/352/
http://arc.opensolaris.org/caselog/PSARC/1995/352/
http://arc.opensolaris.org/caselog/PSARC/1995/352/
http://arc.opensolaris.org/caselog/PSARC/2001/559/
http://arc.opensolaris.org/caselog/PSARC/2001/559/
http://arc.opensolaris.org/caselog/PSARC/2004/504/
http://arc.opensolaris.org/caselog/PSARC/2004/504/

Virtual IO device protocols

263

• If LBA is equal to the PartitionEntryLBA field from the GUID Partition Table Header, then the vdisk
server should the contents of the EFI data field to set the GUID Partition Entry array (aka GPE).

The format of the GUID Partition Table Header and GUID Partition Entry are beyond the scope of this
document and are defined in the Extensible Firmware Interface Specification[efi].

29.2.3.15. VDisk Reset (VD_OP_RESET)

This command is used by the vDisk client to request the vDisk server to reset the disk or device being
exported by it. It is implementation independent as to whether the server physically resets the underlying
device or it chooses to only simulate a device reset.

Following a reset, any exclusive access rights or options that might have been set us-
ing the VD_OP_SET_ACCESS operation should be cleared in a way similar to receiving a
VD_OP_SET_ACCESS operation with the CLEAR option.

In the event of a connection loss between the vDisk client and server, the vDisk server should behave as if
it has received a VD_OP_RESET operation. It should clear any exclusive access rights or options set using
the VD_OP_SET_ACCESS operation. A vDisk server implementing the disk reset is required to complete
the operation prior to reestablishing the connection with the vDisk client.

29.2.3.16. VDisk Get Access (VD_OP_GET_ACCESS)

This command is used by the vDisk client to query whether it has access to the disk being exported by
the vDisk server. The response has a payload of a single 64-bit unsigned integer, and may contain the
following values:

0x00 (DENIED) The access to the disk is not allowed.

0x01 (ALLOWED) The access to the disk is allowed.

29.2.3.17. VDisk Set Access (VD_OP_SET_ACCESS)

This command is used by the vDisk client to request exclusive access to the disk being exported by the
vDisk server. The payload is a single 64-bit unsigned integer. It can either contain a value of 0, or a bitmask
of the following non-zero values:

0x00 (CLEAR) The vDisk server should clear any exclusive access rights, and restore non-ex-
clusive, non-preserved access rights. In particular, the vDisk server should re-
linquish any exclusive access rights that have been acquired with the EXCLU-
SIVE flag, and disable any mechanism to preserve exclusive access rights en-
abled with the PRESERVE flag.

0x01 (EXCLUSIVE) The vDisk server should acquire exclusive access rights to the disk. When the
vDisk server has exclusive access rights to the disk then any access to the disk
from another host should fail. If another host already has acquired exclusive
access rights to the disk then the vDisk server should fail to acquire exclusive
access rights.

0x02 (PREEMPT) The vDisk server can forcefully acquire exclusive access rights to the disk. If
another host has already acquired exclusive access rights to the disk, then the
vDisk server can preempt the other host and acquire exclusive access rights.

0x04 (PRESERVE) The vDisk server should try to preserve exclusive access rights to the disk. The
vDisk server should try to restore exclusive access rights if exclusive access
rights are broken via random events (for example disk resets). When restoring

Virtual IO device protocols

264

the exclusive access rights, the vDisk server should not preempt any other host
having exclusive access rights to the disk.

The PREEMPT and PRESERVE flags are only valid when the EXCLUSIVE flag is set.

In the event of a connection loss between the vDisk client and server, the vDisk server should perform the
equivalent operation to a vDisk Reset Command (VD_OP_RESET) received from the client, and exclusive
access rights and options should be cleared.

If the vDisk client still requires exclusive access rights following a connection reset, then it should send a
new VD_OP_SET_ACCESS operation to the vDisk server and request exclusive access.

29.2.3.18. VDisk Get Capacity (VD_OP_GET_CAPACITY)

This command is used to get information about the capacity of the disk volume export by the vDisk server.
A successful completion of this command will result in the following data structure being returned to the
client in the buffer described by the LDC cookie(s) in the descriptor ring:

 6 3 3
 3 2 1 0
 +----------------------------+-------------------------------+
 word 0: | VDISK_BLOCK_SIZE | reserved |
 +----------------------------+-------------------------------+
 word 1: | VDISK_SIZE |
 +--+

The vdisk_block_size field contains the length in byte of the logical block of the vDisk. The
vdisk_block_size should be the same value as the vdisk_block_size returned during the ini-
tial handshake as part of the attribute exchange.

The vdisk_size field contains the size of the vDisk in blocks specified as a multiple of
vdisk_block_size.

If the vDisk server is unable to obtain the vDisk size, it should set the vdisk_size to -1. Under these
circumtances, the vDisk client can retry the operation later to check if the size is available.

29.3. Virtual network protocol

This section describes the packet formats and protocol used for the virtual networking infrastructure be-
tween logical domains.

29.3.1. Attribute information

During the initial handshake, as part of the CTRL/INFO/ATTR_INFO message, the virtual network de-
vice will exchange information with the virtual switch and other vNetwork devices about the transfer pro-
tocol, its address and MTU. The format of the attribute payload is shown below:

 6 5 5 4 4 3 3 1 1
 3 6 5 8 7 2 1 6 5 0
 +-----------+-----------+-------------+----------------------------+
word 1: | TYPE_CTRL | I/A/N | ATTR_INFO | SID |
 +-----------+-----------+-------------+-----------+---------+------+

Virtual IO device protocols

265

word 2: | XFER_MODE | ADDR_TYPE | ACK_FREQ | PLNK_UPDT | OPTIONS | rsvd |
 +-----------+-----------+-------------+-----------+---------+------+
word 3: | ADDR |
 +--+
word 4: | MTU |
 +--+

The sending client, be it a virtual network device and/or virtual switch will provide its peer with the transfer
mode, acknowledgment frequency, address, address type and MTU it intends to use for sending network
packets. The peer ACKs the attribute message if it agrees to all the parameters.

Currently the only supported address type is:

VNET_ADDR_ETHERMAC 1 Ethernet MAC Address

The addr field contains the mac address of the client sending the attribute information.

If VIO version 1.3 or lower is negotiated, it is required that the MTU exchanged by either ends during the
attribute exchange matches exactly. If version 1.4 or higher is negotiated, and the MTU received in the
ATTR/INFO doesn't match the receiver's MTU, it ACKs with the lower of the two MTUs. All subsequent
communication between both ends are required to use the mutually agreed upon MTU.

If VIO version 1.4 or lower is negotiated, bits 32-63 in word-2 are reserved; i.e., they must be set to 0
and will be ignored by the peer. If VIO version 1.5 is negotiated, the PLNK_UPDT field (bits 32-39) is
used to indicate any physical link information updates that a vNet device is interested in. Bits 40-63 are
reserved. A vNet device could negotiate with the vSwitch device to obtain updates about certain physical
link properties. Only “physical link status” updates are supported for now and only the lower 2 bits of this
8-bit field are defined and the remaining bits within this field are reserved.

A vNet device that desires to get physical link status updates sets this field to the appropriate value (see bit
definitions below) in its ATTR/INFO message to the vSwitch. Depending on its capabilities, the vSwitch
device either ack's or nack's by updating these bits in its response message. Note that a vSwitch device
must not nack the attribute message itself simply because it cannot support link status notifications; the
physical link update bits only indicate the desire by the vNet device and it is not guaranteed that the vSwitch
device will be able to provide that information. Thus, if the rest of the information in the ATTR/INFO
message is acceptable to the vSwitch except PLNK_UPDT bits, then only the PLNK_UPDT field must be
nack'd by setting the appropriate bits; and the attribute message itself should be acknowledged by sending
a ATTR/ACK message. Also, note that these bits are relevant only when the peers involved in the attribute
exchange are a vNet device and a vSwitch. The bits are reserved and must be ignored during handshake
between two vNet peers.

Bit definitions of the PLNK_UPDT field:

PHYSLINK_UPDATE_NONE 0 No plink props desired

PHYSLINK_UPDATE_STATE 1 Need plink state updates

PHYSLINK_UPDATE_STATE_ACK 2 Can update plink state

PHYSLINK_UPDATE_STATE_NACK 3 Cannot update plink state

For further information on the protocol to communicate physical link updates, refer to Section 29.3.5,
“Network Device Physical Link Information Updates”

Starting with version 1.6 of the VIO protocol, the virtual network and virtual switch devices support de-
scriptor rings in VIO_RX_DRING_DATA mode, in addition to the modes that are supported in earlier

Virtual IO device protocols

266

versions of the protocol. If version 1.6 is negotiated, the OPTIONS field (bits 40-47) is used to indicate the
specific descriptor ring mode(s) the VIO device wants to operate in. The supported values for the options
in version 1.6 of the VIO protocol are:

VIO_TX_DRING 1 Transmit descriptor ring

VIO_RX_DRING 2 Receive descriptor ring

VIO_RX_DRING_DATA 4 Receive descriptor ring with data
area

A VIO device and its peer negotiate the specific dring mode in which they will communicate with each
other, as part of their attribute negotiation. Though the version negotiated is 1.6, a device and/or its
peer can choose not to operate in RX_DRING_DATA mode. Also, a device can choose to operate in
RX_DRING_DATA mode with only some of its peers. A device must indicate the specific dring mode(s)
that it can negotiate with its peer, by setting the corresponding bits in the options field. The peer reads
this field. If at least one of the modes is acceptable, it responds by sending an ACK message. In its ACK
message, it leaves only the bit corresponding to the mode it chooses and clears the remaining bits, even if
more than one mode is acceptable. If the peer does not support any of the modes requested in the message,
it responds by sending a NACK message.

29.3.1.1. Multicast information

Virtual network devices can set/unset the multicast groups they are interested in to a virtual network switch
at any point after a succesful handshake and during normal data transfer. Each packet sent by a vnet device
is of type CTRL/INFO/MCAST_INFO.

VNET_MCAST_INFO 0x101 Multicast information

If the set field is equal to '1', then the corresponding mcast addresses are being set by the vnet device, or
else the switch assumes that the specified address(es) are being removed. The peer will ACK the info packet
if it successfully registered or removed the specified multicast mac addresses. If the multicast address was
already set earlier or if the network device tries to unset an address that was not set earlier, the virtual
switch will NACK the request. The MCAST_ADDR field can contain a max of VNET_NUM_MCAST (7)
multicast addresses, where each address is ETHERADDRL (6) bytes in length. The count field specifies the
actual number of multicast addresses in the packet.

 6 5 5 4 4 3 3 1 1
 3 6 5 8 7 2 1 6 5 0
 +-----------+-----------+-------------+----------------------------+
 word 1: | TYPE_CTRL | I/A/N | MCAST_INFO | SID |
 +-----------+-----------+-------------+----------------------------+
 word 2: | SET | COUNT | MCAST_ADDR[0] |
 +-----------+-----------+--+
word 3-6: : MCAST_ADDR[1-7] :
 +-------------------------------------+----------------------------+
 word 7: | MCAST_ADDR[7] | Reserved |
 +-------------------------------------+----------------------------+

29.3.2. vNet descriptors

The virtual network and virtual switch devices that use hypervisor shared memory will send and receive
Ethernet frames by specifying the various fields in each descriptor. In VIO_TX_DRING mode, the de-

Virtual IO device protocols

267

scriptor format consists of a header that is common to VIO clients of all classes (See Section 29.1.4.2.3,
“Descriptor Ring Data Message Format (common to all dring modes)”) and a class specific part that is
defined by the specific device class. The format of the class specific descriptor is shown below.

 6 3 3
 3 2 1 0
 +-----------------------------+------------------------------+
 | NBYTES | NCOOKIES |
 +-----------------------------+------------------------------+
 : ldc_cookie * NCOOKIES :
 +--+

In this format, the peers send and receive Ethernet frames by specifying the length of data and the LDC
memory cookies corresponding to the pages containing the frame in each descriptor. See Section 29.1.3.3,
“Descriptor ring registration” for more information about the LDC transport cookie.

The nbytes field specifies the number of bytes being transmitted. The ncookies and ldc_cookie
fields refer to the segment of memory from/to which data is being read/written.

In VIO_RX_DRING_DATA mode, the descriptor consists of only the device class specific part, with no
common header part, as shown below.

 6 3 3
 3 2 1 0
 +--------+--------------------+----------------------------+
 | DSTATE | reserved | NBYTES |
 +--------+--------------------+----------------------------+
 | DATA_BUF_OFFSET |
 +--+

DSTATE This field specifies the state of the descriptor. The valid state values and usage
are same as those described in the case of common descriptor header in Sec-
tion 29.1.4.2.3, “Descriptor Ring Data Message Format (common to all dring
modes)”.

NBYTES The size of the ethernet frame in the data buffer. This field is set by the VIO
device that is transmitting the frame.

DATA_BUF_OFFSET The VIO device which is exporting the descriptor ring and its associated data
buffers sets this field in each descriptor. The field is set to the offset of the data
buffer within the data buffer area, that is assigned to this descriptor. The importing
device must copy the frame to be transmitted to the buffer corresponding at this
offset.

Initially during descriptor ring registration, every descriptor must be initialized by the exporting VIO
device. The DATA_BUF_OFFSET should be set to the offset of the specific buffer in the data buffer
area that is assigned to the descriptor. The descriptor state must be set to VIO_DESC_FREE. When the
peer VIO device (importing end point) needs to transmit a frame, it determines the buffer based on the
buffer offset specified in the descriptor and will copy the frame to be transmitted to this address. It will
mark the NBYTES field to reflect the size of the frame being transmitted. It will mark the DSTATE field
as VIO_DESC_READY. It will then send a DRING_DATA message if necessary as described in Sec-

Virtual IO device protocols

268

tion 29.1.4.2.3, “Descriptor Ring Data Message Format (common to all dring modes)”. The receiving VIO
device will process the corresponding descriptor and its associated buffer. After processing the descriptor,
the receiver may specify a new data buffer offset value (note this is not necessary and implementation
specific) or keep the existing offset, before marking the DSTATE as VIO_DESC_DONE. It then continues
to process the next descriptor and will finally send a DRING_DATA ack message with a proc_state
value of VIO_DP_STOPPED, to the transmitting peer. The transmitter must always read the data buffer
offset field in the decriptor every time it needs to transmit a frame, after verifying that the DSTATE is
VIO_DESC_DONE. The transmitting VIO device must not assume that that data buffer offset remains the
same.

29.3.3. Virtual LAN (VLAN) support

The VIO protocol for virtual network and switch devices will be extended in version 1.3 to include support
for virtual LANs (VLANs) as specified by the IEEE 802.1Q4 specification. A VLAN aware network or
switch device will be capable of sending, receiving or switching Ethernet frames that contain a VLAN
tagged header. If a network/switch device negotiates version 1.3 or higher with its peer, the MTU size
it specifies in the attribute info message (Section 29.3.1, “Attribute information”) should correspond to
the size of a tagged Ethernet frame. Similarly, if a peer negotiates version 1.2 or lower, sending/receiving
tagged frames can result in undefined behavior including the frames being dropped.

29.3.4. Network Device Resource Sharing via DDS

The VIO DDS control message provides the capability to share device resources between VIO device
peers. The DDS framework will be primarily used by a vSwitch device to share the underlying physical
network device's resources with a vNet device.

All DDS messages for vNet and vSwitch devices will contain a class field that uniquely identifies the type
of device from which the resources are being shared. In version 1.3 of the VIO protocol, the vNet device
will define a new DDS message class DDS_VNET_NIU for sharing the resources of a UltraSPARC-T2
NIU device.

DDS_VNET_NIU 0x10 NIU vNet class

Each DDS message of class VNET_NIU sent by a vSwitch or a vNet will contain a subclass field that
specifies the requested operation. The DDS subclass values for a VNET_NIU class are:

DDS_VNET_ADD_SHARE 1 Add a device share

DDS_VNET_DEL_SHARE 2 Remove a device share

DDS_VNET_REL_SHARE 3 Release a device share

DDS_VNET_MOD_SHARE 4 Modify a device share

The DDS_VNET_(ADD/DEL/REL)_SHARE messages subclasses are used when adding or deleting a
resource to a domain or releasing a resource from a domain.

The ADD_SHARE message is used by the vSwitch device to add a virtual region resource uniquely iden-
tified by its cookie to a vNet device identified by its macaddr.

The DEL_SHARE message is similarly used by the vSwitch to remove a virtual region resource that was
previously added using the ADD_SHARE operation.

The REL_SHARE message is used by the vNet device to inform the vSwitch device that it is no longer
using a previously added shared resource. The vSwitch on receiving a REL_SHARE message can reclaim
and reassign the resource to another vNet. A vNet device should not attempt to use a resource that it had

Virtual IO device protocols

269

previously released via the REL_SHARE operation. The message format for the add, delete and release
operations is identical and is shown below:

 6 5 5 4 4 3 3
 3 6 5 8 7 2 1 0
 +-----------+-------------+-----------+----------------------------+
word 1: | TYPE_CTRL | INFO | DDS_INFO | SID |
 +-----------+-------------+-----------+----------------------------+
word 2: | VNET_NIU | A/D/R_SHARE | reserved | DDS_REQUEST_ID |
 +-----------+-------------+-----------+----------------------------+
word 3: | reserved | MACADDR |
 +-------------------------+--+
word 4: | COOKIE |
 +--+

The resource modification operation allows a vSwitch device to modify the contents of a shared virtual
region. In addition to the macaddr and cookie fields, the message also contains a updated map of TX
and RX resources assigned to the virtual region resource. The format of the modify message is shown
below:

 6 5 5 4 4 3 3
 3 6 5 8 7 2 1 0
 +-----------+-------------+-----------+----------------------------+
word 1: | TYPE_CTRL | INFO | DDS_INFO | SID |
 +-----------+-------------+-----------+----------------------------+
word 2: | VNET_NIU | MOD_SHARE | reserved | DDS_REQUEST_ID |
 +-----------+-------------+-----------+----------------------------+
word 3: | reserved | MACADDR |
 +-------------------------+--+
word 4: | COOKIE |
 +--+
word 5: | TX_RES_MAP |
 +--+
word 6: | RX_RES_MAP |
 +--+

In addition to the different CTRL/INFO/DDS_INFO request messages, the vNet and vSwitch devices
will also ACK and NACK all received DDS requests. The ACK and NACK responses will contain a
status field that specify the outcome of the requested operation.

The format of the ACK/NACK response message is below:

 6 5 5 4 4 3 3
 3 6 5 8 7 2 1 0
 +-----------+---------------+-----------+----------------------------+
word 1: | TYPE_CTRL | A/N | DDS_INFO | SID |
 +-----------+---------------+-----------+----------------------------+
word 2: | VNET_NIU | A/D/R/M_SHARE | reserved | DDS_REQUEST_ID |
 +-----------+---------------+-----------+----------------------------+
word 3: | STATUS |

Virtual IO device protocols

270

 +--+

The currently defined ACK and NACK status values are:

DDS_VNET_SUCCESS 0 Operation was successful

DDS_VNET_FAIL 1 Operation failed

29.3.5. Network Device Physical Link Information Updates

The VIO protocol for virtual network and virtual switch devices was extended in version 1.5 to include
support for physical link property updates. A vNet device will be able to negotiate for physical link updates,
as part of its attribute exchange phase of handshake with the vSwitch. Currently, physical link state is the
only property that can be negotiated for updates. See Section 29.3.1, “Attribute information” for details
on the attribute message.

Once a vNet device successfully negotiates physical link state updates, the vSwitch must send an initial
update about the physical link status right after the handshake is complete. Further, whenever the physical
link status changes, the vSwitch must keep updating it to the vNet device, until either the connection is
terminated by the vNet device or the Channel goes down or gets reset.

The packet sent by the vSwitch device to a vNet device is of type CTRL/IN-
FO/VNET_PHYSLINK_INFO. The bits within the physlink_info field indicate the physical link
property and its current value that is being updated to the vNet device. Currently, the lower 2 bits are de-
fined to indicate the physical link state and the remaining bits are reserved. The vNet device on receiving
this should send a message of type CTRL/ACK/VNET_PHYSLINK_INFO back to the vSwitch. The vNet
device can choose to either ignore or nack the message, if it has not negotiated with the vSwitch for phys-
ical link updates or if the message is received while handshake with the vSwitch device is still in progress.

VNET_PHYSLINK_INFO 0x103 Physical Link Information

The format of the physical link information message is as shown below:

 6 5 5 4 4 3 3
 3 6 5 8 7 2 1 0
 +-----------+------------+------------+--------------------------+
word 1: | TYPE_CTRL | I/A/N | PLINK_INFO | SID |
 +-----------+------------+------------+--------------------------+
word 2: | reserved | physlink_info |
 +-------------------------------------+--------------------------+
word 3: | reserved |
 +--+
word 4: | reserved |
 +--+

Bit definitions of the physlink_info field:

VNET_PHYSLINK_STATE_DOWN 1 Physical Link State: Down

VNET_PHYSLINK_STATE_UP 2 Physical Link State: Up

VNET_PHYSLINK_STATE_UNKNOWN 3 Physical Link State: Unknown

271

Chapter 30. Domain services
30.1. Overview

In a Logical Domain environment the ability to discover whether a guest operating system has various
capabilities, and be able to remotely direct it to perform various operations is important. Similarly it is
equally important for a guest operating system to be able to discover and communicate with its various
support services.

Specifically, each guest domain can offer a number of capabilities to its service entity, and similarly the
service entity can offer a set of capabilities for use by the guest domain.

Capabilities may include things such as the ability to perform dynamic reconfiguration, or be directed to
perform a graceful shutdown or reboot by a service entity.

As a domain transitions through various operational phases, (for example while booting) its capabilities
may change. The capabilities of a simple guest OS like OpenBoot are not the same as those of a full blown
operating system such as Linux or Solaris. Similarly services that are offered to a domain by its service
entity/entities may come and go if, for example, a service processor re-boot occurs.

Consequently it is a requirement that the mechanism for capability discovery and communication must be
able to cope with the dynamic nature of both a guest domain and its service entities.

This section describes the protocol by which a guest OS may register its capabilities with its service en-
tity/entities, and vice-versa. The registration process includes independent version negotiation between
client and service for each capability.

Once a capability has been registered, the domain services protocol then provides a data transport for client
and service to communicate directly with each other independently of other capability services which may
be using the same channel.

30.1.1. Communication Stack

The domain services (DS) mechanism is layered on top of domain channels to facilitate communication
between a guest domain and its service entities. The reliable mode protocol of the Logical Domain Chan-
nel (LDC) framework is leveraged to ensure in-order guaranteed packet delivery as well as detection of
faults on the communication channel— including loss of connection due to, say, the communication peer
crashing or re-booting.

On top of the LDC reliable protocol the DS protocol handles the registration of provider capabilities with
their consumer(s), and subsequently the routing of data messages for those registered capabilities.

The content of transported messages is specific to the higher-level protocol between the particular DS
service and its client. The DS communication stack is illustrated below.

Domain services

272

Figure 30.1. Domain Service communication stack Layers

Capability
Provider

Capability
Consumer

...

Domain Services Layer

LDC Reliable Datagram Layer

By analogy, just as LDC provides a low level transport, like IP, the domain services protocol provides a
name service and connection transport protocol, like TCP, to facilitate communication between a capability
provider and its consumer.

Messages for a set of registered capabilities are multiplexed over a shared LDC channel.

This basic communication flow is illustrated below.

Figure 30.2. Domain Services Communication Path Example

vBSC/ LDM

LDC LDC

ds

dr- cpu

md- update

domain- shutdown

...

Hypervisor

Service Ent ity Guest Domain

Domain services

273

30.2. Domain Services Protocol

30.2.1. Definitions

Unless otherwise stated, each of the fields and sizes specified herein are given in bytes (octets). Byte or-
dering for multi-byte fields is network byte order (big-endian). All variable-length character array defini-
tions are assumed to be NUL-terminated sequences of ASCII values, with a maximum length (including
the terminating NUL) less than or equal to the constant MAX_STR_LEN, defined as:

MAX_STR_LEN 1024

30.2.2. DS Message Header

All DS messages consist of a fixed sized header followed by a variable length data payload. The header
format is as follows:

Offset Size Field name Description

0 4 msg_type Message type

4 4 payload_len Payload length

The data payload content is defined according to the msg_type field.

30.2.3. DS protocol fixed message types

The DS protocol always supports three message types and payloads, as described below, independent of
the current version of the protocol. The type-specific payload is described below each type.

The message types described in this section are intended for version negotiation of the basic DS protocol.
All other message types are undefined until the DS protocol version has been negotiated.

The underlying LDC reliable protocol layer will ensure error-free packet delivery, so corrupted packets
will already have been dropped. However, receipt of unknown packet types may still occur as a result of
bugs or due to malicious guest OS behavior. Upon the receipt of an unknown or undefined (for the currently
negotiated DS protocol version) packet type, the recipient should discard the datagram, and close the LDC
channel. This action resets the domain services channel connection. Re-opening the channel again should
ensure complete end-to-end protocol negotiation and re-registration of capabilities.

30.2.4. Initiate DS connection

msg_type:

DS_INIT_REQ 0x0

Payload:

Offset Size Field name Description

0 2 major_vers Requested major number

2 2 minor_vers Requested minor number

30.2.5. Initiation acknowledgment

msg_type:

Domain services

274

DS_INIT_ACK 0x1

Payload:

Offset Size Field name Description

0 2 minor_vers Highest supported minor version

30.2.6. Initiation negative acknowledgment

msg_type:

DS_INIT_NACK 0x2

Payload:

Offset Size Field name Description

0 2 major_vers Alternate supported major version

30.2.7. DS protocol version negotiation

The DS protocol negotiation involves a countdown algorithm in an attempt to agree on a common major
number. Major numbers correspond to incompatible changes; both sides must agree on a major version
number for the version negotiation to proceed. As part of agreeing on a major number agreement, each
side learns of the other's highest supported corresponding minor number. Minor numbers correspond to
backwards-compatible changes; the two sides implicitly agree to use the lower of the two minor numbers
exchanged, and the negotiation is successfully completed.

Specifically, the negotiation is initiated by the guest sending the DS_INIT_REQ message to the service
entity listening on the other end of the domain channel. This message includes major and minor version
numbers supported by the guest.

If the service entity can't support the major version number sent from the guest, it responds with the
DS_INIT_NACK message, specifying the closest major version number it can support. The guest can
then initiate a new negotiation if it wants (i.e. if it can support the alternate major number returned by
the service entity). However, if the service entity's DS_INIT_NACK message includes a major number
of zero, the service entity should assume that the guest does not support any version of the DS protocol
in common with it.

If the major number sent in the DS_INIT_REQ message is one the service entity supports, it returns
a DS_INIT_ACK message specifying the highest minor number of the protocol version it supports.
Since minor number changes correspond to compatible protocol changes, once the guest receives the
DS_INIT_ACK message, both sides can communicate using the version of the protocol corresponding to
the major number agreed to, and the lower of the two minor numbers exchanged The version negotiation
is now successfully completed.

30.3. DS protocol version 1.0

30.3.1. Service Handles

A service handle (svc_handle) is an opaque 64-bit descriptor that uniquely identifies an instance of
a service. It is analogous to a TCP port number, and is specified as part of the DS_REG_REQ message
(described in Section 30.3.4.1, “Register Service”), sent to begin the negotiation/registration process for a
capability. It is used during this phase to identify the specific negotiation in progress (there could be more

Domain services

275

than one). Once a capability has been registered, it is used to identify the entity to be notified on receipt
of a message. Similarly, when a capability sends a message to a client, the handle identifies the sender. It
also identifies the target service during the unregistration process.

30.3.2. Service Identifier

The DS_REG_REQ message also specifies a service identifier (svc_id), a NUL-terminated character
string naming the service. The format and restrictions on the svc_id string are identical to the PROP_STR
type's data field as defined in Chapter 8, Machine description.

30.3.3. Result Codes

Some of the response message types defined herein include a result field in their payload to indicate a
reason for failure. The complete list of such failure codes is presented here. The definition of each is
included in the section describing the response message type to which it belongs.

DS_REG_VER_NACK 0x1

DS_REG_DUP 0x2

DS_INV_HDL 0x3

DS_TYPE_UNKNOWN 0x4

30.3.4. DS Message types defined for v.1.0 of the DS protocol

30.3.4.1. Register Service

msg_type:

DS_REG_REQ 0x3

Payload:

Offset Size Field name Description

0 8 svc_handle Service handle

8 2 major_vers Requested major version

10 2 minor_vers Requested minor version

12 variable
length

svc_id Service name

30.3.4.2. Register Acknowledgment

msg_type:

DS_REG_ACK 0x4

Payload:

Offset Size Field name Description

0 8 svc_handle Service handle sent
in DS_REG_REQ

8 2 minor_vers Highest supported minor version

Domain services

276

30.3.4.3. Register Failed

msg_type:

DS_REG_NACK 0x5

Payload:

Offset Size Field name Description

0 8 svc_handle Service handle sent
in DS_REG_REQ

8 8 result Reason for the failure

16 2 major_vers Alternate supported major version

A DS_REG_NACK message can return the following result codes:

DS_REG_VER_NACKCannot support requested major version

DS_REG_DUP Duplicate registration attempted

30.3.4.4. Unregister Service

msg_type:

DS_UNREG 0x6

Payload:

Offset Size Field name Description

0 8 svc_handle Service handle to unregister

30.3.4.5. Unregister OK

msg_type:

DS_UNREG_ACK 0x7

Payload:

Offset Size Field name Description

0 8 svc_handle Service handle sent in DS_UNREG

30.3.4.6. Unregister Failed

msg_type:

DS_UNREG_NACK 0x8

Payload:

Offset Size Field name Description

0 8 svc_handle Service handle sent in DS_UNREG

Domain services

277

30.3.4.7. Data Message

msg_type:

DS_DATA 0x9

Payload:

Offset Size Field name Description

0 8 svc_handle Service handle that is the des-
tination of the data message

Note

The DS_DATA header is defined so that when combined with the basic DS header the final pay-
load delivered to the service is aligned on a 64-bit boundary with regard to the entire DS datagram
delivered by LDC.

This alignment is to enable an implementation to potentially utilize an optimized copy when/if
creating a message buffer for the final destination service.

30.3.4.8. Data Error

msg_type:

DS_NACK 0xa

Payload:

Offset Size Field name Description

0 8 svc_handle Service handle sent in DS_DATA

8 8 result Reason for failure

A DS_NACK message can return the following result codes:

DS_INV_HDL Service handle not valid

DS_TYPE_UNKNOWNUnknown msg_type received

30.3.5. DS Capability Version Negotiation & Registration

Version negotiation for DS capabilities utilizes exactly the same countdown algorithm as used in the DS
Protocol version negotiation, with the same semantics for major & minor numbers, and corresponding
message types for implementation. The details of that portion of the protocol are not repeated here.

The registration process is the way in which DS capabilities advertise their availability. A registration is
initiated by the service sending a DS_REG_REQ message containing both a service handle and a service
identifier.

In response to a successful registration, the other side sends back a DS_REG_ACK message that includes
the same service handle provided in the original message. Until this response is received, the DS service
interface for this client is not available.

Domain services

278

A DS_REG_NACK message is returned if the protocol major version numbers do not match (re-
sult: DS_REG_VER_NACK) or if a service with the same service ID is already registered (result:
DS_REG_DUP).

This negotiation/registration handshake must occur whenever the underlying LDC comes up. If there is
an event that causes the LDC to go down, all services are automatically unregistered. When the channel
comes back up, all services must therefore re-register themselves.

30.3.6. Service Requests

Once the registration handshake has occurred, a DS client can send data messages to any of the registered
servers by sending a DS_DATA message.

The data message payload includes the svc_handle of the service that is the intended recipient of the
message. Following that is any service-specific payload. The payload_len field of the header is the
length of the entire payload.

The final recipient of the message payload does not receive the DS header or the svc_handle. It only
receives the remainder of the payload and an indication of the length of that portion of the payload.

If there is an error in the message that results in the inability of DS to forward the message to the intended
recipient, a DS_NACK reply message is sent back with an error indication of either DS_INV_HDL (invalid
svc_handle) or DS_TYPE_UNKNOWN (unknown msg_type received) in the result field. Note that
the original payload is not returned.

If the message is forwarded all the way to the service successfully, the higher level protocol implemented
by that service determines what if any reply message is sent.

30.3.7. Unregistration

In the event that a capability becomes unavailable, such as if the kernel module that provides it is unloaded,
a DS_UNREG message is sent.

The svc_handle field of the DS header is filled with the service handle that uniquely identifies the
registered service. There is no payload to this message.

Once the first message is received, the service handle is invalidated and connections to that service are
closed.

If the DS LDC channel goes down, all registered services are forced to the unregistered state by one or
both sides that are still running. Before a service can be used again, both the DS infrastructure handshake
and the service registration handshake must be re-negotiated.

Service handles should not be reused after a service is unregistered. This prevents successful use of a stale
handle. Service handles may be re-used after the basic LDC connection is taken down and then up, and
the overall DS framework is reset as a result.

30.4. DS Capabilities

A DS capability is defined as any service provided by one subsystem on behalf of another. Capabilities
are based on functionality rather than software module boundaries. Thus, a module can register multiple
capabilities if it provides multiple features that are logically grouped together. Associated with a capability
are a service identifier and a service handle.

The following sections describe the core DS capabilities supported in a Logical Domain environment.

Domain services

279

30.5. MD Update Notification version 1.0

The MD update capability allows a service entity to notify a guest when the entity has modified the guest's
Machine Description. It is the responsibility of the MD update capability to parse the new MD, determine
what has changed, and initiate the steps required to adjust the guest configuration accordingly. The exact
steps taken upon receiving an MD update notification may vary depending on the type of guest running
in the domain.

30.5.1. Service ID

The following service ID should should be added to the Domain Services registry for the MD Update
capability.

Service ID Description

"md-update" Notification of MD updates

30.5.2. MD Update Request

Payload:

Offset Size Field name Description

0 8 req_num Request number

The req_num field is used to match up request and response messages; the same number is used in the
request and its associated response; the value itself is opaque to the clients of the protocol.

30.5.3. MD Update Response

Payload:

Offset Size Field name Description

0 8 req_num Request number

8 4 result Result of operation

An MD update response message can return the following result codes:

MD_UPDATE_SUCCESS 0x0

MD_UPDATE_FAILURE 0x1

MD_UPDATE_INVALID_MSG 0x2

30.6. Domain Shutdown version 1.0

The Domain Shutdown capability allows a service entity to send a DS_DATA message requesting a guest
to gracefully shutdown. The response indicates whether the request was successful (i.e. initiation of shut-
down has occurred). If the request is denied, the response can include an informational message, encoded
as a NUL-terminated ASCII string, describing the reason for denying the request (e.g. something like “DR
in progress”).

30.6.1. Service ID

The following service ID should should be added to the Domain Services registry for the Domain Shutdown
capability.

Domain services

280

Service ID Description

"domain-shutdown" Request a graceful shutdown

30.6.2. Domain Shutdown Request

Payload:

Offset Size Field name Description

0 8 req_num Request number

8 4 ms_delay milliseconds to delay

ms_delay specifies a time delay in milliseconds before initiation of the shutdown operation.

30.6.3. Domain Shutdown Response

Payload:

Offset Size Field name Description

0 8 req_num Request number

8 4 result Result of operation

12 variable reason ASCII String (NUL-terminated)

reason is a NUL-terminated ASCII string.

A domain shutdown response message can return the following result codes:

DOMAIN_SHUTDOWN_SUCCESS 0x0

DOMAIN_SHUTDOWN_FAILURE 0x1

DOMAIN_SHUTDOWN_INVALID_MSG 0x2

30.7. Domain Panic version 1.0

The Domain Panic capability allows a service entity to send a DS_DATA message requesting a guest to
panic and cause a crash dump to be created. The response indicates whether the request was successful
(i.e. initiation of panic processing has occurred). If the request is denied, the response can include an
informational message, encoded as a NUL-terminated ASCII string, describing the reason for denying the
request (e.g. something like “DR in progress”).

30.7.1. Service ID

The following service ID should should be added to the Domain Services registry for the Domain Panic
capability.

Service ID Description

"domain-panic" Request a panic

30.7.2. Domain Panic Request

Payload:

Domain services

281

Offset Size Field name Description

0 8 req_num Request number

30.7.3. Domain Panic Response

Payload:

Offset Size Field name Description

0 8 req_num Request number

8 4 result Result of operation

12 variable reason ASCII String (NUL-terminated)

reason is a NUL-terminated ASCII string.

A domain panic response message can return the following result codes:

DOMAIN_PANIC_SUCCESS 0x0

DOMAIN_PANIC_FAILURE 0x1

DOMAIN_PANIC_INVALID_MSG 0x2

30.8. CPU DR Version 1.0

The ability to add or remove virtual CPUs from a logical domain is driven from the LDom manager through
this domain service.

30.8.1. Service ID

The following service ID should should be added to the Domain Services registry for the CPU DR capa-
bility.

Service ID Description

"dr-cpu" Dynamic reconfiguration for virtual CPUs

Each DR service message consists of a fixed message header and packet payload as described below. The
overall payload length is determined by subtracting the size of the CPU DR message header (4 bytes) from
the entire domain services packet size.

30.8.2. CPU DR Message Header

All CPU DR messages begin with the same header. The payload that follows the header is specific to a
particular message type.

Payload:

Offset Size Field name Description

0 8 req_num Request number

8 4 msg_type Message type

12 4 num_records Number of records for message

The overall CPU DR protocol consists of a command sent to the client guest that then responds with a
reply indicating the overall success of the request. An error response indicates that the operation was not

Domain services

282

attempted due to an invalid request. A DR_CPU_OK response indicates that the requested operation was
attempted and the response record for each cpu indicates the effect of the attempt for that particular cpu.
The message types identifies either a request or a response to a request.

30.8.3. Message types

The following constants are defined for CPU DR domain service command identifier values.

Request message types:

Type Value ASCII
Value

Definition

DR_CPU_CONFIGURE 0x43 'C' Configure new CPU(s)

DR_CPU_UNCONFIGURE 0x55 'U' Unconfigure CPU(s)

DR_CPU_FORCE_UNCONFIG 0x46 'F' Forcibly unconfigure CPU(s)

DR_CPU_STATUS 0x53 'S' Request the status of CPU(s)

Response message types:

Type Value ASCII
Value

Definition

DR_CPU_OK 0x6f 'o' Request completed successfully

DR_CPU_ERROR 0x65 'e' Request failed (not attempted)

30.8.3.1. CPU DR Request records payload

The CPU DR requests all use the same message payload format, which is a list of records of virtual CPU
IDs within a guest. The number of records of IDs is specified by the num_records field in the packet
header. Each ID is given as a single 4 byte value.

The payload layout is as follows:

Offset Size Field name Description

0 4 id0 First virtual CPU ID

4 4 id1 Second virtual CPU ID

8 4 id2 Third virtual CPU ID

... 4 idN Nth virtual CPU ID

Note: IDs should be provided in ascending numerical order, and should not be duplicated. An implemen-
tation may not assume that IDs are arranged in a specific order, and may not assume that IDs are not
duplicated.

30.8.3.2. Request number

The request number in the message header is a monotonically increasing number that uniquely identifies
each request message.

Responses to requests are expected to use the same request number so that they can be paired with their
original request.

Domain services

283

New requests may be issued without waiting for a response to a preceding request. The underlying transport
protocol is responsible to ensure reliable, in-order and un-duplicated message packets.

Requests are to be processed in the order received.

30.8.3.3. DR_CPU_CONFIGURE request

This command requests that a guest providing this service attempt to configure and bring online a set of
CPUs that have been dynamically reconfigured into the guest's logical domain.

The response to this request indicates success of failure for each individually specified CPU.

Before a configure request, a CPU must be part of the logical domain in the hypervisor and must be present
in the guest's Machine Description. If either of these conditions is not satisfied, the configure response will
indicate that the particular CPU is in the DR_CPU_STAT_NOT_PRESENT state. No other assumptions
may be made about the state of the CPU before a configure request. In particular, attempts to configure
a CPU already in the configured state must succeed.

If the guest provides a service for registering a Machine Description update, that update notification must
be provided to the guest prior to the configure request being given.

After a successful configure request, a CPU is in the configured state, which means that it is available for
general use by the guest. The CPU enters the guest from the hypervisor by means of the cpu_start
hypervisor API (FWARC 2005/116 [http://arc.opensolaris.org/caselog/FWARC/2005/116]). Further steps
required to reach the configured state is guest operating system specific. See [lddr] for details on the
Solaris-specific implementation of the configure request.

30.8.3.4. CPU_UNCONFIGURE request

This command requests that a guest take offline and unconfigure the specified set of CPUs. The response
to this request indicates success or failure for each individually specified CPU.

Before an unconfigure request, a CPU must be part of the logical domain in the hypervisor and must be
present in the guest's Machine Description. If either of these conditions are not satisfied, the unconfigure
response will indicate that the particular CPU is in the DR_CPU_STAT_NOT_PRESENT state. No other
assumptions may be made about the state of the CPU before an unconfigure request. In particular, attempts
to unconfigure a CPU already in the unconfigured state must succeed.

After a successful unconfigure request, the CPU is in the unconfigured state, which means that it is no
longer available for general use by the guest operating system. The CPU is still part of the logical domain
in the hypervisor and is still present in the guest's Machine Description. The CPU enters the hypervisor
from the guest by means of the cpu_stop hypervisor API (Section 13.2.2, “cpu_stop”). Further steps
required to reach the unconfigured state is guest operating system specific. See [lddr] for details on the
Solaris specific implementation of the unconfigure request.

If the guest provides a service for registering a Machine Description update, that update notification will
be provided only after steps have been taken to remove the CPU from the logical domain in the hypervisor
and from the guest's Machine Description.

30.8.3.5. CPU_FORCE_UNCONFIG request

This request is equivalent to CPU_UNCONFIGURE in that it requests that a guest take offline and uncon-
figure the specified set of CPUs. In addition however, the guest may choose to implement an override to
conditions that may have caused failure for any step of a CPU_UNCONFIGURE operation.

http://arc.opensolaris.org/caselog/FWARC/2005/116
http://arc.opensolaris.org/caselog/FWARC/2005/116

Domain services

284

Note: For example, whereas Solaris may elect to fail a CPU_UNCONFIGURE for a CPU to which
certain processes are bound, it may elect to override and unbind those processes in response to the
CPU_FORCE_UNCONFIG request in order to complete the unconfigure or offline operation. Such policy
decisions are guest operating system specific.

The response to this request indicates success or failure for each individually specified CPU.

If the guest provides a service for registering a Machine Description update, that update notification will
be provided only after steps have been taken to remove the CPU from the logical domain in the hypervisor
and from the guest's Machine Description.

30.8.3.6. CPU_STATUS request

This command requests the configuration status of specific CPU(s). The response to this request is guest
policy specific and is provided upon this request for informational purposes.

30.8.4. CPU_DR_OK response payload

The CPU_DR_OK response uses the following format. The response header is followed by an array of
num_records status reports, one for each CPU included in the command request.

Each status report provides information on the result of the requested operation.

The data payload length can be computed from the overall packet length minus the header length and
minus the total size of the num_records status report records.

Following the array of status reports is a variable length data section that may be used to hold additional
string information specific to a particular CPU. Each status report contains an offset into that data section
identifying an additional human-readable NUL-terminated ASCII string when relevant. The offset is spec-
ified as the byte offset into the string data section relative to the first byte of the overall CPU DR packet
header. The domain services header indicates the overall CPU DR packet length.

The CPU status reports have the following format:

Offset Size Field name Description

0 4 cpu_id Virtual CPU ID

4 4 result Result of the operation

8 4 status Status of the CPU

12 4 string_off String offset relative to the start
of the CPU DR response packet

30.8.4.1. CPU_DR_OK Result codes

The result field in the per CPU_DR_OK response record details the result of the requested operation on
the specified CPU within each status record of the CPU_DR_OK response.

The result codes are defined as follows:

Name Value Definition

DR_CPU_RES_OK 0x0 Operation succeeded

DR_CPU_RES_FAILURE 0x1 Operation failed

DR_CPU_RES_BLOCKED 0x2 Operation was blocked

Domain services

285

Name Value Definition

DR_CPU_RES_CPU_NOT_RESPONDING 0x3 CPU was not responding

DR_CPU_RES_NOT_IN_MD 0x4 CPU not defined in the MD

For DR_CPU_UNCONFIGURE the result code DR_CPU_RES_BLOCKED is equivalent to
DR_CPU_RES_FAILURE except that the guest is indicating that the operation may succeed with a sub-
sequent DR_CPU_FORCE_UNCONFIG operation.

30.8.4.2. CPU_DR_OK status codes

The status field in the per CPU_DR_OK response record details the resulting status of the specified CPU
after the requested operation.

The status codes are defined as follows:

Name Value Definition

DR_CPU_STAT_NOT_PRESENT 0x0 CPU ID does not exist even in the MD

DR_CPU_STAT_UNCONFIGURED 0x1 CPU ID exists in MD, but CPU is not con-
figured for use by the guest

DR_CPU_STAT_CONFIGURED 0x2 CPU is configured for use by the guest

30.8.4.3. CPU DR OK response string

Each response record may optionally include a human readable string so that the guest may return a NUL-
terminated ASCII string relevant to each CPU with regard to the requested operation.

If no string is provided the string_off field in the response record for a cpu has the value of zero.

30.8.5. CPU DR Error response

The message type DR_CPU_ERROR is returned as a response to a malformed request message.

The DR_CPU_ERROR response has the following format:

Offset Size Field name Description

0 variable err_msg NUL-terminated string

The maximum length of the err_msg field including the terminal NUL shall be 1024 characters. The error
message will indicate the nature of the failure, such as badly formatted request, intra-guest communication
failure, etc.

Note

the new err_msg field of the response message payload applies only to response messages, and
then only when the msg_type element of the header is DR_CPU_ERROR.

30.9. Memory DR service version 1.0

The ability to add or remove memory from a logical domain is driven from the LDom manager through
this domain service.

A unit of memory is referred to as a memory block (mblk) and is described by an address,size pair in
byte units.

Domain services

286

30.9.1. Service ID

The following service ID should should be added to the Domain Services registry for the memory DR
capability.

Service ID Description

"dr-mem" Dynamic reconfiguration for memory

Each DR service message consists of a fixed message header and optional packet payload described below.
The overall payload length is determined by subtracting the size of the memory DR message header from
the entire domain services packet size.

30.9.2. Memory DR message header

All memory DR messages begin with the same header. The message argument in the header and the
payload that follows the header depend on the message type.

Offset Size Field name Description

0 4 msg_type Message type

4 4 msg_arg Message argument

8 8 req_num Request number

The overall memory DR protocol consists of a command sent to the client guest that then responds with
a reply indicating the overall success of the request.

An error response indicates that the operation was not attempted due to an invalid request. An OK response
indicates that the requested operation was attempted. An operation may affect multiple memory blocks
(mblk). The result of an attempted operation details the status of each mblk affected by the operation in
a separate response record.

The message types identify either a request or a response to a request.

30.9.3. Message types

The following constants are defined for memory DR domain service command identifier values:

Request message types:

Type Value ASCII
Value

Definition

DR_MEM_CONFIGURE 0x4d43 'MC' Configure (add) memory

DR_MEM_UNCONFIGURE 0x4d55 'MU' Unconfigure (remove) memory

DR_MEM_UNCONF_STATUS 0x4d53 'MS' Get memory unconfigure status

DR_MEM_UNCONF_CANCEL 0x4d4e 'MN' Cancel memory unconfigure

DR_MEM_QUERY 0x4d51 'MQ' Query memory info

Response message types:

Type Value ASCII
Value

Definition

DR_MEM_OK 0x6f 'o' Request completed successfully

Domain services

287

Type Value ASCII
Value

Definition

DR_MEM_ERROR 0x65 'e' Request failed (not attempted)

30.9.3.1. Message argument

The msg_arg field contents depend on the message payload format and this is described in specific
request sections below.

30.9.3.2. Request number

The request number in the message header is a monotonically increasing number that uniquely identifies
each request message.

Responses to requests are expected to use the same request number so that they can be paired with their
original request.

New requests may be issued without waiting for a response to a preceding request. The underlying transport
protocol is responsible to ensure reliable, in-order and unduplicated message packets.

Only one DR_MEM_CONFIGURE or DR_MEM_UNCONFIGURE request can be outstanding, see details
below.

Requests are to be processed in the order received.

30.9.3.3. DR_MEM_CONFIGURE request

Request header:

Field name Value

msg_type DR_MEM_CONFIGURE

msg_arg num_records

req_num req_num

Request payload record format:

Offset Size Field name Description

0 8 addr Mblk base real address

8 8 size Mblk size in bytes

Note: An implementation may not assume that mblks are arranged in a specific order, and may not assume
that mblks are not duplicated, but may assume that the mblks do not intersect.

This command requests that a guest providing this service attempts to add the memory described by a set
of mblks that have been dynamically configured into the guest's logical domain. The guest will abort the
request upon the first failure to configure a mblk. The response to this request indicates success or failure
for each individual mblk specified in the request.

Before a configure request, a mblk must be part of the logical domain in the hypervisor and must be present
in the guest's Machine Description. If either of these conditions is not satisfied, the configure response will
indicate that the particular mblk is in the DR_MEM_STAT_NOT_PRESENT state.

Domain services

288

If the guest has registered a MD update service with the LDom manager, the guest should be notified of
a MD update, prior to sending it a memory DR configure request.

After successful completion of a configure operation, a mblk is in the configured state, which means it is
available for general use by the guest.

Only one DR_MEM_CONFIGURE request can be outstanding. The guest will return a a response with a
status value of DR_MEM_RES_BLOCKED if it receives more than one such request.

30.9.3.4. DR_MEM_UNCONFIGURE request

Request header:

Field name Value

msg_type DR_MEM_UNCONFIGURE

msg_arg num_records

req_num req_num

Request payload record format:

Offset Size Field name Description

0 8 addr Mblk base real address

8 8 size Mblk size in bytes

Note: An implementation may not assume that mblks are arranged in a specific order, and may not assume
that mblks are not duplicated, but may assume that the mblks do not intersect.

This command requests that a guest providing this service attempt to unconfigure the memory described by
a set of mblks in the request. The guest will abort the request upon the first failure to unconfigure a mblk.
The response to this request indicates success or failure for each individual mblk specified in the request.

After a successful unconfigure request, a mblk is in the unconfigured state, which means that it is no longer
available for general use by the guest operating system. The mblk is still part of the logical domain and
is still present in the guest's Machine Description.

If the guest provides a service for registering a Machine Description update, that update notification will
be provided only after the unconfigured memory has been removed from the guest's Machine Description.

Only one DR_MEM_UNCONFIGURE request can be outstanding. The guest will return a a response with
a status value of DR_MEM_RES_BLOCKED if it receives more than one such request.

DR_MEM_UNCONFIGURE is a long running operation and may generate a lot of I/O activity as
modified outgoing pages are flushed to disk. A guest may provide interfaces to track and cancel a
DR_MEM_UNCONFIGURE operation, see details below.

30.9.3.5. DR_MEM_UNCONF_STATUS request

Request header:

Field name Value

msg_type DR_MEM_UNCONF_STATUS

Domain services

289

Field name Value

msg_arg 0

req_num req_num

This command requests the status of a DR_MEM_UNCONFIGURE command in progress. If there is no
outstanding unconfigure operation, a DR_MEM_RES_OK result is returned and num_records is set to
0 and no payload follows the response.

30.9.3.6. DR_MEM_UNCONF_CANCEL request

Request header:

Field name Value

msg_type DR_MEM_UNCONF_CANCEL

msg_arg 0

req_num req_num

This command requests the guest to cancel an outstanding unconfigure operation. Following successful
completion of a cancel operation, all the memory for the mblock currently processed in the outstanding
unconfigure request will be reconfigured and available for general use by the guest. Any mblocks already
unconfigured will not be affected no further mblocks in the request will be processed. If there is no out-
standing unconfigure operation, a DR_MEM_RES_OK result is returned. If an error is encountered during
cancel, a DR_MEM_RES_FAILURE result is returned and the cancel request will not affect the outstanding
unconfigure operation.

30.9.3.7. DR_MEM_QUERY request

Request header:

Field name Value

msg_type DR_MEM_QUERY

msg_arg num_records

req_num req_num

Request payload record format:

Offset Size Field name Units Description

0 8 addr bytes Mblk base real address

8 8 size Mblk size

This command queries the current status of the guest memory layout for the memory blocks specified
in the request. The request can be used to determine the memory range within each mblk that may be
unconfigured by the guest.

30.9.4. DR_MEM_OK response

The DR_MEM_OK response uses the following format. The response header may be followed by an array
of num_records status reports, one for each record included in the command request. Each status report
provides information on the results of the requested operation.

Domain services

290

The data payload length can be computed from the overall packet length minus the header length and
minus the total size of the num_records status report records.

Following the array of status reports for certain requests is a variable length data section that may be used
to hold additional string information specific to a particular mblk. Each status report contains an offset into
that data section identifying an additional human readable NUL-terminated ASCII string when relevant.
The offset is specified as the byte offset relative to the first byte of the overall MEM DR packet header.
The domain services header indicates the overall memory DR packet length.

30.9.4.1. DR_MEM_OK result codes

The result code in a DR_MEM_OK response details the affect of the attempted operation.

The result codes are defined as follows:

Name Value Definition

DR_MEM_RES_OK 0x0 Operation succeeded

DR_MEM_RES_FAILURE 0x1 Operation failed

DR_MEM_RES_BLOCKED 0x2 Operation was blocked

DR_MEM_RES_CANCELED 0x3 CPU was not responding

DR_MEM_RES_NOWORK 0x4 CPU not defined in the MD

DR_MEM_RES_PERM 0x5 Permanent memory in span

30.9.4.2. DR_MEM_OK status code

The status field in a DR_MEM_OK response record details the resulting status of the specified mblk
after the requested operation.

The status codes are defined as follows:

Name Value Definition

DR_MEM_STAT_NOT_PRESENT 0x0 Mblk does not exist in MD

DR_MEM_STAT_UNCONFIGURED 0x1 Mblk exists in MD, but mblk is not configured for
use by guest

DR_MEM_STAT_CONFIGURED 0x2 Operation was blocked

30.9.4.3. DR_MEM_OK response string

Each response record may optionally include a human readable string so that the guest may return a NUL-
terminated ASCII string relevant to each mblk with regard to the requested operation. If no string is pro-
vided the string_off field in the response record for a mblk has the value of zero.

30.9.4.4. DR_MEM_CONFIGURE response payload

Response header:

Field name Value

msg_type DR_MEM_OK

msg_arg num_records

Domain services

291

Field name Value

req_num req_num

Response payload record format:

Offset Size Field name Description

0 8 addr Mblk address

8 8 size Mblk size in bytes

16 4 result Result of the operation

20 4 status Status of the mblk

24 4 string_off String offset relative to start

Result codes:

DR_MEM_RES_OK
DR_MEM_RES_FAILURE
DR_MEM_RES_BLOCKED
DR_MEM_RES_NOWORK

Status codes:

DR_MEM_STAT_NOT_PRESENT
DR_MEM_STAT_CONFIGURED
DR_MEM_STAT_UNCONFIGURED

30.9.4.5. DR_MEM_UNCONFIGURE response payload

Response header:

Field name Value

msg_type DR_MEM_OK

msg_arg num_records

req_num req_num

Response payload record format:

Offset Size Field name Description

0 8 addr Mblk address

8 8 size Mblk size in bytes

16 4 result Result of the operation

20 4 status Status of the mblk

24 4 string_off String offset relative to start

Result codes:

DR_MEM_RES_OK
DR_MEM_RES_FAILURE
DR_MEM_RES_BLOCKED
DR_MEM_RES_CANCELED

Domain services

292

DR_MEM_RES_NOWORK
DR_MEM_RES_PERM

Status codes:

DR_MEM_STAT_CONFIGURED
DR_MEM_STAT_UNCONFIGURED

30.9.4.6. DR_MEM_UNCONF_STATUS response payload

Response header:

Field name Value

msg_type DR_MEM_OK

msg_arg num_records

req_num req_num

Response payload record format:

Offset Size Field name Description

0 8 total Total region size

8 8 collected Amount of collected memory

Result codes:

DR_MEM_RES_OK

30.9.4.7. DR_MEM_UNCONF_CANCEL response payload

Response header:

Field name Value

msg_type DR_MEM_OK

msg_arg result

req_num req_num

Result codes:

DR_MEM_RES_OK
DR_MEM_RES_FAILURE

30.9.4.8. DR_MEM_QUERY response payload

Response header:

Field name Value

msg_type DR_MEM_OK

msg_arg num_records

req_num req_num

Domain services

293

Response payload record format:

Offset Size Field name Description

0 8 addr Mblk address

8 8 size Mblk size in bytes

16 8 perm Amount of permanent memory in
mblk

24 8 first_perm First permanent RA in mblk

32 8 last_perm Last permanent RA in blk

The addr and size fields equals the values in the corresponding request.

The perm field is the size of the permanent memory within the mblk. Memory which may not be uncon-
figured is referred to as permanent memory.

The first_perm field is the lower bound of the permanent memory range within the mblk.

The last_perm field is the upper bound of the permanent memory range within the mblk.

The memory in the mblk not contained within the lower and upper bounds is removable. If the perm size
in the response is less than difference of first_perm and last_perm addresses, it is indicative that
there is additional removable (non-permanent) memory between the lower and upper bounds.

Result codes:

DR_MEM_RES_OK

30.9.5. DR_MEM_ERROR response

The message type DR_MEM_ERROR is returned as a response to a malformed request message.

Response header:

Field name Value

msg_type DR_MEM_ERROR

msg_arg 0

req_num req_num

Response payload record format:

Offset Size Field name Description

0 variable err_msg NUL-terminated string

The maximum length of the err_msg field including the terminal NUL shall be 1024 characters. The error
message will indicate the nature of the failure, such as badly formatted request, intra-guest communication
failure, etc.

Note

the new err_msg field of the response message payload applies only to response messages, and
then only when the msg_type element of the header is DR_MEM_ERROR.

Domain services

294

30.10. VIO DR service version 1.0

This service provides ability for the logical domain manager to request the addition or removal of virtual
devices. The service is called Virtual I/O Dynamic Reconfiguration (VIO DR).

This mechanism, if supported by the guest operating system in a virtual machine, allows the logical domain
manager to remotely reconfigure the virtual IO resources provided by and used by a guest domain without
that guest domain needing to be rebooted to “discover” those resources.

30.10.1. Service ID

The following service ID if exported by a guest domain indicates that the guest supports VIO DR and the
domain service described in this section.

Service ID Description

"dr-vio" Dynamic reconfiguration for virtual I/O devices

30.10.2. Message format

Payload:

Offset Size Field name Description

0 8 req_num Request number

8 8 dev_id Device ID

16 4 msg_type Message type

20 variable name Device name

30.10.3. Message types

The message type (msg_type) field contains a value indicating the type of operation being requested.
The following constants are defined for VIO DR Domain Service as message type values:

Type Value ASCII
Value

Definition

DR_VIO_CONFIGURE 0x494f43 'IOC' Configure a new device

DR_VIO_UNCONFIGURE 0x494f55 'IOU' Unconfigure a device

DR_VIO_FORCE_UNCONFIG 0x494f46 'IOF' Forcibly unconfigure a device

DR_VIO_STATUS 0x494f53 'IOS' Request the status of a device

30.10.3.1. DR_VIO_CONFIGURE request

This command requests that a guest providing this service attempt to configure and bring online a virtual
I/O device that has been dynamically added or configured into the logical domain. The response to this
request indicates success or failure for this attempt.

Before a configure request, the selected device must be part of the logical domain's machine description.
No other assumptions may be made about the state of the device before a configure request. In particular,
attempts to configure a device already in the configured state must succeed. This service supports adding

Domain services

295

new virtual IO devices under the channel-devices node of the MD, but not directly under its parent,
the virtual-devices node.

If the guest registers a service for notifying it of a Machine Description update, that update notification
must be provided to the guest prior to the configure request being given.

After a successful configure request, the device is in the configured state, which means that it is available
for general use by the guest. Further steps required to reach the configured state is guest operating system
specific.

30.10.3.2. DR_VIO_UNCONFIGURE request

This command requests that a guest take offline and unconfigure the specified device. The response to this
request indicates success or failure of the request.

Before an unconfigure request, a device must be part of the logical domain's machine description. No
other assumptions may be made about the state of the device before an unconfigure request. In particular,
attempts to unconfigure a device already in the unconfigured state must succeed.

After a successful unconfigure request, the device is in the unconfigured state, which means that it is no
longer available for general use by the guest operating system. The device is still present in the guest's
Machine Description. The steps required to reach the unconfigured state is guest operating system specific.

If the guest provides a service for registering a Machine Description update that update notification will be
provided only after steps have been taken to remove the device from the logical domain in the hypervisor
and from the guest's Machine Description.

30.10.3.3. DR_VIO_FORCE_UNCONFIG request

This request is equivalent to DR_VIO_UNCONFIGURE in that it requests that a guest take offline and
unconfigure the specified device. In addition however, the guest may choose to implement an override to
conditions that may have caused failure for any step of a DR_VIO_UNCONFIGURE operation.

The response to this request indicates success or failure of the request. If the guest provides a service for
registering a Machine Description update, that update notification will be provided only after steps have
been taken to remove the device from the logical domain in the hypervisor and from the guest's Machine
Description.

30.10.3.4. DR_VIO_STATUS request

This command requests the configuration status of a specific device. The response to this request indicates
the current state of the device, which can include an optional descriptive string.

30.10.3.5. Request number

The request number in the message header is a monotonically increasing number that uniquely identifies
each request message.

Responses to requests are expected to use the same request number so they can be paired with their original
request.

New requests may be issued without waiting for a response to a preceding request. The underlying transport
protocol is responsible to ensure reliable, in-order and unduplicated message packets.

Requests are to be processed in the order received.

Domain services

296

30.10.3.6. Device Name

This element of the request message identifies the type of the device which is the target of the request. The
Device Name name field in the request message corresponds to the name property of the virtual-de-
vice node in the Machine Description. It consists of a NUL-terminated string. The maximum length of
this string is 256 characters, including the terminating NUL.

30.10.3.7. Device ID

The Device ID dev_id field in the request message corresponds to the cfg-handle of the virtu-
al-device node in the guest's Machine Description.

30.10.4. VIO DR response message

The overall VIO DR protocol consists of a command sent to the client guest which then responds with a
reply indicating the result of the request.

30.10.4.1. VIO DR response message format

The VIO DR response message has the following format:

Offset Size Field name Description

0 8 req_num Request number

8 4 result Result code

12 4 status Status code

16 variable reason Reason string (cause of error)

30.10.4.2. VIO DR Result codes

The result field in the above message indicates the result of the requested operation on the specified device.
The result codes are defined as follows:

The status codes are defined as follows:

Name Value Definition

DR_VIO_RES_OK 0x0 Operation succeeded

DR_VIO_RES_FAILURE 0x1 Operation failed

DR_VIO_RES_BLOCKED 0x2 Operation was blocked

DR_VIO_RES_NOT_IN_MD 0x3 Device undefined in the MD

For a DR_VIO_UNCONFIGURE request the result code DR_VIO_RES_BLOCKED is equivalent to
DR_VIO_RES_FAILURE except that the guest is indicating that the operation may succeed with a sub-
sequent DR_VIO_FORCE_UNCONFIG operation.

30.10.4.3. VIO DR status codes

The status field in the response message indicates the resulting status of the specified device after the
requested operation. For the response message to a configure or unconfigure request, the result field
indicates the outcome of the operation. The status field contains one of the status codes below to indicate
state of the device after the attempted operation.

Domain services

297

For the response message corresponding to a successful DR_VIO_STATUS request, the status field
will contain one of the codes below, and the result field will contain DR_VIO_RES_OK. If the
DR_VIO_STATUS operation fails, the result field will contain DR_VIO_RES_FAILURE and the
status field will not be meaningful.

The status codes are defined as follows:

Name Value Definition

DR_VIO_STAT_NOT_PRESENT 0x0 Device does not exist in the MD

DR_VIO_STAT_UNCONFIGURED 0x1 Device exists in the MD, but is not configured for
use by the guest

DR_VIO_STAT_CONFIGURED 0x2 Device is configured for use by the guest

A VIO device in the DR_VIO_STAT_UNCONFIGURED state may be safely removed from the domain
configuration. Conversely, a VIO device in the DR_VIO_STAT_CONFIGURED state must not be removed
from the domain configuration as the guest may be accessing it.

30.10.4.4. VIO DR “reason” string

The response message may optionally include a human-readable string so that the guest may return a
NUL-terminated ASCII string containing additional information regarding the requested operation. The
maximum length of this string is 1024 characters including the terminating NUL.

If there is no “reason” string, this field shall contain a single NUL character at the start of the field. In the
case of a successful operation no response string will be returned.

30.11. Crypto DR service version 1.0

The ability to dynamically add or remove hardware crypto providers from a logical domain is driven
from the LDom manager through this domain service. Separate services will be defined for the Modular
Arithmetic Unit (MAU) and the Control Word Queue (CWQ) hardware components.

30.11.1. Service ID

The following service IDs correspond to the cryptographic unit dynamic reconfiguration capabilities of
a guest operating system.

Service ID Description

"dr-crypto-mau" Dynamic reconfiguration for MAU devices

"dr-crypto-cwq" Dynamic reconfiguration for CWQ devices

30.11.2. Message format header

Offset Size Field name Description

0 8 req_num Request number

8 4 msg_type Message type

The same DR service messages are used for both services. Each message consists of a fixed message
header and payload as described below. Overall, the Crypto DR service messages are very similar to the
CPU DR messages.

Domain services

298

All Crypto DR messages begin with the same header. The payload that follows the header is specific to
a particular message type. The Crypto DR protocol consists of a command sent to the client guest which
then responds with a reply indicating the success or failure of the request.

30.11.3. Message Types

The following message types are defined for the Crypto DR domain service.

30.11.3.1. Request messages

Type Value ASCII
Value

Definition

DR_CRYPTO_CONFIGURE 0x43 'C' Configure a new crypto unit

DR_CRYPTO_UNCONFIGURE 0x55 'U' Unconfigure a crypto unit

DR_CRYPTO_FORCE_UNCONFIG 0x46 'F' Forcibly unconfigure a crypto unit

DR_CRYPTO_STATUS 0x53 'S' Request the status of a crypto unit

30.11.3.2. Response messages

Type Value ASCII
Value

Definition

DR_CRYPTO_OK 0x6f 'o' Request completed successfully

DR_CRYPTO_ERROR 0x65 'e' Request failed

30.11.4. Request Payload

The Crypto DR requests all use the same payload format, which is a list of records of virtual CPU IDs
within a guest. Because there is no crypto unit ID defined in the guest, a virtual CPU ID which maps
to the desired crypto unit is passed as the identifier. There should be one virtual CPU ID specified per
targeted crypto unit.

The payload is as follows:

Offset Size Field name Description

0 4 id0 First virtual CPU ID

4 4 id1 Second virtual CPU ID

8 4 id2 Third virtual CPU ID

... 4 idN Nth virtual CPU ID

30.11.5. Request Number

The request number is a monotonically increasing value that uniquely identifies each request. Responses
to requests are expected to use the same request number so they can be paired with the original request.
Requests are to be processed in the order received.

30.11.6. DR_CRYPTO_CONFIG request

This command requests that a guest attempt to configure and bring online the crypto units associated
with the set of virtual CPU ID supplied in the request message. In order to be successful, the crypto unit

Domain services

299

and associated virtual CPUs must already exist in the guest's Machine Description (MD). If both of these
conditions are not satisfied, an error is returned.

30.11.7. DR_CRYPTO_UNCONFIG request

This command requests that the guest attempt to offline and unconfigure the targeted crypto units. An
associated virtual CPU ID is supplied in the request message to identify the crypto unit. In order to be suc-
cessful, the crypto unit and associated virtual CPUs must already exist in the guest's Machine Description
(MD). If both of these conditions are not satisfied, an error is returned.

30.11.8. DR_CRYPTO_FORCE_UNCONFIG request

This command requests that the guest forcibly attempt to offline and unconfigure the targeted crypto units.
However, there is no still guarantee that the guest will be able to successfully complete the request.

30.11.9. DR_CRYPTO_STATUS

The command requests the configuration status for specific crypto units.

30.11.10. DR_CRYPTO_OK response payload

The DR_CRYPTO_OK response uses the following format. The response header is followed by an array
of status reports, one for each crypto unit targeted in the command request. Each status report provides
information on the result of the requested operation. Because there is no crypto unit ID, the virtual CPU
ID is carried in the status report. The crypto unit status reports have the following format:

Offset Size Field name Description

0 4 cpuid Virtual CPU ID

4 4 result Result of the operation

8 4 status Status of the crypto unit

30.11.11. DR_CRYPTO_OK result codes

The result field in the per crypto unit response record conveys the result of the requested operation for
that crypto unit. The result codes are defined as follows:

Name Value Definition

DR_CRYPTO_RES_OK 0x0 Operation succeeded

DR_CRYPTO_RES_FAILURE 0x1 Operation failed

DR_CRYPTO_RES_BAD_CPU 0x2 CPU not in the MD

DR_CRYPTO_RES_BAD_CRYPTO 0x3 Crypto unit not in the MD

30.11.12. DR CRYPTO OK status codes

The status field in the per crypto unit response record conveys the configuration status for the targeted
crypto unit. The status codes are defined as follows:

Name Value Definition

DR_CRYPTO_STAT_NOT_PRESENT 0x0 Crypto unit does not exist in the MD

DR_CRYPTO_STAT_UNCONFIGURED 0x1 Crypto unit exists in the MD, but is not configured
for use by the guest

DR_CRYPTO_STAT_CONFIGURED 0x2 Crypto unit is configured for use by the guest

Domain services

300

30.11.13. DR Crypto Error Response

The message type DR_CRYPTO_ERROR is returned as the response to a malformed request message. No
additional payload is provided.

30.11.14. Operational Overview

30.11.14.1. Offlining a Crypto Unit

When the LDom manager decides to offline a crypto unit (or multiple crypto units), it will build
DR_CRYPTO_UNCONFIG domain service messages, including a list of virtual CPU IDs, each associated
with the specific crypto unit being taken offline. This message must be sent and acknowledged in advance
of any change to the machine description.

The domain service peers in the guest must guarantee that all jobs have completed for that crypto unit and
that no additional work will be scheduled before responding successfully.

30.11.14.2. Onlining a Crypto Unit

When the LDom manager decides to online a crypto unit, if it is a new crypto unit, the guest must first
gets an MD update which includes information about the new crypto unit.

Once that has occurred, the LDom manager will build DR_CRYPTO_CONFIG domain service messages,
including a list of virtual CPU IDs, each associated with the specific crypto unit being brought online.

The domain service peers in the guest will re-read the MD and configure in the new crypto unit based on
the virtual CPU IDs included in the DR_CRYPTO_CONFIG message payload. Once the configuration has
completed, the response will be returned to the LDom manager.

30.12. Variable Configuration version 1.0

The Variable Configuration capability provides the ability for a guest to update the LDom variable store
that is managed by the LDom manager or SP.

30.12.1. Service IDs

There are two service IDs defined to support LDom variable updates, one that describes a primary service
and one that describes a backup service. In the event that the primary service is not available, the guest
can fall back to using the backup service. The backup service uses the identical protocol as the primary
service but is subordinate in priority to the primary service.

Implementation Note: The LDom manager provides the primary service. In the case where the LDom
manager has not been started, or is not currently running, variable updates can be communicated to the
SP using the backup service. OpenBoot in the control domain will use the backup service since the LDom
manager will not be running. OpenBoot in all other domains will use the primary service as long as the
LDom manager is available.

The following service IDs should should be added to the Domain Services registry for the LDom variables
capability.

Service ID Description

"var-config" Primary LDoms variable management

"var-config-backup" Secondary LDoms variable management

Domain services

301

30.12.2. Message Header

Offset Size Field name Description

0 4 cmd Command

30.12.3. Message types

The following constants are defined for Variable Configuration domain service command identifier values:

Name Value Definition

VAR_CONFIG_SET_REQ 0x0 Request setting a variable

VAR_CONFIG_DELETE_REQ 0x1 Request deleting a variable

VAR_CONFIG_SET_RESP 0x2 Response to a set request

VAR_CONFIG_DELETE_RESP 0x3 Response to a delete request

30.12.4. Set Variable Payload

The set command updates the variable in the store. If the variable already exists in the store, the new value
replaces the old value. If the variable does not exist in the store, it is added.

The Variable Configuration header is followed by two NUL-terminated strings. The first represents the
name of the variable to set. The second represents the value to set it to.

Offset Size Field name Description

0 variable name Name of variable to set

variable variable value Value of variable

30.12.5. Delete Variable Payload

The delete command removes a variable from the store. The Variable Configuration header is followed
by one NUL-terminated string. The string represents the name of the variable to delete.

Offset Size Field name Description

0 variable name Name of variable to delete

30.12.6. Response Payload

Responses to set and delete commands share the same format. The Variable Configuration header is fol-
lowed by the following response payload:

Offset Size Field name Description

0 4 result Result of operation

30.12.6.1. Response Result Codes

The result field in the response payload details the result of the requested operation. The result codes are
defined as follows:

Name Value Definition

VAR_CONFIG_SUCCESS 0x0 Operation succeeded

Domain services

302

Name Value Definition

VAR_CONFIG_NO_SPACE 0x1 Variable store is full

VAR_CONFIG_INVALID_VAR 0x2 Invalid variable format

VAR_CONFIG_INVALID_VAL 0x3 Invalid value format

VAR_CONFIG_VAR_NOT_PRESENT 0x4 Variable not present to delete

30.13. Security key domain service version 1.0

The Security Key storage domain service provides the ability for a guest to update the Security Key storage
that is managed by the LDom manager or system controller (SC) (aka service processor).

30.13.1. Service IDs

There are two service IDs defined to support Security key storage, one that describes a primary service
and one that describes a backup service. In the event that the primary service is not available, the control
domain can fall back to using the backup service. The backup service uses the identical protocol as the
primary service but is subordinate in priority to the primary service.

Service ID Description

"keystore" Primary security key management

"keystore-backup" Secondary security key management

Programming Note

The LDom manager typically provides the primary service and the SC can provide the backup
service. For example, OpenBoot in the Control Domain can use the backup service to the SC as
the LDom manager will typically not be running when OpenBoot is active. All other domains
will use the primary service as long as the LDom manager is available.

30.13.2. Message Header

Offset Size Field name Description

0 4 cmd Command

30.13.3. Message types

The following constants are defined for Security Key Store domain service command identifier values:

Name Value Definition

KEYSTORE_SET_REQ 0x0 Request setting a security key

KEYSTORE_DELETE_REQ 0x1 Request deleting a security key

KEYSTORE_SET_RESP 0x2 Response to a set request

KEYSTORE_DELETE_RESP 0x3 Response to a delete request

30.13.3.1. Set keystore Payload

The set command updates the security key in the store. If the security key already exists in the store, the
new value replaces the old value. If the security key does not exist in the store, it is added. The Security
Key header is followed by two NUL-terminated strings. The first represents the name of the Security Key
to set. The second represents the value to set it to.

Domain services

303

Offset Size Field name Description

0 variable name Name of security key to set

variable variable value Value of security key

30.13.3.2. Delete keystore Payload

The delete command removes a Security Key from the store. The Security Key header is followed by one
NUL-terminated string. The string represents the name of the Security Key to delete.

Offset Size Field name Description

0 variable name Name of security key to delete

30.13.4. Response Payload

Responses to set and delete commands share the same format. The Security Key header is followed by
the following response payload:

Offset Size Field name Description

0 4 result Result of operation

30.13.4.1. Response Result Codes

The result field in the response payload details the result of the requested operation. The result codes
are defined as follows:

Name Value Definition

KEYSTORE_SUCCESS 0x0 Operation succeeded

KEYSTORE_NO_SPACE 0x1 Security key store is full

KEYSTORE_INVALID_NAME 0x2 Invalid security key name format

KEYSTORE_INVALID_VAL 0x3 Invalid security key value format

KEYSTORE_NOT_PRESENT 0x4 Security key not present to delete

30.14. PRI Domain Service 1.0

The PRI is intended to contain various kinds of information about a system. Much of this information has
previously been contained in the Machine Description (MD). The PRI domain service will facilitate access
to this information from the Control Domain.

The SC will generate the PRI and send PRI Update Messages containing the PRI to the Control domain
using domain service. The messages will generally be sent when the initial domain service registration
occurs. They may also be sent asynchronously on a channel when the PRI is updated by the SC. Control
domain will respond to the PRI update message by sending a PRI update response. See following sections
for the details.

30.14.1. Service ID

Service ID Description

"pri-update" PRI update domain service

Domain services

304

30.14.2. PRI Update Message

Offset Size Field name Description

0 8 pri_msgnum Message number

8 8 pri_size Size of the PRI data

16 variable pri PRI data

30.14.3. PRI Update Response

Offset Size Field name Description

0 8 pri_msgnum Message number responding to

8 8 status Status of PRI update

30.14.4. pri_msgnum

The pri_msgnum is the message number in the PRI Update header which is a monotonically increasing
number that uniquely identifies each message. Responses to messages are expected to use the same mes-
sage number so that they can be paired with their original message.

New messages may be issued without waiting for a response to a preceding message. The underlying
transport protocol is responsible to ensure reliable, in-order and unduplicated message packets.

Messages are to be processed in the order received.

30.14.5. Response Status Codes

Name Value Definition

PRI_UPDATE_ACK 0x0 PRI successfully received and verified

PRI_UPDATE_INVALID_MSG 0x1 Message payload invalid

PRI_UPDATE_INVALID_PRI 0x2 PRI format invalid

30.15. System Info version 1.0

The System Information capability provides for the ability to query various system information, such as
POSIX utsname strings. It is anticipated that this service may be expanded as needed in the future to
support such areas as, for example, Solaris sysinfo and Solaris kstats.

30.15.1. Service ID

Service ID Description

"system-info" Guest system information queries

30.15.2. Message header

Offset Size Field name Description

0 4 cmd Command

Domain services

305

30.15.3. Message types

The following constants are defined for System Information domain service command identifier values.

Name Value Definition

SYS_INFO_GET_REQ 0x0 Request to get system information

SYS_INFO_GET_RESP 0x1 Response to a “get” request

30.15.4. Get Information Payload

The Get Information header is followed by a variable number of NUL-terminated strings. Each string
represents a specific piece of system information to return. The following are the supported strings:

Name Description

"uts-sysname" utsname.sysname

"uts-nodename" utsname.nodename

"uts-release" utsname.release

"uts-version" utsname.version

"uts-machine" utsname.machine

Note that the string values returned should be identical to what is provided by the POSIX uname(1) user
command. Non-POSIX compliant guest systems may choose to support any of these items if they are
appropriate.

30.15.5. Get Information Response Payload

Response to the Get Information request is a message with the Get Information header followed by the
following response payload. In the event that no datum names were identified, the result field will be
SYS_INFO_INVALID_NAME and the num_pairs field will be zero. If multiple datum names were pro-
vided and not all of them were matched, the result field will be SYS_INFO_SUCCESS and the number
of datum names matched will be in the num_pairs field and their corresponding name/value pairs will
be in the name/value fields. Each datum name and datum value will be a NUL-terminated string.

Offset Size Field name Description

0 4 result Result of Operation

4 4 num_pairs Number of name/value pairs returned

8 variable name1 Name of first datum

variable variable value1 value of first datum

variable variable namen Name of n'th datum

variable variable valuen value of n'th datum

30.15.6. Response Result Codes

The result field in the response payload details the results of the requested operation. The result codes are
defined as follows:

Name Value Definition

SYS_INFO_SUCCESS 0x0 Operation succeeded

SYS_INFO_INVALID_NAME 0x1 Invalid datum name supplied

Domain services

306

30.16. SNMP service version 1.0

This case describes the domain service interface through which a client communicates with the system
controller (SC) (aka service processor) using the SNMP protocol. This service can be used to access en-
vironmental data and other information that may be exported from the system controller. This information
can be dynamically updated— it is the responsibility of a guest operating system to monitor and provide
access to this information to it's users if so desired. Such presentation interfaces are beyond the scope of
this document.

Each of the SNMP Messages consists of a header and a payload. The headers are defined by this specifi-
cation and the payloads consist of data encoded according to the SNMP protocol, as defined by a number
of IETF RFCs. The SNMP protocol versions supported and their message formats are not part of this
specification. The version support is negotiated between the guest operating system's driver and the SNMP
Agent resident on the SC. The SNMP PDUs are simply encapsulated by the SNMP Domain Service that is
the subject of this specification. The length of the SNMP PDU is encoded in the message itself and is not
part of the header. It is left to the consumers at the endpoints on this domain service to send and receive
and detect properly formed SNMP messages. The domain service described below is version 1.0.

30.16.1. Service ID

Service ID Description

"snmp" SNMP domain service

30.16.2. Message header

Offset Size Field name Description

0 8 number Message number

8 8 type Message type

16 variable payload Message-dependent payload

All SNMP messages have the same header format consisting of a message number and a message type.

The message number is a monotonically increasing number that uniquely identifies each message. Re-
sponses to messages are expected to use the same message number so that they can be paired with their
original message. The message number may also be used to distinguish between multiple instances of the
same message type.

New messages may be issued without waiting for a response to a preceding message. The underlying
transport protocol is responsible for ensuring reliable, in-order and unduplicated message packets.

Messages are to be processed in the order received.

30.16.3. Message types

The message type is used to distinguish the different message types. There are three types defined in this
initial version of the protocol specification.

Name Value Definition

SNMP_REQUEST 0x0 SNMP request to an SNMP agent

SNMP_REPLY 0x1 Message from an SNMP agent

SNMP_ERROR 0x2 Error message fro an SNMP agent

Domain services

307

30.16.3.1. SNMP Request Message

An SNMP_REQUEST message is sent by the client carrying a payload to be delivered to the SNMP agent.

The message number value will be used in the SNMP_REPLY message sent in response to this request.

The message type field should indicate an SNMP_REQUEST.

The payload field has a variable length depending on the SNMP data sent as part of the request.

30.16.3.2. SNMP Reply Message

An SNMP_REPLY message is sent by the server in response to a request from the client. It carries a payload
whose content is determined by the SNMP agent acting on the request.

The number field contains the value in the number field of the original request being serviced.

The message type field should indicate an SNMP_REPLY.

The payload field has a variable length depending on the SNMP data.

30.16.3.3. SNMP Error Message

An SNMP_ERROR message is sent by the server in response to a request from the client that cannot be
serviced. These include errors such as being unable to contact the SNMP Agent or timing out waiting for
a reply from the SNMP agent.

The SNMP_ERROR message has no payload.

The message number field contains the value in the message number field of the request that could not
be serviced.

The message type field should indicate an SNMP_ERROR.

30.17. Domain Suspend service version 1.0

The Domain Suspend domain service allows Solaris to initiate a domain suspend operation at the request
of the domain manager. This is required for Cooperative Guest migration wherein the guest initiates the
suspend operation by calling into the hypervisor. Existing Warm Migration makes use of CPU DR to
reduce a domain to 1-strand before the hypervisor pauses the domain. In order to eliminate CPU DR from
migration and to eliminate other restrictions on Warm Migration, Solaris on the guest will call into the
hypervisor to initiate suspension of the domain. Hypervisor calls to support the guest initiated suspend
are described in: Section 12.1.5, “mach_suspend”, Section 13.2.11, “cpu_tick_npt”, and Section 13.2.12,
“cpu_stick_npt”.

30.17.1. Service ID

Service ID Description

"domain-suspend" Sequence a suspend operation on the domain

30.17.2. Domain Suspend Request

Offset Size Field name Description

0 8 req_num Request number

Domain services

308

Offset Size Field name Description

8 8 type Message type

Only one message type is supported and therefore there is only one valid value for the type field. How-
ever, a type field is used to allow for more request types to be added in the future without changing the
request format.

30.17.3. Message types

Name Value Definition

DOMAIN_SUSPEND_SUSPEND 0x0 Request to suspend

30.17.3.1. Domain Suspend Reply Message

Offset Size Field name Description

0 8 req_num Request number

8 4 result Result of operation

12 4 rec_result Result of recovery operation

16 variable reason_result NUL-terminated ASCII string
describing reason for error

The NUL-terminated reason string is limited to 512 characters in length, including the NUL terminator.

When the reason field begins with its first byte being the NUL terminator, it is said to be set to the empty
string.

30.17.3.2. Domain Suspend response result values

The following constants are defined for the suspend service response result and rec_result values.

Result values:

Name Value Definition

DOMAIN_SUSPEND_PRE_SUCCESS 0x0 Pre-suspend success

DOMAIN_SUSPEND_PRE_FAILURE 0x1 Pre-suspend failure

DOMAIN_SUSPEND_INVALID_MSG 0x2 The request is invalid

DOMAIN_SUSPEND_INPROGRESS 0x3 Existing suspend is in progress

DOMAIN_SUSPEND_FAILURE 0x4 Suspend failure

DOMAIN_SUSPEND_POST_SUCCESS 0x5 Post-suspend success

DOMAIN_SUSPEND_POST_FAILURE 0x6 Post-suspend failure

Recovery Result values:

Name Value Definition

DOMAIN_SUSPEND_REC_SUCCESS 0x0 Recovery success

DOMAIN_SUSPEND_REC_FAILURE 0x1 Recovery failure

For responses with a result value of DOMAIN_SUSPEND_PRE_FAILURE,
DOMAIN_SUSPEND_FAILURE, or DOMAIN_SUSPEND_POST_FAILURE, the reason field

Domain services

309

may be populated with a NUL-terminated string describing the reason for the fail-
ure. This is optional and when a NUL-terminated reason string is not provid-
ed, the reason field must must be set to the empty string. For all other
response messages (DOMAIN_SUSPEND_PRE_SUCCESS, DOMAIN_SUSPEND_INVALID_MSG,
DOMAIN_SUSPEND_INPROGRESS, and DOMAIN_SUSPEND_POST_SUCCESS) the reason field is
not used and should be set to the empty string.

For responses with a result value of DOMAIN_SUSPEND_PRE_FAILURE
or DOMAIN_SUSPEND_FAILURE the rec_result must be set to either
DOMAIN_SUSPEND_REC_SUCCESS or DOMAIN_SUSPEND_REC_FAILURE. For all other
response messages (DOMAIN_SUSPEND_PRE_SUCCESS, DOMAIN_SUSPEND_INVALID_MSG,
DOMAIN_SUSPEND_INPROGRESS, and DOMAIN_SUSPEND_POST_SUCCESS, and
DOMAIN_SUSPEND_POST_FAILURE) the rec_result field is not used and its value should be
DOMAIN_SUSPEND_REC_SUCCESS.

30.17.4. Domain Suspend request handling

30.17.4.1. Invalid Request

Upon receiving a suspend domain request, the guest domain will confirm that the request
is a DOMAIN_SUSPEND_SUSPEND request type. If the request has a type field other
than DOMAIN_SUSPEND_SUSPEND, the guest will send a response message with result value
DOMAIN_SUSPEND_INVALID_MSG and a req_num equal to request req_num and then take no fur-
ther action in response to the message.

30.17.4.2. Suspend in Progress

If the request is a valid DOMAIN_SUSPEND_SUSPEND request, but the guest is already pro-
cessing a suspend request, the guest will send a response message with result value
DOMAIN_SUSPEND_INPROGRESS and req_num value equal to the req_num received in the newer
request. The guest will take no further action in response to the message.

30.17.4.3. Pre-suspend

The guest will then perform any pre-suspend processing which results in either success or fail-
ure. In the event of success, the guest will send a response message with result value
DOMAIN_SUSPEND_PRE_SUCCESS and a req_num value equal to the request req_num. In the
event of failure, the guest will undo any partial pre-suspend processing that successfully completed and
then send a response message with result value DOMAIN_SUSPEND_PRE_FAILURE, a req_num val-
ue equal to the request req_num, and optionally a NUL-terminated reason string describing the rea-
son for the failure. If the partial pre-suspend processing is successfully undone, the rec_result field
will be set to DOMAIN_SUSPEND_REC_SUCCESS. Otherwise, the rec_result field will be set to
DOMAIN_SUSPEND_REC_FAILURE. The guest will then take no further action in response to the re-
quest. The intent here is for the user to be presented with a warning message derived from the reason field
indicating that the pre-suspend processing failed and (if applicable) that a particular recovery operation
failed. If a recovery operation failed, the user must then inspect the guest domain and take any action
required to cleanup after failed recovery.

30.17.4.4. Suspend

Next, after the guest sends the DOMAIN_SUSPEND_PRE_SUCCESS response, it will attempt to suspend
itself using the hypervisor interface described in Section 12.1.5, “mach_suspend” which results in either
success or failure. In the event of success, the guest will be suspended and will do no further processing
until it is resumed.

Domain services

310

Implementation Note

Although not described here, an out-of-band mechanism exists allowing the domain manager to
query the state of the domain and to determine when the guest has successfully suspended itself.
It is expected that the domain manager will monitor the guest state until the guest state indicates
that the guest is suspended OR until a DOMAIN_SUSPEND_FAILURE response is received.

In the event that the guest fails to suspend, the guest will undo the pre-suspend processing and
then send a response message with result value DOMAIN_SUSPEND_FAILURE, a req_num val-
ue equal to the request req_num, and optionally a NUL-terminated reason string describing the
reason for the failure. If the pre-suspend processing is successfully undone, the rec_result field
will be set to DOMAIN_SUSPEND_REC_SUCCESS. Otherwise, the rec_result field will be set to
DOMAIN_SUSPEND_REC_FAILURE. The guest will then take no further action in response to the re-
quest. The intent here is for the user to be presented with a warning message derived from the reason field
indicating that the suspend operation failed and (if applicable) that a particular recovery operation failed.
If a recovery operation failed, the user would then inspect the guest domain and take any action required
to cleanup after failed recovery.

30.17.4.5. Resume and Post-suspend

After the guest has successfully suspended itself by calling into the hypervisor, the domain manager per-
forms an out-of-band operation to resume the domain.

After the guest has been resumed, the guest will perform any post-suspend processing which results in
either success or failure. In the event of success, the guest will send a response message with result value
DOMAIN_SUSPEND_POST_SUCCESS and a req_num value equal to the request req_num. The guest
will then take no further action in response to the request and the suspend operation will have completed
successfully, leaving the domain in a normal state. In the event of failure, the guest will send a response
message with result value DOMAIN_SUSPEND_POST_FAILURE, a req_num value equal to the
request req_num, and optionally a NUL-terminated reason string describing the reason for the failure.
The guest will then take no further action in response to the request. At this point, the guest is operational,
subject to how the failing post-suspend processing leaves the guest. The intent is for the user to be presented
with a warning message, derived from the reason string, indicating that the domain was resumed, but that a
particular post-suspend operation failed. The user would then inspect the guest domain and take any action
required to cleanup after failed post-suspend processing.

30.17.5. Message Sequences

The following sections describe the possible message sequences.

30.17.5.1. Sequence 1 (failure)

-> Request: (req_num:n, type: Invalid)
<- Response: (req_num:n, result:DOMAIN_SUSPEND_INVALID_MSG,
 rec_result: DOMAIN_SUSPEND_REC_SUCCESS, reason:0)

30.17.5.2. Sequence 2 (failure)

-> Request: (req_num:n, type:DOMAIN_SUSPEND_SUSPEND)
<- Response: (req_num:n, result:DOMAIN_SUSPEND_INPROGRESS
 rec_result: DOMAIN_SUSPEND_REC_SUCCESS, reason: 0)

Domain services

311

30.17.5.3. Sequence 3 (failure)

-> Request: (req_num:n, type:DOMAIN_SUSPEND_SUSPEND)
<- Response: (req_num:n, result:DOMAIN_PRE_SUSPEND_FAILURE,
 rec_result: DOMAIN_SUSPEND_REC_SUCCESS,
 reason: [optional string])

30.17.5.4. Sequence 4 (failure)

-> Request: (req_num:n, type:DOMAIN_SUSPEND_SUSPEND)
<- Response: (req_num:n, result:DOMAIN_PRE_SUSPEND_FAILURE,
 rec_result: DOMAIN_SUSPEND_REC_FAILURE,
 reason: [optional string])

30.17.5.5. Sequence 5 (failure)

 -> Request: (req_num:n, type:DOMAIN_SUSPEND_SUSPEND)
 <- Response: (req_num:n, result:DOMAIN_SUSPEND_PRE_SUCCESS, reason: 0)
 <- Response: (req_num:n, result:DOMAIN_SUSPEND_FAILURE,
 rec_result: DOMAIN_SUSPEND_REC_SUCCESS,
 reason: [optional string])

30.17.5.6. Sequence 6 (failure)

-> Request: (req_num:n, type:DOMAIN_SUSPEND_SUSPEND)
<- Response: (req_num:n, result:DOMAIN_SUSPEND_PRE_SUCCESS, reason: 0)
<- Response: (req_num:n, result:DOMAIN_SUSPEND_FAILURE,
 rec_result: DOMAIN_SUSPEND_REC_FAILURE,
 reason: [optional string])

30.17.5.7. Sequence 7 (suspend success, post-suspend failure)

-> Request: (req_num:n, type:DOMAIN_SUSPEND_SUSPEND)
<- Response: (req_num:n, result:DOMAIN_SUSPEND_PRE_SUCCESS, reason: 0)
-- [suspend and resume occurs]
<- Response: (req_num:n, result:DOMAIN_SUSPEND_POST_FAILURE,
 rec_result: DOMAIN_SUSPEND_REC_SUCCESS,
 reason: [optional string])

30.17.5.8. Sequence 8 (success)

Domain services

312

-> Request: (req_num:n, type:DOMAIN_SUSPEND_SUSPEND)
<- Response: (req_num:n, result:DOMAIN_SUSPEND_PRE_SUCCESS, reason: 0)
-- [suspend and resume occurs]
<- Response: (req_num:n, result:DOMAIN_SUSPEND_POST_SUCCESS,
 rec_result: DOMAIN_SUSPEND_REC_SUCCESS,
 reason: 0)

313

Chapter 31. Diagnostic services
Guests may be allowed to invoke their own diagnostic code with hypervisor privileges. Such code is often
used for bring-up, verification, and error injection purposes. It is expected that these services will only
be used internally at Sun.

The hypervisor will disallow the services defined here unless explicitly configured otherwise. The diag-
nostic code may destabilize the entire platform, including other guests, as it runs without restriction. There
are no air bags.

31.1. API calls

31.1.1. diag_ra2pa

trap# FAST_TRAP

function# DIAG_RA2PA

arg0 ra

ret0 status

ret1 pa

Translates a guest's real address into the underlying platform's physical address.

This is required to specify the diagnostic code invoked by the diag_hexec call as well as to pass pointers
to guest data structures to the diagnostic code.

It is not guaranteed that the entire span of an object is physically-contiguous simply because it is contiguous
in the real address space. Care must be taken when using code or data larger than the smallest page size
the platform supports.

31.1.1.1. Errors

ENOACCESS Guest not permitted to invoke diag_ra2pa

ENORADDR Invalid real address ra

31.1.2. diag_hexec

trap# FAST_TRAP

function# DIAG_HEXEC

arg0 codepa

ret0 status

Invokes diagnostic code located at physical address codepa at the next higher trap level. The diagnostic
code executes in a hyperprivileged environment.

The caller may specify other arguments and the invoked code may return other return values. The code
is run in the hyperprivileged, processor-specific environment of the underlying hardware. Arguments that
are guest pointers (virtual or real) will have to be converted to physical addresses using diag_ra2pa
prior to invoking this service.

The diagnostic code is expected to execute a SPARC v9 done instruction to return to the caller. How or
if the code returns cannot be enforced by the hypervisor.

Diagnostic services

314

If the guest is not permitted to make this call then ret0 will contain ENOACCESS. Otherwise the invoked
diagnostic code is expected to set ret0 appropriately.

31.1.2.1. Errors

ENOACCESS Guest not permitted to invoke diag_hexec

315

Appendix A. Number Registry
This appendix provides a registry of API services, their assigned trap and function numbers, and currently
defined version groups and version numbers.

A.1. API Groups

The definitions of the API groupings for the versioning API (Chapter 11, API versioning) are as follows:

Table A.1. API Groups

Group Group# Definition

Common 0x000 sun4v platform

Common 0x001 Core APIs

Common 0x002 Interrupt APIs

Common 0x003 Guest Soft State

0x004 Reserved

Technology 0x100 PCI

Technology 0x101 Logical Domain Channels

Technology 0x102 Service Channels

Technology 0x103 Niagara Crypto Services

Technology 0x104 Niagara Random Number Generator

Common 0x105 Parallel Boot Services

Common 0x106 Sun4v FMA Support Services

Technology 0x107 Trusted Platform Module (TPM) Services

Technology 0x108 Reserved for PCI Static Direct I/O and PCIe IOV

Technology 0x109 Reserved for PCI Static Direct I/O Trivial Error Model

Common 0x110 Reboot Data Services

Performance Measurement 0x200 UltraSPARC-T1 performance counters

Performance Measurement 0x201 Fire PCI performance counters

Performance Measurement 0x202 UltraSPARC-T2 performance counters

Performance Measurement 0x203 UltraSPARC-T2 PIU performance counters

Technology 0x204 UltraSPARC-T2 NIU Services

Performance Measurement 0x205 UltraSPARC-T2+ performance counters

Performance Measurement 0x209 UltraSPARC-T3 performance counters

Performance Measurement 0x20a UltraSPARC-T3 IOS performance counters

Common 0x20e Global De-Map

Test & Development 0x300 Platform-specific optional test interfaces

A.2. Hyper-fast Trap numbers

For hyper-fast traps, the sw_trap_numbers are encoded in the Tcc instruction that enters the hypervisor.

Number Registry

316

The use of unassigned trap numbers result in EBADTRAP being returned in %o0 as described in section
2.3.

A.3. FAST_TRAP Function numbers
Function numbers for fast-traps are provided in %o5 as a 64-bit value.

The use of unassigned function numbers used for fast-traps result in EBADTRAP being returned in %o0
as described in section 2.3.

A.4. CORE_TRAP Function numbers
CORE_TRAP APIs are defined and guaranteed present for all sun4v hypervisor versions.

These APIs follow the same calling conventions as FAST_TRAP API services. Four CORE_TRAP func-
tions are currently defined as follows:

API_VERSION
See Section 11.1.1, “api_set_version”

API_PUTCHAR
an alias for FAST_TRAP function CONS_PUTCHAR, see Section 18.1.2, “cons_putchar”

API_EXIT
an alias for FAST_TRAP function MACH_EXIT, see Section 11.1.2, “api_get_version”

API_GET_VERSION
defined in Section 11.1.2, “api_get_version”

A.5. Summary of trap and function numbers

Table A.2. Trap and Function numbers

Trap# Func# Group# Vers# Name Reference

0x80 — — — FAST_TRAP

0x83 — 0x001 1.0 MMU_MAP_ADDR Section 14.8.6

0x84 — 0x001 1.0 MMU_UNMAP_ADDR Section 14.8.8

0x85 — 0x001 1.0 TTRACE_ADDENTRY Section 21.3.5

0xff — — — CORE_TRAP

0x80 0x00 0x001 1.0 MACH_EXIT Section 12.1.1

0x80 0x01 0x001 1.0 MACH_DESC Section 12.1.2

0x80 0x02 0x001 1.0 MACH_SIR Section 12.1.3

0x80 0x05 0x001 1.1 MACH_SET_WATCHDOG Section 12.1.4

0x80 0x10 0x001 1.0 CPU_START Section 13.2.1

0x80 0x11 0x001 1.1 CPU_STOP Section 13.2.2

0x80 0x12 0x001 1.0 CPU_YIELD Section 13.2.5

0x80 0x13 reserved reserved

0x80 0x14 0x001 1.0 CPU_QCONF Section 13.2.6

0x80 0x15 0x001 1.0 CPU_QINFO Section 13.2.7

0x80 0x16 0x001 1.0 CPU_MYID Section 13.2.9

Number Registry

317

Trap# Func# Group# Vers# Name Reference

0x80 0x17 0x001 1.0 CPU_STATE Section 13.2.10

0x80 0x18 0x001 1.0 CPU_SET_RTBA Section 13.2.3

0x80 0x19 0x001 1.0 CPU_GET_RTBA Section 13.2.4

0x80 0x20 0x001 1.0 MMU_TSB_CTX0 Section 14.8.1

0x80 0x21 0x001 1.0 MMU_TSB_CTXNON0 Section 14.8.2

0x80 0x22 0x001 1.0 MMU_DEMAP_PAGE Section 14.8.3

0x80 0x23 0x001 1.0 MMU_DEMAP_CTX Section 14.8.4

0x80 0x24 0x001 1.0 MMU_DEMAP_ALL Section 14.8.5

0x80 0x25 0x001 1.0 MMU_MAP_PERM_ADDR Section 14.8.7

0x80 0x26 0x001 1.0 MMU_FAULT_AREA_CONF Section 14.8.10

0x80 0x27 0x001 1.0 MMU_ENABLE Section 14.8.11

0x80 0x28 0x001 1.0 MMU_UNMAP_PERM_ADDR Section 14.8.9

0x80 0x29 0x001 1.0 MMU_TSB_CTX0_INFO Section 14.8.12

0x80 0x2a 0x001 1.0 MMU_TSB_CTXNON0_INFO Section 14.8.13

0x80 0x2b 0x001 1.0 MMU_FAULT_AREA_INFO Section 14.8.14

0x80 0x31 0x001 1.0 MEM_SCRUB Section 15.1.1

0x80 0x32 0x001 1.0 MEM_SYNC Section 15.1.2

0x80 0x42 0x001 1.0 CPU_MONDO_SEND Section 13.2.8

0x80 0x50 0x001 1.0 TOD_GET Section 17.1.1

0x80 0x51 0x001 1.0 TOD_SET Section 17.1.2

0x80 0x60 0x001 1.0 CONS_GETCHAR Section 18.1.1

0x80 0x61 0x001 1.0 CONS_PUTCHAR Section 18.1.2

0x80 0x62 0x001 1.1 CONS_READ Section 18.1.3

0x80 0x63 0x001 1.1 CONS_WRITE Section 18.1.4

0x80 0x70 0x001 1.0 SOFT_STATE_SET Section 19.1.1

0x80 0x71 0x001 1.0 SOFT_STATE_GET Section 19.1.2

0x80 0x80 0x102 1.0 SVC_SEND

0x80 0x81 0x102 1.0 SVC_RCV

0x80 0x82 0x102 1.0 SVC_GETSTATUS

0x80 0x83 0x102 1.0 SVC_SETSTATUS

0x80 0x84 0x102 1.0 SVC_CLRSTATUS

0x80 0x90 0x001 1.0 TTRACE_BUF_CONF Section 21.3.1

0x80 0x91 0x001 1.0 TTRACE_BUF_INFO Section 21.3.2

0x80 0x92 0x001 1.0 TTRACE_ENABLE Section 21.3.3

0x80 0x93 0x001 1.0 TTRACE_FREEZE Section 21.3.4

0x80 0x94 0x001 1.0 DUMP_BUF_UPDATE Section 20.1.1

0x80 0x95 0x001 1.0 DUMP_BUF_INFO Section 20.1.2

0x80 0xa0 0x002 1.0 INTR_DEVINO2SYSINO Section 16.3.1

Number Registry

318

Trap# Func# Group# Vers# Name Reference

0x80 0xa1 0x002 1.0 INTR_GETENABLED Section 16.3.2

0x80 0xa2 0x002 1.0 INTR_SETENABLED Section 16.3.3

0x80 0xa3 0x002 1.0 INTR_GETSTATE Section 16.3.4

0x80 0xa4 0x002 1.0 INTR_SETSTATE Section 16.3.5

0x80 0xa5 0x002 1.0 INTR_GETTARGET Section 16.3.6

0x80 0xa6 0x002 1.0 INTR_SETTARGET Section 16.3.7

0x80 0xa7 0x002 2.0 VINTR_GETCOOKIE Section 16.2.1

0x80 0xa8 0x002 2.0 VINTR_SETCOOKIE Section 16.2.2

0x80 0xa9 0x002 2.0 VINTR_GETENABLED Section 16.2.3

0x80 0xaa 0x002 2.0 VINTR_SETENABLED Section 16.2.4

0x80 0xab 0x002 2.0 VINTR_GETSTATE Section 16.2.5

0x80 0xac 0x002 2.0 VINTR_SETSTATE Section 16.2.6

0x80 0xad 0x002 2.0 VINTR_GETTARGET Section 16.2.7

0x80 0xae 0x002 2.0 VINTR_SETTARGET Section 16.2.8

0x80 0xb0 0x100 1.1 PCI_IOMMU_MAP Section 23.4.1

0x80 0xb1 0x100 1.0 PCI_IOMMU_DEMAP Section 23.4.2

0x80 0xb2 0x100 1.1 PCI_IOMMU_GETMAP Section 23.4.3

0x80 0xb3 0x100 1.0 PCI_IOMMU_GETBYPASS Section 23.4.4

0x80 0xb4 0x100 1.0 PCI_CONFIG_GET Section 23.4.5

0x80 0xb5 0x100 1.0 PCI_CONFIG_PUT Section 23.4.6

0x80 0xb6 0x100 1.0 PCI_PEEK Section 23.4.7

0x80 0xb7 0x100 1.0 PCI_POKE Section 23.4.8

0x80 0xb8 0x100 1.0 PCI_DMA_SYNC Section 23.4.9

0x80 0xc0 0x100 1.0 PCI_MSIQ_CONF Section 24.4.1

0x80 0xc1 0x100 1.0 PCI_MSIQ_INFO Section 24.4.2

0x80 0xc2 0x100 1.0 PCI_MSIQ_GETVALID Section 24.4.3

0x80 0xc3 0x100 1.0 PCI_MSIQ_SETVALID Section 24.4.4

0x80 0xc4 0x100 1.0 PCI_MSIQ_GETSTATE Section 24.4.5

0x80 0xc5 0x100 1.0 PCI_MSIQ_SETSTATE Section 24.4.6

0x80 0xc6 0x100 1.0 PCI_MSIQ_GETHEAD Section 24.4.7

0x80 0xc7 0x100 1.0 PCI_MSIQ_SETHEAD Section 24.4.8

0x80 0xc8 0x100 1.0 PCI_MSIQ_GETTAIL Section 24.4.9

0x80 0xc9 0x100 1.0 PCI_MSI_GETVALID Section 24.4.10

0x80 0xca 0x100 1.0 PCI_MSI_SETVALID Section 24.4.11

0x80 0xcb 0x100 1.0 PCI_MSI_GETMSIQ Section 24.4.12

0x80 0xcc 0x100 1.0 PCI_MSI_SETMSIQ Section 24.4.13

0x80 0xcd 0x100 1.0 PCI_MSI_GETSTATE Section 24.4.14

0x80 0xce 0x100 1.0 PCI_MSI_SETSTATE Section 24.4.15

Number Registry

319

Trap# Func# Group# Vers# Name Reference

0x80 0xd0 0x100 1.0 PCI_MSG_GETMSIQ Section 24.4.16

0x80 0xd1 0x100 1.0 PCI_MSG_SETMSIQ Section 24.4.17

0x80 0xd2 0x100 1.0 PCI_MSG_GETVALID Section 24.4.18

0x80 0xd3 0x100 1.0 PCI_MSG_SETVALID Section 24.4.19

0x80 0xe0 0x101 1.0 LDC_TX_QCONF Section 22.4.1

0x80 0xe1 0x101 1.0 LDC_TX_QINFO Section 22.4.2

0x80 0xe2 0x101 1.0 LDC_TX_GET_STATE Section 22.4.3

0x80 0xe3 0x101 1.0 LDC_TX_SET_QTAIL Section 22.4.4

0x80 0xe4 0x101 1.0 LDC_RX_QCONF Section 22.4.5

0x80 0xe5 0x101 1.0 LDC_RX_QINFO Section 22.4.6

0x80 0xe6 0x101 1.0 LDC_RX_GET_STATE Section 22.4.7

0x80 0xe7 0x101 1.0 LDC_RX_SET_QHEAD Section 22.4.8

0x80 0xea 0x101 1.0 LDC_SET_MAP_TABLE Section 22.5.1

0x80 0xeb 0x101 1.0 LDC_GET_MAP_TABLE Section 22.5.2

0x80 0xec 0x101 1.0 LDC_COPY Section 22.5.3

0x80 0xed 0x101 1.1 LDC_MAPIN Section 22.5.4

0x80 0xee 0x101 1.1 LDC_UNMAP Section 22.5.5

0x80 0xef 0x101 1.1 LDC_REVOKE Section 22.5.6

0x80 0xf8 0x108 1.0 PCI_IOV_ROOT_CONFIGURED Section 23.5.2.1

0x80 0xf9 0x108 1.0 PCI_REAL_CONFIG_GET Section 23.5.2.2

0x80 0xfa 0x108 1.0 PCI_REAL_CONFIG_PUT Section 23.5.2.3

0x80 0xff 0x109 1.0 PCI_ERROR_SEND Section 23.5.2.4

0x80 0x100 0x200 1.0 NIAGARA_GET_PERFREG Section 27.1.1

0x80 0x101 0x200 1.0 NIAGARA_SET_PERFREG Section 27.1.2

0x80 0x102 0x200 1.0 NIAGARA_MMUSTAT_CONF Section 27.2.2

0x80 0x103 0x200 1.0 NIAGARA_MMUSTAT_INFO Section 27.2.3

0x80 0x104 0x202 1.0 NIAGARA2_GET_PERFREG Section 27.4.4

0x80 0x105 0x202 1.0 NIAGARA2_SET_PERFREG Section 27.4.5

0x80 0x106 0x205 1.0 VFALLS_GET_PERFREG Section 27.5.9

0x80 0x107 0x205 1.0 VFALLS_GET_PERFREG Section 27.5.8

0x80 0x111 0x103 2.0 NCS_QCONF Section 25.2.3

0x80 0x112 0x103 2.0 NCS_QINFO Section 25.2.4

0x80 0x113 0x103 2.0 NCS_GETHEAD Section 25.2.5

0x80 0x114 0x103 2.0 NCS_GETTAIL Section 25.2.7

0x80 0x115 0x103 2.0 NCS_SETTAIL Section 25.2.8

0x80 0x116 0x103 2.0 NCS_QHANDLE_TO_DEVINO Section 25.2.9

0x80 0x117 0x103 2.0 NCS_SETHEAD_MARKER Section 25.2.6

0x80 0x118 0x103 2.1 NCS_ULQCONF Section 25.2.10

Number Registry

320

Trap# Func# Group# Vers# Name Reference

0x80 0x120 0x201 1.0 FIRE_GET_PERFREG Section 27.3.2

0x80 0x121 0x201 1.0 FIRE_SET_PERFREG Section 27.3.3

0x80 0x122 0x209 1.0 KT_GET_PERFREG Section 27.6.5

0x80 0x123 0x209 1.0 KT_SET_PERFREG Section 27.6.6

0x80 0x130 0x104 1.0 RNG_GET_DIAG_CONTROL Section 25.1.12.1

1.0 RNG_CTL_READ Section 25.1.12.20x80 0x131 0x104

2.0 RNG_CTL_READ Section 25.1.9

1.0 RNG_CTL_WRITE Section 25.1.12.30x80 0x132 0x104

2.0 RNG_CTL_WRITE Section 25.1.10

1.0 RNG_DATA_READ_DIAG Section 25.1.12.40x80 0x133 0x104

2.0 RNG_DATA_READ_DIAG Section 25.1.11

0x80 0x134 0x104 1.0, 2.0 RNG_DATA_READ Section 25.1.8

0x80 0x140 0x203 1.0 N2PIU_GET_PERF_REG Section 27.4.7

0x80 0x141 0x203 1.0 N2PIU_SET_PERF_REG Section 27.4.8

1.0 N2NIU_RX_LP_SET Section 26.4.10x80 0x142 0x204

2.0 N2NIU_RX_LP_SET Section 26.6.1

1.0 N2NIU_RX_LP_GET Section 26.4.20x80 0x143 0x204

2.0 N2NIU_RX_LP_GET Section 26.6.2

1.0 N2NIU_TX_LP_SET Section 26.4.30x80 0x144 0x204

2.0 N2NIU_TX_LP_SET Section 26.6.1

1.0 N2NIU_TX_LP_GET Section 26.4.40x80 0x145 0x204

2.0 N2NIU_TX_LP_GET Section 26.6.2

1.0 N2NIU_VR_ASSIGN Section 26.5.1.10x80 0x146 0x204

2.0 N2NIU_VR_ASSIGN Section 26.6.3.1

0x80 0x147 0x204 1.0, 2.0 N2NIU_VR_UNASSIGN Section 26.5.1.2

0x80 0x148 0x204 1.0, 2.0 N2NIU_VR_GETINFO Section 26.5.1.3

0x80 0x149 0x204 1.0, 2.0 N2NIU_VR_RX_DMA_ASSIGN Section 26.5.2.1

0x80 0x14a 0x204 1.0, 2.0 N2NIU_VR_RX_DMA_UNASSIGN Section 26.5.2.2

0x80 0x14b 0x204 1.0, 2.0 N2NIU_VR_TX_DMA_ASSIGN Section 26.5.2.1

0x80 0x14c 0x204 1.0, 2.0 N2NIU_VR_TX_DMA_UNASSIGN Section 26.5.2.2

0x80 0x14d 0x204 1.0, 2.0 N2NIU_VR_GET_RX_MAP Section 26.5.2.3

0x80 0x14e 0x204 1.0, 2.0 N2NIU_VR_GET_TX_MAP Section 26.5.2.3

0x80 0x150 0x204 1.0, 2.0 N2NIU_VRRX_SET_INO Section 26.5.2.4

0x80 0x151 0x204 1.0, 2.0 N2NIU_VRTX_SET_INO Section 26.5.2.4

0x80 0x152 0x204 1.0, 2.0 N2NIU_VRRX_GET_INFO Section 26.5.2.5

0x80 0x153 0x204 1.0, 2.0 N2NIU_VRTX_GET_INFO Section 26.5.2.5

0x80 0x154 0x204 1.0, 2.0 N2NIU_VRRX_LP_SET Section 26.5.2.6

0x80 0x155 0x204 1.0, 2.0 N2NIU_VRRX_LP_GET Section 26.5.2.7

Number Registry

321

Trap# Func# Group# Vers# Name Reference

0x80 0x156 0x204 1.0, 2.0 N2NIU_VRTX_LP_SET Section 26.5.2.6

0x80 0x157 0x204 1.0, 2.0 N2NIU_VRTX_LP_GET Section 26.5.2.7

0x80 0x158 0x204 1.0, 2.0 N2NIU_VRRX_PARAM_GET Section 26.5.3.1

0x80 0x159 0x204 1.0, 2.0 N2NIU_VRRX_PARAM_SET Section 26.5.3.2

0x80 0x15a 0x204 1.0, 2.0 N2NIU_VRTX_PARAM_GET Section 26.5.3.1

0x80 0x15b 0x204 1.0, 2.0 N2NIU_VRTX_PARAM_SET Section 26.5.3.2

0x80 0x165 0x20a 1.0 KT_IOS_GET_PERFREG Section 27.6.8

0x80 0x166 0x20a 1.0 KT_IOS_SET_PERFREG Section 27.6.9

0x80 0x170 0x105 1.0 MACH_PRI Section 12.1.6

0x80 0x171 0x110 1.0 MACH_REBOOT_DATA_GET Section 12.1.9

0x80 0x172 0x110 1.0 MACH_REBOOT_DATA_SET Section 12.1.8

0x80 0x176 0x107 1.0 TPM_GET Section 25.3.2.1

0x80 0x177 0x107 1.0 TPM_PUT Section 25.3.2.2

0x80 0x178 0x105 1.0 MACH_VARS Section 12.1.7

0x80 0x181 0x1 1.2 MACH_SUSPEND Section 12.1.5

0x80 0x182 0x1 1.2 CPU_TICK_NPT Section 13.2.11

0x80 0x183 0x1 1.2 CPU_STICK_NPT Section 13.2.12

0x80 0x1a2 0x20e 1.0 MMU_GLOBAL_DEMAP_PAGE Section 14.8.15

0x80 0x1a3 0x20e 1.0 MMU_GLOBAL_DEMAP_CTX Section 14.8.16

0x80 0x1a4 0x20e 1.0 MMU_GLOBAL_DEMAP_ALL Section 14.8.17

0x80 0x1a5 0x20e 1.0 MMU_GLOBAL_DEMAP_STATUS Section 14.8.18

0x80 0x200 0x300 1.0 DIAG_RA2PA Section 31.1.1

0x80 0x201 0x300 1.0 DIAG_HEXEC Section 31.1.2

0xff 0x00 — — API_SET_VERSION Section 11.1.1

0xff 0x01 — — CONS_PUTCHAR Section 18.1.2

0xff 0x02 — — MACH_EXIT Section 12.1.1

0xff 0x03 — — API_GET_VERSION Section 11.1.2

A.6. Error codes

When a hypervisor API returns, unless explicitly described by the API service, the 64-bit value in %o0
will be one of the following error identification values.

Table A.3. Error codes

Value Mnemonic Description

0 EOK Successful return

1 ENOCPU Invalid CPU ID

2 ENORADDR Invalid real address

3 ENOINTR Invalid interrupt ID

Number Registry

322

Value Mnemonic Description

4 EBADPGSZ Invalid page size encoding

5 EBADTSB Invalid TSB description

6 EINVAL Invalid argument

7 EBADTRAP Invalid function number

8 EBADALIGN Invalid address alignment

9 EWOULDBLOCK Cannot complete operation without blocking

10 ENOACCESS No access to specified resource

11 EIO I/O error

12 ECPUERROR CPU is in the error state

13 ENOTSUPPORTED Function is not supported

14 ENOMAP No mapping found

15 ETOOMANY Too many items specified or limit reached

16 ECHANNEL Invalid LDC channel

17 EBUSY Operation failed because resource is otherwise busy

18 EPENDING A long-running operation was started and the corresponding
status function needs to be called

323

Appendix B. Domain Service Registry
This table lists the capabilities described in this document, and which need to be added to a Domain
Services registry.

Table B.1. Domain Services

Service Description Reference

agent-device Guest device information

agent-dio Direct I/O agent

agent-system Guest system information

asr Primary ASR management service

asr-backup Secondary ASR management service

domain-panic Request a panic Section 30.7

domain-shutdown Request a graceful shutdown Section 30.6

domain-suspend Domain Suspend service Section 30.17

dr-cpu Dynamic Reconfiguration for CPUs Section 30.8

dr-mem Dynamic Reconfiguration for memory Section 30.9

dr-vio Dynamic Reconfiguration for virtual I/O Section 30.10

dr-crypto-mau Dynamic Reconfiguration for MAU devices Section 30.11

dr-crypto-cwq Dynamic Reconfiguration for CWQ devices Section 30.11

fma-cpu-service CPU Online/Oflline service for fault manage-
ment

fma-io-domain-service I/O service for fault management

fma-mem-service Memory retire service for fault management

fma-pri-service Domain Manager service for retrieving the
PRI

fma-phys-cpu-service Physical CPU Online/Offline service for fault
management

fma-phys-mem-service Physical Memory retire/resurrect service for
fault management

fw-progress-state Primary FW Progress State

keystore Primary keystore for WANboot service Section 30.13

keystore-backup Secondary keystore for WANboot service Section 30.13

md-update Notification of MD updates Section 30.5

pm-rm Power-Management Resource Manager

pri-update Notification of PRI updates Section 30.14

snmp SNMP service Section 30.16

system-info Guest System Information Section 30.15

var-config Primary LDom variable management Section 30.12

var-config-backup Secondary LDom variable management Section 30.12

324

Appendix C. Physical Resource
Inventory
C.1. Introduction

This is the specification for the Physical Resource Inventory (PRI). The PRI is intended to contain physical
information about a system. Much of this information had previously been contained in the Machine De-
scription (MD) provided to the guest. With the advent of Logical Domains (LDoms), it becomes essential
to have a clean separation between the physical and virtual views of a system. To achieve this, much of
the physical information is no longer part of the MD within a guest domain. This provides a strictly virtual
view of the system within an LDom.

However, besides the System Controller (SC), other management entities (e.g. FMA, the LDom Manag-
er) still require a physical view of the system. This is now provided by the PRI. The PRI includes the
physical information which is no longer available in the MD (needed by FMA to perform diagnosis). It
also includes additional information necessary for the LDom Manager to configure and manage individual
logical domains, including acting as a template for the LDom Manager to construct MDs for the various
logical domains it is managing.

The PRI is provided by the System Controller (SC) to the domain. The PRI contains physical information
about system resources in a format identical to that used by the guest MD. The names for the nodes and
properties used to access that information are defined to be platform independent, as are many of the values.
Some of the values may be platform-dependent and may require additional documentation to parse them.

The PRI may be updated at anytime on the SC depending on the state of its resources. Protocols and
transports may be agreed upon with the domain for delivering the PRI to it so that it may use the information
for activities such as configuring LDOM guest domains or diagnosing error data.

One of the primary consumers of the PRI on the domain is the LDOM Manager. It uses the PRI to generate
guest MDs by extracting information from it that serves as a template for new domains. The PRI may
contain any of the nodes and properties that may be found in a guest MD on a system. For this reason, this
case imports all past and future cases that specify new nodes or properties for the guest MD that may be
used on a system. Since future cases cannot be explicitly imported, any new cases that arise should specify
that they apply to both the guest MD and the PRI.

In addition to containing the information needed by the LDOM Manager for creating guest MDs, the PRI
also supplies the information it needs to generate the hypervisor data needed to boot a set of configured
guest domains. This hypervisor data may include information about either the SC or other firmware com-
ponents that it needs to know about. Some items in this specification in this category include the LDC
endpoints and host prom information.

Another of the primary consumers of the PRI are FMA modules such as diagnosis engines. There is a
requirement to provide additional information in the PRI so that FMA may make diagnoses and act on
them through fault, repair or logging actions. To enable this, the PRI contains system-wide information
that may not be available in the guest MD in the domain on which FMA modules are running. As an
example, FMA modules running in the control domain (the single domain running the LDOM Manager)
may handle ereports generated for resources owned by other guest domains in the system. It may access
the PRI to get information it needs to diagnose and act on data in the ereports. For more background, see
the FWARC case 2006/141 FMA Domain Services.

In addition to the requirements spelled out in the FMA Domain Services case, there is a requirement to
add additional information to the PRI so that FMA may generate reports with more specific details about

Physical Resource Inventory

325

components that have been diagnosed faulty. Some of this information is available in a FRUID present
on the component or on another component that is proxying the information. It is the responsibility of the
SC to derive this information for components present on a system and to populate the relevant property
values in the PRI.

The PRI also represents how components are contained within other components in a hierarchical fashion
in the system. Each component can be identified as a FRU or not based on a property. The parent component
that contains each component can also be found by following an arc property back to it. Based on this,
for any component in a system, its closest parent component that is a FRU can be found so that it may
be replaced if faulty. There should be only one parent component for each component, but a component
may have multiple children components if they are all physically contained by it. The idea of a component
physically containing another component is meant to indicate how they may be removed or replaced and
is determined on a platform-specific basis.

FMA also uses the hierarchy of the components node to build the FM topology in Solaris. The hierarchy
encoded into the PRI directly translates to the resulting topology in Solaris. In addition to hierarchy, new
properties have been added to guide how topology is enumerated in the OS.

C.2. Root Node

Name: root

Category: core

Required subordinates: components (Section C.3, “Components Node”)

This node is the top-most node of the PRI.

C.2.1. PRI version property

Name Tag Required?

pri-version PROP_STR yes

This is the version string for the PRI. Format of string is “<x>.<y>”, where “<x>” denotes the decimal
major version number and “<y>” denotes the decimal minor version number. In this context, major and
minor version numbers connote incompatible and compatible changes respectively, as defined in the API
versioning interface specified by FWARC 2005/499 and documented in the API versioning chapter (Chap-
ter 11, API versioning). The currently defined version is "1.0".

C.3. Components Node

Name: components

Category: core

Required subordinates: component (Section C.4, “Component Node”)

This node is the parent of all component nodes and has a back arc to the root node.

C.3.1. Power Management (PM) versioning property

Name Tag Required?

pm-version PROP_STR yes

The version string for the content of the Power Management related information in the PRI. The currently
defined version is “1.0”.

Physical Resource Inventory

326

C.4. Component Node

Name: component

Category: resource required

Required subordinates:

Optional subordinates: component (Section C.4, “Component Node”)

The component nodes represent physical entities in the system in order to provide component information
and system topology to the domain.

C.4.1. type Property

Name Tag Required?

type PROP_STR yes

This property contains the type of the component. Only types that have been submitted with an ARC case
should be present.

The currently acceptable values for the type property include:

product The product.

chassis A system chassis.

systemboard A system board.

dimm A single memory DIMM.

processor A physical processor that is logically a single agent on the system interconnect fabric.
It may contain several processor cores or strands.

core A physical processor core.

sp A service processor.

strand A physical strand in a processor.

mem-board A physical memory board.

cpu-board A physical cpu board.

io An I/O device such as a switch, bridge, slot, or leaf device.

C.4.1.1. Type-specific property requirements

The following requirements hold for component nodes of these types:

For processors that have multiple cores, the fwd property of the processor type node should link to a core
type node. For core type nodes, the fwd property should link to a strand type node. If there are multiple
component nodes for multiple processors in the system, this can be used to determine which processor a
core is on, and which core a strand is on.

Any type of node may have an id property. The id property must be unique within a set of nodes with
the same topo-hc-name value as well as immutable across system reset events. In addition, for root

Physical Resource Inventory

327

complex IO nodes (i.e. nodes whose topo-hc-name value is “hostbridge”), the id property is further
constrained to have whatever platform-specific binding is required for this value to denote a unique and
persistent root complex ID. This property is required for nodes that do not set the topo-skip property.
Grandfather clause: id is always required for strand, mem-board, and cpu-board nodes.

Any type of node may have a nac property. A nac property is required for component nodes that are
FRUs (fru property = 0x1).

An io type node may have a path property, as described below. For io nodes describing XAUI cards,
the path property is required.

Any type of node may set the topo-hc-name property. This property is required for nodes that do not
set the topo-skip property. The property is also required, irrespective of the topo-skip setting, for
io nodes that describe XAUI cards.

Any type of node may set the topo-skip property. For io nodes describing XAUI cards, this property
must be set to a non-zero value.

Nodes representing a root complex must use a topo-hc-name of "hostbridge" and set the path prop-
erty. The previous requirements for setting the cfg-handle property for a node representing a root
complex is now deprecated.

Nodes representing a root port must use a topo-hc-name of "pciexrc". This apparent misnomer is
intentional, as it follows the convention established on the x64 platforms.

The product and chassis type nodes must have serial_number properties.

Any type node that is a FRU (fru = 0x1) are required to include the serial_number, part_number,
rev_number, and dash_number properties.

The components node must provide a topo-hc-name hierarchy of hostbridge/pciexrc. No intervening
nodes are allowed. Failure to comply will result in a Solaris-side FM topology that does not support PCIE
fabric diagnosis. The node hierarchy above the hostbridge is arbitrary per platform.

For platforms wishing to employ the sun4v platform-independent SPARC cpu diagnosis engine, one of
the following nodes must be present: processor, core, or strand. One, some or all can be used. The most
logical hierarchy is processor/core/strand.

For platforms wishing to employ the sun4v platform-independent SPARC memory diagnosis engine, the
following topo-hc-name hierarchy must be provided in the components node: chip/memory-buffer OR
memory-controller/memory-buffer. No intervening nodes are allowed. The node hierarchy above or below
is arbitrary per platform.

For platforms wishing to employ diagnosis of a faulted service processor, a topo-hc-name hierarchy
of chassis/sp must be provided in the components node. Furthermore, the node describing the “sp” must
be tagged as a FRU.

For platforms wishing to employ diagnosis of internal hard disks, io nodes describing hard drive bays (e.g.
nac = “HDD#”) must specify a topo-hc-name of “bay” and the id property. The id property must
match the physical identification (i.e. HDD0 is id 0, HDD1 is id 1, etc.).

C.4.2. nac Property

Name Tag Required?

nac PROP_STR yes

Physical Resource Inventory

328

This property contains the NAC for the component, as described in the system nomenclature document
for the system. It may appear in any type of component node. It is only required for nodes that are FRUs
(fru = 0x1).

C.4.3. fru Property

Name Tag Required?

fru PROP_VAL no

This property is present and has a value of 1 if the component is a FRU.

C.4.4. serial_number Property

Name Tag Required?

serial_number PROP_STR no

This property contains the component serial number contained in the FRUID. It is required for “product”
and “chassis” type nodes and nodes that are that are FRUs (fru = 0x1).

C.4.5. part_number Property

Name Tag Required?

part_number PROP_STR yes

This property contains the component part number contained in the FRUID. It is only required for nodes
that are FRUs (fru = 0x1).

C.4.6. rev_number Property

Name Tag Required?

rev_number PROP_STR yes

This property contains the component rev number contained in the FRUID. It is only required for nodes
that are FRUs (fru = 0x1).

C.4.7. dash_number Property

Name Tag Required?

dash_number PROP_STR yes

This property contains the component dash number contained in the FRUID. It is only required for nodes
that are FRUs (fru = 0x1).

C.4.8. id Property

Name Tag Required?

id PROP_STR yes

This property contains the physical id (physical with respect to the system) of a resource in the system. It
is required for all nodes, except those that set topo-skip to a non-zero value. The id property must be
unique within a set of nodes with the same topo-hc-name value. In other words, no two nodes where
topo-hc-name=“dimm” can have the same id value, but a node with topo-hc-name=“dimm” and
a node with topo-hc-name=“cpu” can have the same id value.

Physical Resource Inventory

329

C.4.9. path Property

Name Tag Required?

path PROP_STR yes

This property contains the canonical path of an I/O device, composed of its full device path with de-
vice names removed. It is required on nodes where the topo-hc-name property is set to “hostbridge”,
“pciexrc”, “bay” or “xaui”.

It is possible to find the FRU parent of an I/O device by performing a search beginning with its parent and
continuing through its ancestry until reaching a component node with a fru property with value of 1.

C.4.10. label Property

Name Tag Required?

label PROP_STR no

This property is currently only defined to appear in dimm type component nodes. It will contain the “J”
number that is silk-screened on the board next to the dimm slot.

C.4.11. name Property

Name Tag Required?

name PROP_STR no

This property is a human readable string describing the component. Examples are “CPU Chip 0”, “CPU
Chip 0 Core 0”, and “Strand 1”.

C.4.12. pm_resource Property

Name Tag Required?

pm_resource PROP_STR no

This property indicates the type of resource that will stop carrying load if the resource has been transitioned
to a state that yields zero performance. Possible values are: “CPU”, “IO”, etc. It is consumed by the PM
Engine.

C.4.13. pm_states Property

Name Tag Required?

pm_states PROP_DATA no

This property encodes multiple string tuples. Within each tuple are two elements; the first element de-
scribes the performance value at the power state which is described by the second element. Performance
values are in units of 0.1%.

Examples are,

For “strand” type nodes,

pm_states = {
 "0 Parked",

Physical Resource Inventory

330

 "1000 Unparked"
};

For “core” type nodes,

pm_states = {
 "0 Disabled",
 "1000 Enabled"
};

For “processor” type nodes,

pm_states = {
 "125 One-Eighth_Speed",
 "250 One-Fourth_Speed",
 "375 Three-Eighths_Speed",
 "500 Half_Speed",
 "625 Five-Eighths_Speed",
 "750 Three-Fourths_Speed",
 "875 Seven-Eighths_Speed",
 "1000 Full_Speed"
};

C.4.14. pm_cookie Property

Name Tag Required?

pm_cookie PROP_STR no

This property encodes a string. The string is a resource identifier that is consumed by the PM Engine.
Each string consists of a space-delineated set of tokens, which taken together describe an instance of a
particular resource type. For pm-version 1.0, each string is a tuple describing a resource type and a type-
specific identifier. Examples are “F 0”, “C 3”, and “S 12”.

C.4.15. pm_dependency Property

Name Tag Required?

pm_dependency PROP_STR no

This property describes the power dependencies between the component and its children. It is consumed
by the PM Engine. An example value is “StrictParental Performance”.

C.4.16. pm_coordination Property

Name Tag Required?

pm_coordination PROP_STR no

This property describes the power dependencies between the component and its peers. It is consumed by
the PM Engine. An example value is “NeedOne Defragment”.

Physical Resource Inventory

331

C.4.17. pm_mapping Property

Name Tag Required?

pm_mapping PROP_STR no

This property describes the mapping from the component to the identity in the LDom manager's name
space of the resource upon which a reconfiguration operation may be required prior to transitioning the
component to zero performance state, or after transitioning the component out of zero performance state.

An example value is “cpu 7”, which means:

• cpu known to the LDom manager as (physical) cpu 7

• when the PM Engine sets the component into or out of the zero performance state, reconfiguration can
be effected by asking the LDom manager to reconfigure cpu 7 prior to or after the power state transition.

C.4.18. topo-hc-name Property

Name Tag Required?

topo-hc-name PROP_STR yes

This property contains the FM libtopo hc canonical name string for a node. It is used by Solaris enumerators
when instantiating a topology. The value of topo-hc-name must be an approved name per FMA's hc
scheme ([fmahc]). It is required for all nodes that do not use/set topo-skip. It is also required on io
nodes describing XAUI cards, irrespective of that node's topo-skip value.

C.4.19. topo-skip Property

Name Tag Required?

topo-skip PROP_VAL sometimes

When this property is present and has a non-zero integer value, the sun4v platform-independent enumerator
will not create FM topology nodes for this node or any of its children. This property can be used on any
type of node. This property is required and must be a non-zero value for io nodes describing XAUI cards.

C.4.20. assignable-path Property

Name Tag Required?

assignable-path PROP_STR no

For a PCI-e assignable device (one where ownership can be transferred to another guest domain), this
defines the path of the assignable unit. This path is similar to, but not identical to, the path property
defined in Section C.4.9, “path Property”.

C.4.21. pm_power Property

Name Tag Required?

pm_power PROP_DATA no

This property encodes multiple string tuples. Within each tuple are two elements: The first element de-
scribes the performance value for a Processor power state. The second element is an encoded string of
Cores powered on and the power consumed by those Cores at the given Processor power state.

Physical Resource Inventory

332

For example, using the first entry below: At full chip speed, 3 cores enabled consumes 500 Watts, 2 cores
enabled consumes 400 Watts, and 1 core enabled consumes 50 Watts.

pm_power = {
 "500 3.475;2.225;1.20",
 "1000 3.500;2.400;1.50"
};

C.5. Firmware Node

Name: firmware

Category: core

Required subordinates: read_only_memory (Section C.6, “Read_Only_Memory Node”)

This node contains information describing firmware constraints needed by the LDOM Manager for con-
figuring guest domains.

C.5.1. max_guests Property

Name Tag Required?

max_guests PROP_VAL yes

This property describes the maximum number of guests that the firmware supports.

C.5.2. max_hv_ldcs Property

Name Tag Required?

max_hv_ldcs PROP_VAL yes

This property describes the maximum number of hypervisor LDC endpoints that the hypervisor supports.

C.5.3. max_guest_ldcs Property

Name Tag Required?

max_guest_ldcs PROP_VAL yes

This property describes the maximum number of guest LDC endpoints that the hypervisor supports.

C.5.4. max_guest_dependencies Property

Name Tag Required?

max_guest_dependencies PROP_VAL no

This property describes the maximum number of guest dependencies (per guest) that the firmware supports.
If not present, should be treated as 0.

C.5.5. directio_capability Property

Name Tag Required?

directio_capability PROP_VAL no

Physical Resource Inventory

333

This property indicates that the platform and this version of firmware are capable of supporting Static
Direct I/O PCI-e virtualization.

C.6. Read_Only_Memory Node

Name: read_only_memory

Category: core

Required subordinates: rom_img (Section C.7, “Rom_Img Node”)

This node contains information about the contents of read-only memory on the system, such as the host
or system PROM.

C.6.1. name Property

Name Tag Required?

name PROP_STR yes

This property contains a human readable string for identifying the read-only memory that this node rep-
resents. For example, “System PROM” may be used to indicate that this is the PROM for the system
firmware.

C.6.2. base Property

Name Tag Required?

base PROP_VAL yes

This property contains the base address of the read-only memory in the system address space.

C.6.3. size Property

Name Tag Required?

size PROP_VAL yes

This property contains the size of the read-only memory in bytes.

C.7. Rom_Img Node

Name: rom_img

Category: core

Required subordinates:

This node contains information about a firmware component in read-only memory.

C.7.1. name Property

Name Tag Required?

name PROP_STR yes

This property contains a human readable string for identifying this firmware image in the read-only mem-
ory. For example, “Openboot” may be used to indicate that this image is the OpenBoot image used to
boot the guest.

Physical Resource Inventory

334

C.7.2. offset Property

Name Tag Required?

offset PROP_VAL yes

This property contains the offset into read-only memory of this firmware image.

C.7.3. size Property

Name Tag Required?

size PROP_VAL yes

This property contains the size of the firmware image in bytes.

C.7.4. alignment Property

Name Tag Required?

alignment PROP_VAL no

This property contains any memory alignment requirements of the firmware image, for placing that image
in memory so that it runs and boots successfully.

C.7.5. min_allocation Property

Name Tag Required?

min_allocation PROP_VAL no

This property contains any minimum memory allocation requirements of the firmware image.

C.7.6. guest_use Property

Name Tag Required?

guest_use PROP_VAL no

This property indicates that this firmware image is suitable for use as the start-up image for a guest.

C.8. Ldc_Endpoints Node

Name: ldc_endpoints

Category: core

Required subordinates: ldc_endpoint (Section C.9, “Ldc_Endpoint Node”)

This node aggregates fwd arc links to all the ldc_endpoint nodes needed by the LDOM Manager for gen-
erating the information hypervisor needs to configure its internal data structures to route packets between
LDC channel endpoints.

C.9. Ldc_Endpoint Node

Name: ldc_endpoint

Category: core

Physical Resource Inventory

335

Required subordinates:

This node contains the information hypervisor needs to configure its internal data structures to route pack-
ets between LDC channel endpoints.

C.9.1. resource_id Property

Name Tag Required?

resource_id PROP_VAL yes

This property contains a unique id for each ldc_endpoint node.

C.9.2. target_type Property

Name Tag Required?

target_type PROP_VAL yes

This property contains a value indicating one of several types of targets that is on the other end of a pair
of LDC endpoints.

Acceptable values are:

0 The target endpoint is a guest

1 The target endpoint is the hypervisor

2 The target endpoint is the system controller

C.9.3. channel Property

Name Tag Required?

channel PROP_VAL yes

This property contains the endpoint id for the channel endpoint this node represents. The channel endpoint
may be owned by a guest, hypervisor or the SP.

C.9.4. target_channel Property

Name Tag Required?

target_channel PROP_VAL yes

This property contains the endpoint id for the target endpoint on the other end of this channel. The target
channel endpoint may be owned by a guest, hypervisor or the SP.

C.9.5. tx-ino and rx-ino Properties

Name Tag Required?

tx-ino PROP_VAL yes

rx-ino PROP_VAL yes

These properties contains the same values as the corresponding tx-ino and rx-ino properties in the
channel-endpoint node in the guest MD. The channel-endpoint node has an id property value

Physical Resource Inventory

336

matching this ldc_endpoint node channel property value. This enables the hypervisor to target
interrupts to the guest LDC endpoint.

C.10. Memory Segments and related nodes

Name: memory-segments

Category: resource required

Required subordinates: memory-segment (Section C.11, “Memory-Segment Node”)

Child of the root node with fwd arcs to the memory-segment nodes.

C.11. Memory-Segment Node

Name: memory-segment

Category: resource required

Required subordinates: memory-bank (Section C.12, “Memory-Bank Node”)

Describes a contiguous memory address range. Its properties define that address range and they link to
child nodes that specify criteria for locating a physical address in the memory segment to a set of one or
more DIMMs that constitute a memory-bank.

A memory-segment node has the following properties.

C.11.1. base Property

Name Tag Required?

base PROP_VAL yes

The base physical address of the range represented by this memory segment.

C.11.2. size Property

Name Tag Required?

size PROP_VAL yes

The size of the address range represented by this memory segment.

C.12. Memory-Bank Node

Name: memory-bank

Category: resource required

Required subordinates: component (Section C.4, “Component Node”)

Contains properties that describe the constraints for determining if a physical address is located on the set
of one or more DIMMs that comprise this memory bank.

The memory-bank node has fwd arcs to component nodes with DIMM type properties. The DIMM
type component nodes contain nac properties used to identify the DIMM. If an address belongs to this
memory bank, it is located on one of the DIMM type component nodes that are linked to by this node.

Physical Resource Inventory

337

C.12.1. size Property

Name Tag Required?

size PROP_VAL yes

The size of this memory bank.

C.12.2. mask Property

Name Tag Required?

mask PROP_VAL yes

The value of the mask property is logically and'd with a physical address and the result is compared with
the value in the match property to determine if the physical address is in this memory-bank.

C.12.3. match Property

Name Tag Required?

match PROP_VAL yes

After the value of the mask property is and'd with a physical address, if the resultant value is equal to the
value of the match property, the address is on one of the DIMMs in this memory bank.

C.13. IO Device node

Name: iodevice

Category: optional

Required subordinates:

Optional subordinates: iodevice (Section C.13, “IO Device node”), interrupt-map-
entry (Section C.14, “Interrupt mapping node”),

Refer to Section 8.25.2, “I/O device node”, the PRI inherits properties from the machine description
iodevice-node. Additional properties or modifications to inheritied properties are listed in this section.

C.13.1. Sun4v to PCI Express root nexus device

See Section 8.25.2.2.1, “Sun4v to PCI Express root nexus device” for inherited properties.

C.13.1.1. rcid Property

Name Tag Required?

rcid PROP_VAL yes

Root complex identifier. Monotonically assigned, the only requirement is that each PCI-e root complex
have a unique identifier.

C.13.2. Generic PCI device properties

See Section 8.25.2.2.2, “Generic PCI device properties”.

Physical Resource Inventory

338

C.13.3. PCI bridge type device properties

See Section 8.25.2.2.3, “PCI bridge device properties”.

C.13.3.1. chassis-location-name Property

Name Tag Required?

chassis-location-name PROP_STR no

This property, when present, contains a NAC name string matching a node in the “components” portion
of the PRI graph. This property will exist in the device nodes where a FRU boundary has been crossed in
the PCIE fabric. It will exist in the first device node entry pertaining to the FRU.

This property is only applicable to pcie-switch-upstream and pcie-switch-downstream device types. It is
only for locations within a chassis. It does not apply for slot adapters or any sub-frus external to the chassis
itself.

C.13.4. PCI slot type device properties

See Section 8.25.2.2.4, “PCI slot device properties”.

C.13.5. PCI network device properties

See Section 8.25.2.2.5, “PCI network device properties”.

C.13.6. PCI SCSI device properties

See Section 8.25.2.2.6, “PCI SCSI device properties”.

C.14. Interrupt mapping node

Name: interrupt-map-entry

Category: optional

Required subordinates:

Optional subordinates:

See Section 8.25.4, “Interrupt mapping node”.

C.15. Power-Management node

Name: power-management

Category: core

Required subordinates:

Optional subordinates: memory-grouping (Section C.16, “Memory-Grouping Node”)

This node is a child of root node and its children represent the system topology from a power management
perspective. Devices like memory which can not directly be mapped to component nodes are defined here.

C.16. Memory-Grouping Node

Name: memory-grouping

Physical Resource Inventory

339

Category: core

Required subordinates: memory-region (Section C.17, “Memory-Region Node”),

Optional subordinates:

This node represents memory as it is grouped to form a power manageable entity.

C.16.1. id Property

Name Tag Required?

id PROP_VAL yes

This property contains an id which uniquely identifies a memory grouping in the system.

C.16.2. name Property

Name Tag Required?

name PROP_STR yes

This property contains a human readable string to identify a memory grouping.

C.16.3. pm_resource Property

Name Tag Required?

pm_resource PROP_STR yes

This property indicates the type of resource that will stop carrying load if the resource has been transitioned
to a state that yields zero performance. The string value of this property for memory grouping is “Memory”.
It is consumed by the PM Engine.

C.16.4. pm_states Property

Name Tag Required?

pm_states PROP_DATA yes

This property encodes multiple string tuples. Within each tuple are two elements; the first element de-
scribes the performance value at the power state which is described by the second element. Performance
values are in units of 0.1%.

Example:

pm_states = {
 "30 SlowExit",
 "1000 FastExit"
};

C.16.5. pm_cookie Property

Name Tag Required?

pm_cookie PROP_STR yes

Physical Resource Inventory

340

This property encodes a string. The string is a resource identifier that is consumed by the PM Engine. Each
string consists of a space-delineated set of tokens, which taken together describe an instance of a particular
resource type. A memory grouping with id value 2 will be represented as string value of “M 2”

C.17. Memory-Region Node

Name: memory-region

Category: core

Required subordinates:

Optional subordinates:

This node represents a contiguous memory region within the parent memory-grouping.

C.17.1. id Property

Name Tag Required?

id PROP_VAL yes

This property contains an id which uniquely identifies a memory region in the system.

C.17.2. name Property

Name Tag Required?

name PROP_STR yes

This property contains a human readable string to identify the memory region and to which memory group-
ing this region belongs.

C.17.3. base Property

Name Tag Required?

base PROP_VAL yes

The base physical address represented by this memory region.

C.17.4. size Property

Name Tag Required?

size PROP_VAL yes

The size of this memory region in bytes.

341

Bibliography
[sparcv9] 0-13-825001-4. David L. Weaver and Tom Germond. Copyright © 1994 SPARC International, Inc.. PTR

Prentice Hall. The SPARC Architecture Manual, Version 9 [http://www.sparc.org/standards/SPARCV9.pdf].

[ua2005] 950-5553-12. Copyright © 2008 Sun Microsystems, Inc.. Sun Microsystems, Inc.. UltraSPARC Architecture
2005 Specification [http://opensparc-t2.sunsource.net/specs/UA2007-current-draft-HP-EXT.pdf]. 19 June,
2008. Hyperprivileged Edition.

[ua2005n1] 819-3404-04. Copyright © 2006 Sun Microsystems, Inc.. Sun Microsystems, Inc.. UltraSPARC T1 Sup-
plement to the UltraSPARC Architecture 2005 [http://opensparc-t1.sunsource.net/specs/UST1-UASuppl-cur-
rent-draft-HP-EXT.pdf]. 17 March, 2006.

[ua2007] 950-5553-12. Copyright © 2008 Sun Microsystems, Inc.. Sun Microsystems, Inc.. UltraSPARC Architecture
2007 Specification [http://opensparc-t2.sunsource.net/specs/UA2007-current-draft-HP-EXT.pdf]. 19 June,
2008. Hyperprivileged Edition.

[ua2007n2] 950-5556-02. Copyright © 2006 Sun Microsystems, Inc.. Sun Microsystems, Inc.. UltraSPARC T2 Sup-
plement to the UltraSPARC Architecture 2007 [http://opensparc-t2.sunsource.net/specs/UST2-UASuppl-cur-
rent-draft-HP-EXT.pdf].

[ua2007n3] Copyright © 2009 Sun Microsystems, Inc.. Sun Microsystems, Inc.. UltraSPARC {KT} Supplement to the
UltraSPARC Architecture 2007 [https://systemsweb.sfbay.sun.com/kt/team/arch_specs/index.html].

[ua2009] 950-5554-13. Copyright © 2009 Sun Microsystems, Inc.. Sun Microsystems, Inc.. UltraSPARC Architecture
2009 Specification. 31 March, 2009. Hyperprivileged Edition.

[pcie2002] Copyright © 2002 PCI SIG. PCI SIG. PCI Express Base Specification Revision 1.0 [http://www.pcisig.com/
specifications/pciexpress/specifications/]. 29 April, 2002.

[sun4vbind] Sun Microsystems, Inc.. “Sun4v Bus Binding to Open Firmware (FWARC 2005/111) [http://
arc.opensolaris.org/caselog/FWARC/2005/111/]”. 14 March, 2005.

[lddr] Sun Microsystems, Inc.. “Logical Domain Dynamic Reconfiguration Specification [http://
cpubringup.sfbay.sun.com/twiki/pub/LDoms/ArchDesignPhase15/dr-design.pdf]”. 21 February, 2006.

[efi] 731843-001. Intel Corp.. “Extensible Firmware Interface Specification [http://developer.intel.com/technolo-
gy/efi/main_specification.htm]”. 12 December, 2000.

[scsi3] INCITS T10. “SCSI Standards Architecture [http://www.t10.org/scsi-3.htm]”.

[diskids] Sun Microsystems, Inc.. “PSARC 1995/352 Disk ID [http://sac.sfbay/Archives/CaseLog/arc/
PSARC/1995/352/]”. 10 April, 1996.

[tpm] Trusted Computing Group. “TPM Specification v1.2 [http://www.trustedcomputinggroup.org/re-
sources/tpm_main_specification]”. 26 October, 2006.

[tpmpc] Trusted Computing Group. “PC Client Work Group PC Specif-
ic Implementation Specification Version 1.1 [http://www.trustedcomputinggroup.org/re-
sources/pc_client_work_group_pc_specific_implementation_specification_version_11]”. 18 Auguest,
2003.

[ofintrmap] Open Firmware Working Group. “Open Firmware Recommended Practice: Interrupt Mapping (v0.9)
[http://playground.sun.com/1275/practice/imap/imap0_9d.pdf]”. 12 July, 1996.

http://www.sparc.org/standards/SPARCV9.pdf
http://www.sparc.org/standards/SPARCV9.pdf
http://opensparc-t2.sunsource.net/specs/UA2007-current-draft-HP-EXT.pdf
http://opensparc-t2.sunsource.net/specs/UA2007-current-draft-HP-EXT.pdf
http://opensparc-t2.sunsource.net/specs/UA2007-current-draft-HP-EXT.pdf
http://opensparc-t1.sunsource.net/specs/UST1-UASuppl-current-draft-HP-EXT.pdf
http://opensparc-t1.sunsource.net/specs/UST1-UASuppl-current-draft-HP-EXT.pdf
http://opensparc-t1.sunsource.net/specs/UST1-UASuppl-current-draft-HP-EXT.pdf
http://opensparc-t1.sunsource.net/specs/UST1-UASuppl-current-draft-HP-EXT.pdf
http://opensparc-t2.sunsource.net/specs/UA2007-current-draft-HP-EXT.pdf
http://opensparc-t2.sunsource.net/specs/UA2007-current-draft-HP-EXT.pdf
http://opensparc-t2.sunsource.net/specs/UA2007-current-draft-HP-EXT.pdf
http://opensparc-t2.sunsource.net/specs/UST2-UASuppl-current-draft-HP-EXT.pdf
http://opensparc-t2.sunsource.net/specs/UST2-UASuppl-current-draft-HP-EXT.pdf
http://opensparc-t2.sunsource.net/specs/UST2-UASuppl-current-draft-HP-EXT.pdf
http://opensparc-t2.sunsource.net/specs/UST2-UASuppl-current-draft-HP-EXT.pdf
https://systemsweb.sfbay.sun.com/kt/team/arch_specs/index.html
https://systemsweb.sfbay.sun.com/kt/team/arch_specs/index.html
https://systemsweb.sfbay.sun.com/kt/team/arch_specs/index.html
http://www.pcisig.com/specifications/pciexpress/specifications/
http://www.pcisig.com/specifications/pciexpress/specifications/
http://www.pcisig.com/specifications/pciexpress/specifications/
http://arc.opensolaris.org/caselog/FWARC/2005/111/
http://arc.opensolaris.org/caselog/FWARC/2005/111/
http://arc.opensolaris.org/caselog/FWARC/2005/111/
http://cpubringup.sfbay.sun.com/twiki/pub/LDoms/ArchDesignPhase15/dr-design.pdf
http://cpubringup.sfbay.sun.com/twiki/pub/LDoms/ArchDesignPhase15/dr-design.pdf
http://cpubringup.sfbay.sun.com/twiki/pub/LDoms/ArchDesignPhase15/dr-design.pdf
http://developer.intel.com/technology/efi/main_specification.htm
http://developer.intel.com/technology/efi/main_specification.htm
http://developer.intel.com/technology/efi/main_specification.htm
http://www.t10.org/scsi-3.htm
http://www.t10.org/scsi-3.htm
http://sac.sfbay/Archives/CaseLog/arc/PSARC/1995/352/
http://sac.sfbay/Archives/CaseLog/arc/PSARC/1995/352/
http://sac.sfbay/Archives/CaseLog/arc/PSARC/1995/352/
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/pc_client_work_group_pc_specific_implementation_specification_version_11
http://www.trustedcomputinggroup.org/resources/pc_client_work_group_pc_specific_implementation_specification_version_11
http://www.trustedcomputinggroup.org/resources/pc_client_work_group_pc_specific_implementation_specification_version_11
http://www.trustedcomputinggroup.org/resources/pc_client_work_group_pc_specific_implementation_specification_version_11
http://playground.sun.com/1275/practice/imap/imap0_9d.pdf
http://playground.sun.com/1275/practice/imap/imap0_9d.pdf

Bibliography

342

[msiprops] Sun Microsystems, Inc.. “MSI Properties (FWARC 2005/030) [http://arc.opensolaris.org/casel-
og/FWARC/2005/030/materials/msi-props.txt]”. 18 January, 2005.

[vpcierrs] Sun Microsystems, Inc.. “Sun4v PCI Error Packet Definitions [http://pciexpress.sfbay.sun.com/fma/docs/
sun4v-err.txt]”. 28 May, 2009.

[fmahc] Sun Microsystems, Inc.. “Solaris FMA hc scheme names [http://src.opensolaris.org/source/xref/onnv/on-
nv-gate/usr/src/lib/fm/topo/libtopo/common/topo_hc.h]”.

http://arc.opensolaris.org/caselog/FWARC/2005/030/materials/msi-props.txt
http://arc.opensolaris.org/caselog/FWARC/2005/030/materials/msi-props.txt
http://arc.opensolaris.org/caselog/FWARC/2005/030/materials/msi-props.txt
http://pciexpress.sfbay.sun.com/fma/docs/sun4v-err.txt
http://pciexpress.sfbay.sun.com/fma/docs/sun4v-err.txt
http://pciexpress.sfbay.sun.com/fma/docs/sun4v-err.txt
http://src.opensolaris.org/source/xref/onnv/onnv-gate/usr/src/lib/fm/topo/libtopo/common/topo_hc.h
http://src.opensolaris.org/source/xref/onnv/onnv-gate/usr/src/lib/fm/topo/libtopo/common/topo_hc.h
http://src.opensolaris.org/source/xref/onnv/onnv-gate/usr/src/lib/fm/topo/libtopo/common/topo_hc.h

	UltraSPARC Virtual Machine Specification
	Table of Contents
	Preface
	1. Foreward
	2. Related specifications

	Chapter 1. Overview
	1.1. Architectural requirements
	1.2. The hypervisor and sun4v architecture
	1.3. Privilege, isolation and virtualization
	1.4. Direct I/O
	1.5. Logical Domain Channels
	1.5.1. Stateless connections
	1.5.2. LDC security

	1.6. Machine Descriptions
	1.7. Virtual I/O
	1.7.1. Abstraction
	1.7.2. Stateless connections & multipathed I/O
	1.7.3. Virtual disk services
	1.7.4. Scalable virtual networking services
	1.7.5. Virtual I/O Limits

	1.8. Hybrid I/O
	1.9. Logical Domain Manager
	1.9.1. Domain roles
	1.9.1.1. I/O domain
	1.9.1.2. Service domain
	1.9.1.3. Control domain

	1.9.2. Domain dependencies
	1.9.3. Domain manager operation
	1.9.3.1. Constraint engine
	1.9.3.2. Transactional updates
	1.9.3.3. Sequencer

	1.10. Domain service infrastructure
	1.11. OpenBoot firmware
	1.12. Error Handling
	1.13. Advanced LDoms features
	1.13.1. Dynamic reconfiguration
	1.13.2. Logical domain migration

	Chapter 2. Hypervisor call conventions
	2.1. Hyper-fast traps
	2.2. Fast traps
	2.3. Post hypervisor trap processing

	Chapter 3. State Definitions
	3.1. Processor states
	3.2. Initial guest environment
	3.3. Privileged registers
	3.3.1. Non-Privileged Registers
	3.3.2. Ancillary State Registers
	3.3.3. Internal memory-mapped registers
	3.3.4. CPU-specific Registers

	3.4. Other initial guest state

	Chapter 4. Addressing Models
	4.1. Background
	4.2. Address types
	4.3. Address spaces
	4.4. Address space identifiers
	4.4.1. ASI 0x14 & 0x1c: REAL_MEM{_LITTLE}
	4.4.2. ASI 0x15 & 0x1d: REAL_IO{_LITTLE}
	4.4.3. ASI 0x26 & 0x2E: REAL_QUAD{_LITTLE}
	4.4.4. ASI 0x21: MMU
	4.4.4.1. Translation conflicts
	4.4.4.2. Barrier rules

	4.5. Translation mappings
	4.6. MMU Demap support
	4.7. MMU traps
	4.8. MMU fault status area

	Chapter 5. Trap Model
	5.1. Privilege mode trap processing
	5.2. Trap levels
	5.2.1. Privilege mode TL overflow

	5.3. Sun4v privileged-mode trap table

	Chapter 6. Interrupt model
	6.1. Definitions
	6.2. Interrupt reports
	6.3. Interrupt queues
	6.3.1. Queue support registers
	6.3.1.1. *_QUEUE_HEAD and *_QUEUE_TAIL

	6.4. Interrupt traps
	6.4.1. CPU mondo interrupts
	6.4.1.1. Sending CPU mondos
	6.4.1.2. Receiving CPU mondos

	6.4.2. Device mondo interrupts

	6.5. Device interrupts
	6.5.1. Device handles and devinos

	6.6. Sysinos and cookies
	6.6.1. Legacy use (the sysino)
	6.6.2. Interrupt cookies

	Chapter 7. Error model
	7.1. Definitions
	7.2. 7.2 Error classes
	7.2.1. Resumable error
	7.2.2. Non-resumable error

	7.3. Error reports
	7.4. Error queues
	7.4.1. Error Queue Head and Tail Pointers

	7.5. Error traps

	Chapter 8. Machine description
	8.1. Requirements
	8.2. Sections
	8.3. Encoding
	8.4. Header
	8.4.1. Version numbering
	8.4.2. Size fields

	8.5. Name Block
	8.6. Data Block
	8.7. Node Block
	8.7.1. Element format
	8.7.2. Tag definitions

	8.8. Nodes
	8.9. Node definitions
	8.9.1. Node categories

	8.10. Content versions
	8.11. Common data definitions
	8.11.1. String array

	8.12. How to use a machine description
	8.12.1. Using the MD as a list

	8.13. Accelerating string lookups
	8.14. Directed Acyclic Graph
	8.14.1. Graph nodes

	8.15. DAG construction
	8.16. Required nodes
	8.17. The vanilla MD
	8.18. Formation and meaning of a DAG
	8.19. Generic nodes
	8.19.1. Root node
	8.19.1.1. Description
	8.19.1.2. Properties
	8.19.1.3. Programming note

	8.19.2. Cpus node
	8.19.2.1. Description
	8.19.2.2. Properties

	8.19.3. cpu node
	8.19.3.1. Properties

	8.19.4. Memory node
	8.19.4.1. Description
	8.19.4.2. Properties

	8.19.5. Mblock node
	8.19.5.1. Description
	8.19.5.2. Properties

	8.19.6. Platform node
	8.19.6.1. Description
	8.19.6.2. Properties
	8.19.6.3. Programming notes

	8.19.7. Domain services node
	8.19.7.1. Description

	8.19.8. Domain services port node
	8.19.8.1. Description
	8.19.8.2. Properties

	8.20. Memory hierarchy nodes
	8.20.1. Cache node
	8.20.1.1. Description
	8.20.1.2. Properties

	8.20.2. Exec-unit node
	8.20.2.1. Description
	8.20.2.2. Properties
	8.20.2.3. Programming Note

	8.20.3. TLB node
	8.20.3.1. Description
	8.20.3.2. Properties

	8.21. Variables
	8.21.1. Description
	8.21.1.1. Properties

	8.22. Keystore
	8.22.1. Description
	8.22.1.1. Properties

	8.23. Virtual Devices
	8.23.1. Descriptions for virtual devices
	8.23.2. Virtual devices node
	8.23.2.1. Description
	8.23.2.2. Properties

	8.23.3. Channel devices node
	8.23.3.1. Description
	8.23.3.2. Properties

	8.23.4. Virtual device node
	8.23.4.1. Description
	8.23.4.2. Common properties
	8.23.4.3. Virtual device classes
	8.23.4.4. Device class specific properties

	8.23.5. Virtual device port node
	8.23.5.1. Description
	8.23.5.2. Common properties
	8.23.5.3. Device class-specific port properties
	8.23.5.4. Virtual-device-port class table

	8.23.6. Channel endpoints node
	8.23.7. Description
	8.23.8. Channel endpoint node
	8.23.8.1. Description
	8.23.8.2. Properties

	8.23.9. RNG virtual-device node
	8.23.9.1. Properties

	8.23.10. Crypto virtual-device node
	8.23.10.1. Properties

	8.23.11. MAC-addresses node
	8.23.11.1. Description
	8.23.11.2. Properties

	8.23.12. MAC-address node
	8.23.12.1. Description
	8.23.12.2. Properties

	8.24. Latency nodes
	8.24.1. Programming notes and accuracy
	8.24.2. Memory latency group node
	8.24.2.1. Description
	8.24.2.2. Properties
	8.24.2.3. Programming note on RA and physical address congruence
	8.24.2.4. Page coloring

	8.24.3. Programmed I/O latency group
	8.24.3.1. Description
	8.24.3.2. Properties

	8.24.4. I/O DMA latency group
	8.24.4.1. Description
	8.24.4.2. Properties

	8.24.5. I/O Interrupt latency group node
	8.24.5.1. Description
	8.24.5.2. Properties

	8.24.6. Latency groups node
	8.24.6.1. Description
	8.24.6.2. Properties

	8.25. I/O device nodes
	8.25.1. Physical Device Collection node
	8.25.1.1. Description

	8.25.2. I/O device node
	8.25.2.1. Description
	8.25.2.2. Properties
	8.25.2.2.1. Sun4v to PCI Express root nexus device
	8.25.2.2.2. Generic PCI device properties
	8.25.2.2.3. PCI bridge device properties
	8.25.2.2.4. PCI slot device properties
	8.25.2.2.5. PCI network device properties
	8.25.2.2.6. PCI SCSI device properties
	8.25.2.2.7. NIU device properties

	8.25.3. UltraSPARC-T2 NIU network device node
	8.25.3.1. Description
	8.25.3.2. Properties

	8.25.4. Interrupt mapping node
	8.25.4.1. Description
	8.25.4.2. Properties

	8.25.5. Slot name node
	8.25.5.1. Description
	8.25.5.2. Properties

	8.25.6. Device name alias node
	8.25.6.1. Description
	8.25.6.2. Properties

	8.25.7. I/O device path aliases collection node
	8.25.7.1. Description

	8.25.8. I/O device path alias node
	8.25.8.1. Description
	8.25.8.2. Properties

	Chapter 9. Logical domain variables
	9.1. Overview
	9.2. LDom variable store
	9.3. LDom variables and automatic reboot
	9.3.1. Format of reboot-command variable
	9.3.2. Guest OS management of LDom variables

	Chapter 10. Security keys
	Chapter 11. API versioning
	11.1. API calls
	11.1.1. api_set_version
	11.1.1.1. Errors
	11.1.1.2. Usage Notes

	11.1.2. api_get_version
	11.1.2.1. Errors

	Chapter 12. Core services
	12.1. API calls
	12.1.1. mach_exit
	12.1.1.1. Errors

	12.1.2. mach_desc
	12.1.2.1. Errors

	12.1.3. mach_sir
	12.1.3.1. Errors

	12.1.4. mach_set_watchdog
	12.1.4.1. Errors

	12.1.5. mach_suspend
	12.1.5.1. Errors

	12.1.6. mach_pri
	12.1.6.1. Errors

	12.1.7. mach_vars
	12.1.7.1. Errors

	12.1.8. mach_reboot_data_set
	12.1.8.1. Errors

	12.1.9. mach_reboot_data_get
	12.1.9.1. Errors

	Chapter 13. CPU services
	13.1. CPU id and CPU list
	13.2. API calls
	13.2.1. cpu_start
	13.2.1.1. Errors

	13.2.2. cpu_stop
	13.2.2.1. Errors

	13.2.3. cpu_set_rtba
	13.2.3.1. Errors

	13.2.4. cpu_get_rtba
	13.2.4.1. Errors

	13.2.5. cpu_yield
	13.2.5.1. Errors

	13.2.6. cpu_qconf
	13.2.6.1. Errors

	13.2.7. cpu_qinfo
	13.2.7.1. Errors

	13.2.8. cpu_mondo_send
	13.2.8.1. Errors

	13.2.9. cpu_myid
	13.2.9.1. Errors

	13.2.10. cpu_state
	13.2.10.1. Errors

	13.2.11. cpu_tick_npt
	13.2.11.1. Errors

	13.2.12. cpu_stick_npt
	13.2.12.1. Errors

	Chapter 14. MMU services
	14.1. Translation Storage Buffer (TSB) specification
	14.1.1. Page sizes
	14.1.2. Context index

	14.2. MMU flags
	14.3. Translation table entries
	14.3.1. TSB entry tag word
	14.3.2. TSB entry data word

	14.4. Translation storage buffer (TSB) configuration
	14.5. Permanent and non-permanent mappings
	14.6. MMU Fault status area
	14.7. Global MMU Operations
	14.8. API calls
	14.8.1. mmu_tsb_ctx0
	14.8.1.1. Errors

	14.8.2. mmu_tsb_ctxnon0
	14.8.2.1. Errors

	14.8.3. mmu_demap_page
	14.8.3.1. Errors

	14.8.4. mmu_demap_ctx
	14.8.4.1. Errors

	14.8.5. mmu_demap_all
	14.8.5.1. Errors

	14.8.6. mmu_map_addr
	14.8.6.1. Errors

	14.8.7. mmu_map_perm_addr
	14.8.7.1. Errors

	14.8.8. mmu_unmap_addr
	14.8.8.1. Errors

	14.8.9. mmu_unmap_perm_addr
	14.8.9.1. Errors

	14.8.10. mmu_fault_area_conf
	14.8.10.1. Errors

	14.8.11. mmu_enable
	14.8.11.1. Errors

	14.8.12. mmu_tsb_ctx0_info
	14.8.12.1. Errors

	14.8.13. mmu_tsb_ctxnon0_info
	14.8.13.1. Errors

	14.8.14. mmu_fault_area_info
	14.8.14.1. Errors

	14.8.15. mmu_global_demap_page
	14.8.15.1. Errors

	14.8.16. mmu_global_demap_ctx
	14.8.16.1. Errors

	14.8.17. mmu_global_demap_all
	14.8.17.1. Errors

	14.8.18. mmu_global_demap_status
	14.8.18.1. Errors

	Chapter 15. Cache and Memory services
	15.1. API calls
	15.1.1. mem_scrub
	15.1.1.1. Errors

	15.1.2. mem_sync
	15.1.2.1. Errors

	Chapter 16. Device interrupt services
	16.1. Definitions
	16.2. API calls
	16.2.1. vintr_getcookie
	16.2.1.1. Errors

	16.2.2. vintr_setcookie
	16.2.2.1. Errors

	16.2.3. vintr_getenabled
	16.2.3.1. Errors

	16.2.4. vintr_setenabled
	16.2.4.1. Errors

	16.2.5. vintr_getstate
	16.2.5.1. Errors

	16.2.6. vintr_setstate
	16.2.6.1. Errors

	16.2.7. vintr_gettarget
	16.2.7.1. Errors

	16.2.8. vintr_settarget
	16.2.8.1. Errors

	16.3. Deprecated API calls
	16.3.1. intr_devino_to_sysino
	16.3.1.1. Errors

	16.3.2. intr_getenabled
	16.3.2.1. Errors

	16.3.3. intr_setenabled
	16.3.3.1. Errors

	16.3.4. intr_getstate
	16.3.4.1. Errors

	16.3.5. intr_setstate
	16.3.5.1. Errors

	16.3.6. intr_gettarget
	16.3.6.1. Errors

	16.3.7. intr_settarget
	16.3.7.1. Errors

	16.4. Interrupt API version control

	Chapter 17. Time of day services
	17.1. API calls
	17.1.1. tod_get
	17.1.1.1. Errors

	17.1.2. tod_set
	17.1.2.1. Errors

	Chapter 18. Console services
	18.1. API calls
	18.1.1. cons_getchar
	18.1.1.1. Errors

	18.1.2. cons_putchar
	18.1.2.1. Errors

	18.1.3. cons_read
	18.1.3.1. Machine description properties
	18.1.3.2. Errors

	18.1.4. cons_write
	18.1.4.1. Machine description properties
	18.1.4.2. Errors

	Chapter 19. Domain state services
	19.1. API calls
	19.1.1. soft_state_set
	19.1.1.1. Errors
	19.1.1.2. Programming Notes

	19.1.2. soft_state_get
	19.1.2.1. Errors

	Chapter 20. Core dump services
	20.1. API calls
	20.1.1. dump_buf_update
	20.1.1.1. Errors

	20.1.2. dump_buf_info
	20.1.2.1. Errors

	Chapter 21. Trap trace services
	21.1. Trap trace buffer control structure
	21.2. Trap trace buffer entry format
	21.3. API calls
	21.3.1. ttrace_buf_conf
	21.3.1.1. Errors

	21.3.2. ttrace_buf_info
	21.3.2.1. Errors

	21.3.3. ttrace_enable
	21.3.3.1. Errors

	21.3.4. ttrace_freeze
	21.3.4.1. Errors

	21.3.5. ttrace_addentry
	21.3.5.1. Errors

	Chapter 22. Logical Domain Channel services
	22.1. Endpoints
	22.2. LDC queues
	22.3. LDC interrupts
	22.4. API calls
	22.4.1. ldc_tx_qconf
	22.4.1.1. Errors

	22.4.2. ldc_tx_qinfo
	22.4.2.1. Errors

	22.4.3. ldc_tx_get_state
	22.4.3.1. Errors

	22.4.4. ldc_tx_set_qtail
	22.4.4.1. Errors

	22.4.5. ldc_rx_qconf
	22.4.5.1. Errors

	22.4.6. ldc_rx_qinfo
	22.4.6.1. Errors

	22.4.7. ldc_rx_get_state
	22.4.7.1. Errors

	22.4.8. ldc_rx_set_qhead
	22.4.8.1. Errors

	22.5. Shared Memory API calls
	22.5.1. ldc_set_map_table
	22.5.1.1. Errors

	22.5.2. ldc_get_map_table
	22.5.2.1. Errors

	22.5.3. ldc_copy
	22.5.3.1. Errors

	22.5.4. ldc_mapin
	22.5.4.1. Errors

	22.5.5. ldc_unmap
	22.5.5.1. Errors

	22.5.6. ldc_revoke
	22.5.6.1. Errors

	Chapter 23. PCI I/O Services
	23.1. Introduction
	23.1.1. External documents

	23.2. IO Data Definitions
	23.3. PCI IO Data Definitions
	23.4. API calls
	23.4.1. pci_iommu_map
	23.4.1.1. Errors

	23.4.2. pci_iommu_demap
	23.4.2.1. Errors

	23.4.3. pci_iommu_getmap
	23.4.3.1. Errors

	23.4.4. pci_iommu_getbypass
	23.4.4.1. Errors

	23.4.5. pci_config_get
	23.4.5.1. Errors

	23.4.6. pci_config_put
	23.4.6.1. Errors

	23.4.7. pci_peek
	23.4.7.1. Errors

	23.4.8. pci_poke
	23.4.8.1. Errors

	23.4.9. pci_dma_sync
	23.4.9.1. Errors

	23.5. Static Direct I/O
	23.5.1. SDIO Definitions
	23.5.2. SDIO API Definitions
	23.5.2.1. pci_iov_root_configured
	23.5.2.1.1. Errors

	23.5.2.2. pci_real_config_get
	23.5.2.2.1. Errors

	23.5.2.3. pci_real_config_put
	23.5.2.3.1. Errors

	23.5.2.4. pci_error_send
	23.5.2.4.1. Errors

	Chapter 24. PCI MSI Services
	24.1. Message Signaled Interrupt (MSI)
	24.2. MSI Event Queue (MSI EQ)
	24.2.1. MSI/Message/INTx Data Record format

	24.3. Definitions
	24.4. API calls
	24.4.1. pci_msiq_conf
	24.4.1.1. Errors

	24.4.2. pci_msiq_info
	24.4.2.1. Errors

	24.4.3. pci_msiq_getvalid
	24.4.3.1. Errors

	24.4.4. pci_msiq_setvalid
	24.4.4.1. Errors

	24.4.5. pci_msiq_getstate
	24.4.5.1. Errors

	24.4.6. pci_msiq_setstate
	24.4.6.1. Errors

	24.4.7. pci_msiq_gethead
	24.4.7.1. Errors

	24.4.8. pci_msiq_sethead
	24.4.8.1. Errors

	24.4.9. pci_msiq_gettail
	24.4.9.1. Errors

	24.4.10. pci_msi_getvalid
	24.4.10.1. Errors

	24.4.11. pci_msi_setvalid
	24.4.11.1. Errors

	24.4.12. pci_msi_getmsiq
	24.4.12.1. Errors

	24.4.13. pci_msi_setmsiq
	24.4.13.1. Errors

	24.4.14. pci_msi_getstate
	24.4.14.1. Errors

	24.4.15. pci_msi_setstate
	24.4.15.1. Errors

	24.4.16. pci_msg_getmsiq
	24.4.16.1. Errors

	24.4.17. pci_msg_setmsiq
	24.4.17.1. Errors

	24.4.18. pci_msg_getvalid
	24.4.18.1. Errors

	24.4.19. pci_msg_setvalid
	24.4.19.1. Errors

	Chapter 25. Cryptographic services
	25.1. Random Number Generation
	25.1.1. Trusted Domains
	25.1.2. RNG Control Register data structure
	25.1.3. RNG State
	25.1.4. Maximum Data Read Length
	25.1.5. RNG Mutual Exclusion
	25.1.6. RNG Data Availability
	25.1.7. RNG Watchdog Timeout
	25.1.8. rng_data_read
	25.1.8.1. Errors

	25.1.9. rng_ctl_read (2.0)
	25.1.9.1. Programming note
	25.1.9.2. Write status
	25.1.9.3. Errors

	25.1.10. rng_ctl_write (2.0)
	25.1.10.1. Errors

	25.1.11. rng_data_read_diag (2.0)
	25.1.11.1. Programming Note
	25.1.11.2. Errors

	25.1.12. Deprecated RNG 1.0 APIs
	25.1.12.1. rng_get_diag_control (1.0)
	25.1.12.1.1. Errors

	25.1.12.2. rng_ctl_read (1.0)
	25.1.12.2.1. Programming note
	25.1.12.2.2. Errors

	25.1.12.3. rng_ctl_write (1.0)
	25.1.12.3.1. Programming note
	25.1.12.3.2. Errors

	25.1.12.4. rng_data_read_diag (1.0)
	25.1.12.4.1. Programming Note
	25.1.12.4.2. Errors

	25.2. Niagara crypto services
	25.2.1. Versioning
	25.2.2. Work queues
	25.2.2.1. Queue Type
	25.2.2.2. MAU queue
	25.2.2.3. CWQ queue (UltraSPARC-T2 only)

	25.2.3. ncs_qconf
	25.2.3.1. Programming note
	25.2.3.2. Errors

	25.2.4. ncs_qinfo
	25.2.4.1. Errors

	25.2.5. ncs_gethead
	25.2.5.1. Errors

	25.2.6. ncs_sethead_marker
	25.2.6.1. Errors

	25.2.7. ncs_gettail
	25.2.7.1. Errors

	25.2.8. ncs_settail
	25.2.8.1. Programming note
	25.2.8.2. Errors

	25.2.9. ncs_qhandle_to_devino
	25.2.9.1. Errors

	25.2.10. ncs_ulqconf (version 2.1)
	25.2.10.1. Errors

	25.3. Trusted Platform Module Physical Access
	25.3.1. TPM Definitions
	25.3.1.1. TPM Locality
	25.3.1.2. TPM Registers

	25.3.2. TPM Hypervisor Calls
	25.3.2.1. tpm_get
	25.3.2.1.1. Errors

	25.3.2.2. tpm_put
	25.3.2.2.1. Errors

	Chapter 26. UltraSPARC-T2 Network Interface Unit
	26.1. Introduction
	26.2. Definitions
	26.3. Version 1.0 and version 1.1 APIs
	26.4. Version 1.0 APIs
	26.4.1. niu_rx_logical_page_set
	26.4.1.1. Errors

	26.4.2. niu_rx_logical_page_get
	26.4.2.1. Errors

	26.4.3. niu_tx_logical_page_set
	26.4.3.1. Errors

	26.4.4. niu_tx_logical_page_get
	26.4.4.1. Errors

	26.5. Version 1.1 APIs
	26.5.1. NIU Virtual Region (VR) Specific APIs
	26.5.1.1. vr_assign
	26.5.1.1.1. Errors

	26.5.1.2. vr_unassign
	26.5.1.2.1. Errors

	26.5.1.3. vr_getinfo
	26.5.1.3.1. Errors

	26.5.2. NIU DMA Channel (DMAC) Specific APIs
	26.5.2.1. vr_rx_dma_assign and vr_tx_dma_assign
	26.5.2.1.1. Errors

	26.5.2.2. vr_rx_dma_unassign and vr_tx_dma_unassign
	26.5.2.2.1. Errors

	26.5.2.3. vr_get_rx_map and vr_get_tx_map
	26.5.2.3.1. Errors

	26.5.2.4. vrrx_set_ino and vrtx_set_ino
	26.5.2.4.1. Errors

	26.5.2.5. vrrx_get_info and vrtx_get_info
	26.5.2.5.1. Errors

	26.5.2.6. vrrx_lp_set and vrtx_lp_set
	26.5.2.6.1. Errors

	26.5.2.7. vrrx_lp_get and vrtx_lp_get
	26.5.2.7.1. Errors

	26.5.3. Virtualized Access to Non-virtualized NIU registers
	26.5.3.1. vrrx_param_get and vrtx_param_get
	26.5.3.1.1. Errors

	26.5.3.2. vrrx_param_set and vrtx_param_set
	26.5.3.2.1. Errors

	26.6. Version 2.0 APIs
	26.6.1. niu_rx/tx_logical_page_set
	26.6.2. niu_rx/tx_logical_page_get
	26.6.3. NIU Virtual Region (VR) Specific APIs
	26.6.3.1. vr_assign

	Chapter 27. Chip and platform specific performance counters
	27.1. UltraSPARC-T1 performance counters
	27.1.1. niagara_get_perfreg
	27.1.1.1. Errors

	27.1.2. niagara_set_perfreg
	27.1.2.1. Errors:

	27.2. UltraSPARC-T1 MMU statistics counters
	27.2.1. Hypervisor API for UltraSPARC-T1 MMU statistics collection
	27.2.1.1. MMU statistic buffer layout

	27.2.2. niagara_mmustat_conf
	27.2.2.1. Errors

	27.2.3. niagara_mmustat_info
	27.2.3.1. Errors

	27.3. Fire performance counter APIs
	27.3.1. Definitions
	27.3.2. fire_get_perf_reg
	27.3.2.1. Errors

	27.3.3. fire_set_perf_reg
	27.3.3.1. Errors

	27.4. UltraSPARC T2 performance counters
	27.4.1. Strand performance instrumentation
	27.4.2. DRAM Performance Instrumentation
	27.4.3. API calls for SPARC and DRAM performance counters
	27.4.4. niagara2_get_perfreg
	27.4.4.1. Errors

	27.4.5. niagara2_set_perfreg
	27.4.5.1. Errors

	27.4.6. API calls for PCI-Express interface unit performance counters
	27.4.7. n2piu_get_perf_reg
	27.4.7.1. Errors

	27.4.8. n2piu_set_perf_reg
	27.4.8.1. Errors

	27.5. UltraSPARC T2+ performance counters
	27.5.1. Strand performance instrumentation
	27.5.2. DRAM Performance Instrumentation
	27.5.3. L2 Cache Control Register
	27.5.4. LPU Performance Instrumentation
	27.5.5. GPD Performance Instrumentation
	27.5.6. ASU Performance Instrumentation
	27.5.7. API calls for SPARC and DRAM performance counters
	27.5.8. vfalls_get_perfreg
	27.5.8.1. Errors

	27.5.9. vfalls_set_perfreg
	27.5.9.1. Errors

	27.5.10. UltraSPARC T2+ PCIe performance instrumentation

	27.6. UltraSPARC KT performance counters
	27.6.1. Strand performance instrumentation
	27.6.2. DRAM Performance Instrumentation
	27.6.3. L2 Cache Control Register
	27.6.4. API calls for SPARC and DRAM performance counters
	27.6.5. kt_get_perfreg
	27.6.5.1. Errors

	27.6.6. kt_set_perfreg
	27.6.6.1. Errors

	27.6.7. API calls for UltraSPARC-T3 PCI-Express performance counters
	27.6.8. kt_ios_get_perf_reg
	27.6.8.1. Errors

	27.6.9. kt_ios_set_perfreg
	27.6.9.1. Errors

	Chapter 28. Logical Domain Channel (LDC) infrastructure
	28.1. Overview
	28.1.1. Packet based communication
	28.1.1.1. Between Domains
	28.1.1.2. Between Domain and Hypervisor
	28.1.1.3. Between SP and Domain/Hypervisor

	28.1.2. Shared memory communication
	28.1.2.1. Between domains
	28.1.2.2. Between domain and the Hypervisor
	28.1.2.3. Between Domain/Hypervisor and the service processor

	28.2. Hypervisor infrastructure
	28.2.1. Packet delivery
	28.2.2. Shared memory
	28.2.2.1. Map table
	28.2.2.2. Map table cookies
	28.2.2.3. Map table entry
	28.2.2.4. Copying in and out of a peer's exported memory
	28.2.2.5. Mapping page use and restrictions
	28.2.2.6. Mapping revocation

	28.3. LDC virtual link layer
	28.3.1. Communication overview
	28.3.1.1. Data Transfer Mechanisms
	28.3.1.2. Protocol Modes

	28.3.2. Packet formats
	28.3.3. Communication protocol
	28.3.3.1. Session establishment
	28.3.3.2. Session termination
	28.3.3.3. Session status notification
	28.3.3.4. Data transfer
	28.3.3.4.1. Packet format
	28.3.3.4.2. Streaming support
	28.3.3.4.3. Message ACKs
	28.3.3.4.4. Transmit queues and retransmissions
	28.3.3.4.5. Link errors
	28.3.3.4.6. Link interrupt handler

	Chapter 29. Virtual IO device protocols
	29.1. Virtual IO communication protocol
	29.1.1. VIO data transfer
	29.1.2. VIO device message tag
	29.1.3. VIO device peer-to-peer handshake
	29.1.3.1. Version negotiation
	29.1.3.2. Attribute exchange
	29.1.3.3. Descriptor ring registration
	29.1.3.4. Handshake completion

	29.1.4. VIO data transfer modes
	29.1.4.1. Packet based transfer
	29.1.4.2. Descriptor rings
	29.1.4.2.1. Descriptor format in VIO_RX_DRING_DATA mode
	29.1.4.2.2. Descriptor format in VIO_TX_DRING/VIO_RX_DRING mode
	29.1.4.2.3. Descriptor Ring Data Message Format (common to all dring modes)

	29.1.5. Virtual IO Dynamic Device Service (DDS)

	29.2. Virtual disk protocol
	29.2.1. Attribute information
	29.2.2. vDisk descriptors
	29.2.3. Disk operations
	29.2.3.1. Disks and slices
	29.2.3.2. VDisk Block Read command (VD_OP_BREAD)
	29.2.3.3. VDisk Block Write command (VD_OP_BWRITE)
	29.2.3.4. VDisk Flush command (VD_OP_FLUSH)
	29.2.3.5. VDisk Get Write Cache enablement status (VD_OP_GET_WCE)
	29.2.3.6. VDisk Enable/Disable Write Cache (VD_OP_SET_WCE)
	29.2.3.7. VDisk Get Volume Table of Contents (VD_OP_GET_VTOC)
	29.2.3.8. VDisk Set Volume Table of Contents (VD_OP_SET_VTOC)
	29.2.3.9. VDisk Get Disk Geometry (VD_OP_GET_DISKGEOM)
	29.2.3.10. VDisk Set Disk Geometry (VD_OP_SET_DISKGEOM)
	29.2.3.11. VDisk SCSI Command (VD_OP_SCSICMD)
	29.2.3.12. VDisk Get Device ID (VD_OP_GET_DEVID)
	29.2.3.13. VDisk Get EFI Data (VD_OP_GET_EFI)
	29.2.3.14. VDisk Set EFI Data (VD_OP_SET_EFI)
	29.2.3.15. VDisk Reset (VD_OP_RESET)
	29.2.3.16. VDisk Get Access (VD_OP_GET_ACCESS)
	29.2.3.17. VDisk Set Access (VD_OP_SET_ACCESS)
	29.2.3.18. VDisk Get Capacity (VD_OP_GET_CAPACITY)

	29.3. Virtual network protocol
	29.3.1. Attribute information
	29.3.1.1. Multicast information

	29.3.2. vNet descriptors
	29.3.3. Virtual LAN (VLAN) support
	29.3.4. Network Device Resource Sharing via DDS
	29.3.5. Network Device Physical Link Information Updates

	Chapter 30. Domain services
	30.1. Overview
	30.1.1. Communication Stack

	30.2. Domain Services Protocol
	30.2.1. Definitions
	30.2.2. DS Message Header
	30.2.3. DS protocol fixed message types
	30.2.4. Initiate DS connection
	30.2.5. Initiation acknowledgment
	30.2.6. Initiation negative acknowledgment
	30.2.7. DS protocol version negotiation

	30.3. DS protocol version 1.0
	30.3.1. Service Handles
	30.3.2. Service Identifier
	30.3.3. Result Codes
	30.3.4. DS Message types defined for v.1.0 of the DS protocol
	30.3.4.1. Register Service
	30.3.4.2. Register Acknowledgment
	30.3.4.3. Register Failed
	30.3.4.4. Unregister Service
	30.3.4.5. Unregister OK
	30.3.4.6. Unregister Failed
	30.3.4.7. Data Message
	30.3.4.8. Data Error

	30.3.5. DS Capability Version Negotiation & Registration
	30.3.6. Service Requests
	30.3.7. Unregistration

	30.4. DS Capabilities
	30.5. MD Update Notification version 1.0
	30.5.1. Service ID
	30.5.2. MD Update Request
	30.5.3. MD Update Response

	30.6. Domain Shutdown version 1.0
	30.6.1. Service ID
	30.6.2. Domain Shutdown Request
	30.6.3. Domain Shutdown Response

	30.7. Domain Panic version 1.0
	30.7.1. Service ID
	30.7.2. Domain Panic Request
	30.7.3. Domain Panic Response

	30.8. CPU DR Version 1.0
	30.8.1. Service ID
	30.8.2. CPU DR Message Header
	30.8.3. Message types
	30.8.3.1. CPU DR Request records payload
	30.8.3.2. Request number
	30.8.3.3. DR_CPU_CONFIGURE request
	30.8.3.4. CPU_UNCONFIGURE request
	30.8.3.5. CPU_FORCE_UNCONFIG request
	30.8.3.6. CPU_STATUS request

	30.8.4. CPU_DR_OK response payload
	30.8.4.1. CPU_DR_OK Result codes
	30.8.4.2. CPU_DR_OK status codes
	30.8.4.3. CPU DR OK response string

	30.8.5. CPU DR Error response

	30.9. Memory DR service version 1.0
	30.9.1. Service ID
	30.9.2. Memory DR message header
	30.9.3. Message types
	30.9.3.1. Message argument
	30.9.3.2. Request number
	30.9.3.3. DR_MEM_CONFIGURE request
	30.9.3.4. DR_MEM_UNCONFIGURE request
	30.9.3.5. DR_MEM_UNCONF_STATUS request
	30.9.3.6. DR_MEM_UNCONF_CANCEL request
	30.9.3.7. DR_MEM_QUERY request

	30.9.4. DR_MEM_OK response
	30.9.4.1. DR_MEM_OK result codes
	30.9.4.2. DR_MEM_OK status code
	30.9.4.3. DR_MEM_OK response string
	30.9.4.4. DR_MEM_CONFIGURE response payload
	30.9.4.5. DR_MEM_UNCONFIGURE response payload
	30.9.4.6. DR_MEM_UNCONF_STATUS response payload
	30.9.4.7. DR_MEM_UNCONF_CANCEL response payload
	30.9.4.8. DR_MEM_QUERY response payload

	30.9.5. DR_MEM_ERROR response

	30.10. VIO DR service version 1.0
	30.10.1. Service ID
	30.10.2. Message format
	30.10.3. Message types
	30.10.3.1. DR_VIO_CONFIGURE request
	30.10.3.2. DR_VIO_UNCONFIGURE request
	30.10.3.3. DR_VIO_FORCE_UNCONFIG request
	30.10.3.4. DR_VIO_STATUS request
	30.10.3.5. Request number
	30.10.3.6. Device Name
	30.10.3.7. Device ID

	30.10.4. VIO DR response message
	30.10.4.1. VIO DR response message format
	30.10.4.2. VIO DR Result codes
	30.10.4.3. VIO DR status codes
	30.10.4.4. VIO DR “reason” string

	30.11. Crypto DR service version 1.0
	30.11.1. Service ID
	30.11.2. Message format header
	30.11.3. Message Types
	30.11.3.1. Request messages
	30.11.3.2. Response messages

	30.11.4. Request Payload
	30.11.5. Request Number
	30.11.6. DR_CRYPTO_CONFIG request
	30.11.7. DR_CRYPTO_UNCONFIG request
	30.11.8. DR_CRYPTO_FORCE_UNCONFIG request
	30.11.9. DR_CRYPTO_STATUS
	30.11.10. DR_CRYPTO_OK response payload
	30.11.11. DR_CRYPTO_OK result codes
	30.11.12. DR CRYPTO OK status codes
	30.11.13. DR Crypto Error Response
	30.11.14. Operational Overview
	30.11.14.1. Offlining a Crypto Unit
	30.11.14.2. Onlining a Crypto Unit

	30.12. Variable Configuration version 1.0
	30.12.1. Service IDs
	30.12.2. Message Header
	30.12.3. Message types
	30.12.4. Set Variable Payload
	30.12.5. Delete Variable Payload
	30.12.6. Response Payload
	30.12.6.1. Response Result Codes

	30.13. Security key domain service version 1.0
	30.13.1. Service IDs
	30.13.2. Message Header
	30.13.3. Message types
	30.13.3.1. Set keystore Payload
	30.13.3.2. Delete keystore Payload

	30.13.4. Response Payload
	30.13.4.1. Response Result Codes

	30.14. PRI Domain Service 1.0
	30.14.1. Service ID
	30.14.2. PRI Update Message
	30.14.3. PRI Update Response
	30.14.4. pri_msgnum
	30.14.5. Response Status Codes

	30.15. System Info version 1.0
	30.15.1. Service ID
	30.15.2. Message header
	30.15.3. Message types
	30.15.4. Get Information Payload
	30.15.5. Get Information Response Payload
	30.15.6. Response Result Codes

	30.16. SNMP service version 1.0
	30.16.1. Service ID
	30.16.2. Message header
	30.16.3. Message types
	30.16.3.1. SNMP Request Message
	30.16.3.2. SNMP Reply Message
	30.16.3.3. SNMP Error Message

	30.17. Domain Suspend service version 1.0
	30.17.1. Service ID
	30.17.2. Domain Suspend Request
	30.17.3. Message types
	30.17.3.1. Domain Suspend Reply Message
	30.17.3.2. Domain Suspend response result values

	30.17.4. Domain Suspend request handling
	30.17.4.1. Invalid Request
	30.17.4.2. Suspend in Progress
	30.17.4.3. Pre-suspend
	30.17.4.4. Suspend
	30.17.4.5. Resume and Post-suspend

	30.17.5. Message Sequences
	30.17.5.1. Sequence 1 (failure)
	30.17.5.2. Sequence 2 (failure)
	30.17.5.3. Sequence 3 (failure)
	30.17.5.4. Sequence 4 (failure)
	30.17.5.5. Sequence 5 (failure)
	30.17.5.6. Sequence 6 (failure)
	30.17.5.7. Sequence 7 (suspend success, post-suspend failure)
	30.17.5.8. Sequence 8 (success)

	Chapter 31. Diagnostic services
	31.1. API calls
	31.1.1. diag_ra2pa
	31.1.1.1. Errors

	31.1.2. diag_hexec
	31.1.2.1. Errors

	Appendix A. Number Registry
	A.1. API Groups
	A.2. Hyper-fast Trap numbers
	A.3. FAST_TRAP Function numbers
	A.4. CORE_TRAP Function numbers
	A.5. Summary of trap and function numbers
	A.6. Error codes

	Appendix B. Domain Service Registry
	Appendix C. Physical Resource Inventory
	C.1. Introduction
	C.2. Root Node
	C.2.1. PRI version property

	C.3. Components Node
	C.3.1. Power Management (PM) versioning property

	C.4. Component Node
	C.4.1. type Property
	C.4.1.1. Type-specific property requirements

	C.4.2. nac Property
	C.4.3. fru Property
	C.4.4. serial_number Property
	C.4.5. part_number Property
	C.4.6. rev_number Property
	C.4.7. dash_number Property
	C.4.8. id Property
	C.4.9. path Property
	C.4.10. label Property
	C.4.11. name Property
	C.4.12. pm_resource Property
	C.4.13. pm_states Property
	C.4.14. pm_cookie Property
	C.4.15. pm_dependency Property
	C.4.16. pm_coordination Property
	C.4.17. pm_mapping Property
	C.4.18. topo-hc-name Property
	C.4.19. topo-skip Property
	C.4.20. assignable-path Property
	C.4.21. pm_power Property

	C.5. Firmware Node
	C.5.1. max_guests Property
	C.5.2. max_hv_ldcs Property
	C.5.3. max_guest_ldcs Property
	C.5.4. max_guest_dependencies Property
	C.5.5. directio_capability Property

	C.6. Read_Only_Memory Node
	C.6.1. name Property
	C.6.2. base Property
	C.6.3. size Property

	C.7. Rom_Img Node
	C.7.1. name Property
	C.7.2. offset Property
	C.7.3. size Property
	C.7.4. alignment Property
	C.7.5. min_allocation Property
	C.7.6. guest_use Property

	C.8. Ldc_Endpoints Node
	C.9. Ldc_Endpoint Node
	C.9.1. resource_id Property
	C.9.2. target_type Property
	C.9.3. channel Property
	C.9.4. target_channel Property
	C.9.5. tx-ino and rx-ino Properties

	C.10. Memory Segments and related nodes
	C.11. Memory-Segment Node
	C.11.1. base Property
	C.11.2. size Property

	C.12. Memory-Bank Node
	C.12.1. size Property
	C.12.2. mask Property
	C.12.3. match Property

	C.13. IO Device node
	C.13.1. Sun4v to PCI Express root nexus device
	C.13.1.1. rcid Property

	C.13.2. Generic PCI device properties
	C.13.3. PCI bridge type device properties
	C.13.3.1. chassis-location-name Property

	C.13.4. PCI slot type device properties
	C.13.5. PCI network device properties
	C.13.6. PCI SCSI device properties

	C.14. Interrupt mapping node
	C.15. Power-Management node
	C.16. Memory-Grouping Node
	C.16.1. id Property
	C.16.2. name Property
	C.16.3. pm_resource Property
	C.16.4. pm_states Property
	C.16.5. pm_cookie Property

	C.17. Memory-Region Node
	C.17.1. id Property
	C.17.2. name Property
	C.17.3. base Property
	C.17.4. size Property

	Bibliography

